
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AKHIL KALLEPALLI 

March, 2014 

 

IIRS SUPERVISOR          ITC SUPERVISOR 

Dr. Anil Kumar           Dr. Kourosh Khoshelham 

Spectral and Spatial 

Indices based Specific 

Class Identification from 

Airborne Hyperspectral 

Data 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Thesis submitted to the Faculty of Geo-information 

Science and Earth Observation (ITC) of the University of 

Twente in partial fulfilment of the requirements for the 

degree of Master of Science in Geo-information Science 

and Earth Observation.  

Specialization: Geoinformatics  

 
 
 
THESIS ASSESSMENT BOARD: 

Chair   : Prof. Dr. Ir. A. Stein 

ITC Professor  : Prof. Dr. Ir. M. G. Vosselman 

External Examiner  : Prof. Dr. P. K. Garg (IIT, Roorkee) 

IIRS Supervisor : Dr. Anil Kumar 

ITC Supervisor  : Dr. Kourosh Khoshelham 

 

 

 

OBSERVERS: 

IIRS Observer          : Dr. S. K. Srivastav 

ITC Observer  : Dr. N. A. S. Hamm 
 

 

 

 

 

Spectral and Spatial 

Indices based Specific 

Class Identification from 

Airborne Hyperspectral 

Data 

 
 AKHIL KALLEPALLI 

Enschede, The Netherlands [March, 2014] 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCLAIMER 

This document describes work undertaken as part of a programme of study at the Faculty of 

Geo-information Science and Earth Observation (ITC), University of Twente, The 

Netherlands. All views and opinions expressed therein remain the sole responsibility of the 

author, and do not necessarily represent those of the Institute. 



 

 

 

 
 
 
 
 
 
 

Dedicated to Mom, Dad and Asha 





 

i 

ABSTRACT 

Hyperspectral remote sensing has emerged as one of the most versatile and information rich 

source of data. Hyperspectral data finds applications in various domains, like specific land use 

land cover identification and hence, has emerged as one of the most significant research areas. 

Hyperspectral data has many advantages, but the major limiting disadvantage to its applicability is 

that of its dimensionality. Known as the ―Hughes Phenomenon‖, traditional classification and 

image processing approaches fail to process data along many contiguous bands due to inadequate 

training samples. Another aspect of classification is to deal with the real world scenario of mixed 

pixels i.e. presence of more than one class within a single pixel. An attempt has been made to deal 

with the problems of dimensionality and mixed pixel, with an objective to improve the accuracy 

of class identification.  

The present research intends to use an indices based approach to deal with the dimensionality of 

the Airborne Prism EXperiment (APEX) hyperspectral dataset and improve the classification 

accuracy using Possibilistic c-Means (PCM) algorithm. APEX Open Science Dataset (OSD) was 

acquired over Baden, Switzerland and consists of 285 bands at 1.8 m resolution, allowing 

formulation of spectral and spatial indices to describe the information in the dataset in a lesser 

dimensionality. This reduced dimensionality is used for classification, attempting to improve the 

accuracy of determination of specific class of interest, in the context of a number of classes. 

Spectral indices are derived from the features of the dataset and spatial indices have been defined 

using texture analysis over defined neighbourhoods. The classifications of 20 classes of varying 

spatial distributions were considered in order to evaluate the applicability of spectral and spatial 

indices in extraction of specific class information.  

The proposed approach to dimensionality reduction aims to assess the results of classification, 

relative to a traditional dimensionality reduction approach i.e. PCA in this research. In order to 

understand the effect of indices on classification, spectral and a combination of spectral and 

spatial indices were individually assessed and studied. Improvements in specific class 

determination were assessed by certainty measures of entropy and correctness measures of user‘s 

and producer‘s accuracies. Besides reduction of entropy for classes while considering a spectral-

spatial indices approach, an overall classification accuracy of 80.50% was obtained for the same, 

against 65% (spectral indices) and 59.50% (optimally determined principal components).  

Utilizing the high dimensionality and fine resolution of the airborne hyperspectral dataset, the 

spectral knowledge-based approach to feature selection, extraction and reduction of 

dimensionality has been researched. An improvement in accuracy of class determination supports 

the motivation of the research, concluding that the application of indices using their spectral-

spatial properties can indeed improve in identification of land use/land cover.  

 

Keywords: Airborne hyperspectral remote sensing, Hughes Phenomenon, Spectral indices, 

Textural analysis, Possibilistic c-Means (PCM), Entropy       
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1. INTRODUCTION 

1.1. Background and Motivation 

―Remote sensing is the science and art of obtaining information about an object, area, or 

phenomenon through the analysis of data acquired by a device that is not in contact with the 

object, area, or phenomenon under investigation‖ [1]. As the definition suggests, the data 

acquisition is achieved without the requirement of any physical contact with the region being 

‗remotely sensed‘. This is achieved with the detection of electromagnetic radiation (EMR) [1]. A 

significant advantage of remote sensing is its ability to acquire information in inaccessible 

regions. Visible and infrared regions of the EMR spectrum are utilized in passive remote 

sensing, may it be multispectral or hyperspectral remote sensing.  

1.1.1. Hyperspectral Remote Sensing (Imaging Spectroscopy) 

Of the various types of remote sensing, hyperspectral imaging (or remote sensing) has become 

one of the most active areas of research [2]. Hyperspectral sensors, both airborne and 

spaceborne (also referred to as imaging spectrometers) acquire data in ―many, very, narrow 

contiguous spectral bands through visible to thermal IR portions of spectrum‖ [1], [3]. The 

word hyper means ‗beyond‘, and thus, in need of better fitting terminology, hyperspectral 

remote sensing is alternatively called imaging spectroscopy [4] by some researchers. Thus, 

hyperspectral remote sensing and imaging spectroscopy are considered synonymous in this 

literature.  

 
Figure 1-1: Spectral reflectance curves of Kaolinite in LANDSAT TM, AVIRIS sensors and a field spectrometer. 

Source - [5] 

The major advantage of imaging spectroscopy is data acquisition across contiguous spectral 

bands. Analysis of these contiguous response curves assists in studying specific properties of 

the objects on the ground. These spectral bands result in a continuous spectral reflectance 
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curve for any sample that is sensed from a spectrometer. Figure 1-1 illustrates a comparison of 

the multispectral sensor, LANDSAT Thematic Mapper (TM), Airborne Visible/Infrared 

Imaging Spectrometer (AVIRIS) and a field spectrometer. AVIRIS acquires images in 224 

contiguous bands in comparison to TM‘s 6 bands. The resultant spectral curve of AVIRIS is 

much more continuous, making intricate details visible. The gaps in the curves are due to 

atmospheric absorptions, which are absent in the case of the library Kaolinite curve, acquired 

from a field spectrometer without any influence from the atmosphere.  

 
Figure 1-2: Typical Spectral Reflectance Curve for Vegetation. Source - [6] 

As illustrated in the Figure 1-2, leaf pigments, cell structure and water content have discernable 

characteristics on the spectral curve. Similar analysis is possible for many objects that are 

‗remotely sensed‘, i.e. from detailed analysis of spectral curves. These advantages govern the 

choice of high resolution hyperspectral data for this study.  

1.1.2. Curse of Dimensionality 

Hyperspectral remote sensing enables identification of greater detail of spectral variation of 

targets [7] when compared to multi-spectral image acquisition. But, this higher spectral detail 

comes at the price of classification accuracy and high computational requirements, creating the 

problem of dimensionality. This dimensionality handling problem revolves around the 

presence of many bands in the acquired data cube while the colour composite image can only 

accommodate three components (R, G and B) [4]. Many methods have been developed to 

curb the impacts of high dimensionality on information extraction like Principal Component 

Analysis (PCA) [8], Minimum Noise Fraction (MNF) [9], etc.  

The dimensionality problem affects the classification of raw hyperspectral bands and known 

as the ―Hughes Phenomenon‖ [10]. Hughes describes this ―peaking paradox‖ in relation to 

statistical recognition accuracy reaching an optimal value with a subset of the bands and then 

declining with increasing dimensionality due to inadequate training samples. Besides 

classification accuracy, the reduction of dimensionality also greatly reduces the computational 

effort [7]. Successful studies have been carried out to reduce the dimensionality of 

hyperspectral data [2], [7], [11], [12] for further processing. Although indices have been applied 
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for extraction of various properties of vegetation [13]–[17], their direct relation to 

classification of respective classes, many besides vegetation, provides an avenue for research.  

1.1.3. Spectral Indices 

Spectral indices have been extensively researched with their applications in emphasizing 

certain classes while subduing others. The most commonly known index is the Normalized 

Difference Vegetation Index (NDVI) [18]. First implemented by Rouse et al., 1973 [19], this 

index is a numerical indicator that uses the near infrared and red bands of the EMR spectrum 

for identifying live vegetation against the previously used simple ratio methods [20]. However, 

disadvantages of NDVI in terms of high correlation to multiple vegetation parameters and 

influence of soil reflectance [21], makes separation of different vegetation classes amongst 

themselves highly unlikely. Therefore, various indices were developed for identification of 

chlorophyll content [22]–[24], Leaf Area Index (LAI) [15], [25], [26], water content [27], etc. 

Many other indices have been formulated for the identification of vegetation [15], [16]. 

Besides vegetation, spectral indices have been attempted to be formulated for other classes. 

Zha et al., 2003 [28] attempted the utility of Normalized Difference Built-Up Index (NDBI), 

Gao (1996) [27] attempted to formulate a Normalized Difference Water Index (NDWI) using 

infrared bands and other indices like Normalized Difference Snow Index (NDSI) have been 

formulated and researched [28], [29]. The definition of indices depends on the identification of 

unique spectral curve properties/behaviour which can be used to emphasize a specific object 

class. As the remote sensing technologies advance, emphasis is shifting from multi-spectral to 

hyper-spectral image analysis. Hyperspectral images provide a much greater amount of 

spectral detail in images, enabling the identification of specific signatures of different 

vegetation and other object classes [17] – [19].  

With the multitude of indices formulated for various object classes, the choice of optimal 

indices depends on the study area, nature of dataset and various other parameters. However, 

the advantage of spectral indices in extracting information from data is very significant. 

Understanding the priority of extracting spectral information (Figure 1-3), indices act as a 

valued method against other transformations. 

1.1.1. Spatial Information  

Colloquially used, spatial indices are interpreted in many ways [31]. In the present context, 

spatial information (through indices) is defined by influence of neighbour pixels and the 

distribution of objects in satellite data.  

In defining characteristics for obtaining information from imagery, we look towards the types 

of characteristics that human beings use in interpretation of the same [32]. In this regard, the 

most important pattern elements are spectral, textural and contextual features [32]. Estes et al., 

1983 [33] supports this viewpoint of analysis, considering the tone/colour variations to be the 

primary element of visual image interpretation (Figure 1-3). Many researchers have analyzed 

the applicability of textural information, to support the above principle, for identifying objects 

or regions of interest in an image [32].  
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Figure 1-3: Ordering of elements of visual photo-interpretation. Source - [33] 

A variety of research was performed before Haralick et al., 1973 [32], but none tried to define 

or model texture. Combining textural analysis with spatial metrics (statistics derived from 

urban land use regions) [34], research has shown that textures as a feature in the input dataset 

improve the extraction of land use information from high resolution satellite imagery.  

Research, therefore, proves that textures can perform as quantitative discriminators [34] for 

extracting spatial information from datasets. This research is an attempt to realise the 

significance of spatial information when combined with spectral indices, with focus on 

identification of a class of interest.  

1.2. Problem Statement  

Research is necessary to understand the applications of indices, as features, for identification of 

classes in a dataset. Existing methods of classification deal with reducing the dimensionality as 

the first step, with subsequent classification [2], [7], [11], [12], [35], [36]. The problem that this 

work intends to address is the appropriate integration of spatial indices with spectral indices for 

high dimensional and fine resolution data for improving classification, while achieving a 

knowledge–based dimensionality reduction approach. This research is an attempt at 

understanding the combined nature of these two aspects.   

Indices application to datasets for identification of class of interest has been extensively 

attempted and is still under thorough research [15], [16], [37]. Through spectral indices (Section 

1.1.3), average tonal variations in various bands are described, while texture illustrates the 

spatial distribution of tonal variations in one band [32], thus accommodating for both spectral 

and spatial information of the object class.  

Their implications on classification are to be studied. Relying on both spatial and spectral 

properties, through indices, could facilitate in identification of classes that have similar spectral 

properties and contrasting spatial characteristics or vice versa. This creates a possibility of 

better extraction of class information, improving dimensionality reduction and subsequent 

optimal scene classification.  
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1.3. Research Objectives 

The primary objective of this research is to establish and formulate a tested and acceptable 

methodology to extract a specific object class (like river, sand, soil, stressed grass, healthy grass, 

artificial grass, mixed forests, pastures, vineyards, roads, railways, houses, roofs, lawn tennis 

courts, sports surfaces, concrete, etc.) from the study area, using airborne hyperspectral data, 

feature extraction and dimensionality reduction (through class based indices) and classification 

algorithms.  

1.3.1. Sub – objectives 

 To establish a database of indices (spatial and spectral). 

 To study spectral response curves of the ground truth data in order to identify keys, 

which would help identify indices or assist in formulation of indices for classes that do 

not have strict rules/indices.  

 To study and analyze the applicability of pixel based classification approaches, specific to 

nature and properties of object classes.  

 To study the applicability of a single classification technique for all types of object classes 

in the imagery.  

 To establish a baseline classification method for comparison of results with the proposed 

methodology.  

1.4. Research Questions  

 Which object classes require formulation of indices in terms of airborne hyperspectral data? 

 Which bands are relevant for the definition of indices? 

 Which characteristics would be selected as spatial indices of the object classes? 

 Which classifier is appropriate for the baseline classification, and subsequent classifications, 

and why? 

 What is a suitable method to combine data from multiple bands in a single index? 

1.5. Innovation  

The innovation aimed at through this research for the award of Master of Science is an attempt 

to combine spectral and spatial information through indices database for feature extraction 

from airborne hyperspectral data and to study the implications of this method of dimensionality 

reduction on accuracy of classification of object classes from the image. The study area is a 

combination of manmade and natural object classes. Spectral indices would assist in extracting 

objects of similar spectral reflectance, while spatial indices would account for spatial 

distributions and behavior. Through this research, it is intended to innovatively combine these 

characteristics to improve the accuracy of classification of object classes from high resolution 

airborne hyperspectral data. 
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1.6. Structure of  Thesis 

This thesis is divided into 6 Chapters. The first Chapter provides a background of this research 

work, introducing the topic, and the motivation involved, problem statement, research 

objectives and questions. The second Chapter provides a detailed overview of the literature 

surveyed for gaining and providing a better understanding of the topics and concepts of the 

research. The third Chapter provides detailed information regarding the APEX sensor, data and 

the study area. The fourth Chapter describes the methodology followed during this research. A 

step-by-step description of procedures and analysis performed is presented in this chapter, 

ordered with respect to the overall workflow. Obtained results and their analysis is detailed in 

the fifth Chapter and Chapter six concludes the research work with answers to the research 

questions, simultaneously providing recommendations for future research. References to 

literature and appendices containing additional results referred to in the thesis follow.  
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2. LITERATURE REVIEW 

This chapter provides a detailed review of the relevant literature reviewed for this research. The 

following sections justify the use of hyperspectral data, understanding of its dimensionality 

problem, indices for spectral information, textures for incorporating spatial information, choice 

of classifier and subsequent background of the certainty and correctness measures applied in this 

research.  

2.1. Hyperspectral Remote Sensing 

Vane and Goetz (1988) [38] published a comprehensive analysis of imaging spectroscopy, 

emerging as a new approach of Earth remote sensing. Through this work, they provide a 

viewpoint on the then emerging technology of imaging spectroscopy, review literature and 

discuss the Airborne Imaging Spectrometer (AIS). First images of AIS, were acquired in 1982, 

raised concerns of information handling and extraction about this new class of data [39]. There 

arose a need to define algorithms and develop softwares that could handle this data. Importance 

of acquired reflected solar spectrum in 200 contiguous, inherently registered spectral images was 

identified, as it could allow diagnostic narrow band spectral features, which could help uniquely 

identify on-ground materials [38]. Since the advent of this approach to Earth remote sensing, 

advancements of sensor technology and associated research have introduced systems like 

AVIRIS [40], [41], Compact Airborne Spectrographic Imager (CASI) [42], Digital Airborne 

Imaging Spectrometer (DIAS) [43] and the present sensor and data in focus, Airborne Prism 

EXperiment (APEX) [44], [45].  

A review of multi-spectral and hyperspectral remote sensing is given by Govender et al., 2007 

[3], with a focus on use of hyperspectral imagery in water resources and vegetation applications. 

Further, a review of the applications of hyperspectral data in flood detection and monitoring, 

detection of water quality, wetland mapping and measures of physiology and structure, etc. are 

also discussed. The strength of hyperspectral imaging spectrometers, their capability to image 

beyond the visible spectrum and obtaining information through contiguous response curves, is 

illustrated by Barott et al., 2009 [37]. Although a different domain of research, this work was 

able to illustrate the applicability of spectroscopy at a coral reef organism‘s interaction scale. 

This research was able to illustrate that hyperspectral imagery could capture changes in the 

interaction zone, and the diagnostic narrow bands [38] can differentiate between organisms at 

this zone [37], which cannot be achieved by multi-spectral imaging.    

Further advancements in sensor technology enabled a change of platforms from spaceborne to 

airborne. A comparative study of AVIRIS and Hyperion was performed by Kruse et al., 2003 

[46] in the research area of mineral mapping. Identifying the unique capability of combining 

spatially contiguous spectra and spectrally contiguous images [39], the authors describe the 

comprehensive methodology, from pre-processing to spatial mapping and abundance estimates, 

through endmember spectra extraction. The research rallies its key point to be that of reducing 

the data, both spatially and spectrally, to ―locate, characterize and identify a few key spectra 
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(endmembers)‖ that would be used to map the rest of the hyperspectral data. This method 

illustrates the importance of integration of spectral and spatial information in extracting 

information from hyperspectral data. A concluding understanding showed that comparison of 

accuracies of both datasets resulted in identification of up to 60% of unclassified pixels in 

Hyperion, as compared to AVIRIS (varying with specific mineral), indicating the latter to be a 

better input to mineral mapping. This research showed both the strengths of airborne 

hyperspectral remote sensing and its data applicability to specific class (minerals, in this study) 

mapping. Similarly, Kratt et al., 2009 [47] explored the applicability of hyperspectral remote 

sensing for mapping geothermal indicator minerals. Herold and Roberts (2005) [48] combined 

ground and imaging spectroscopy with in-situ pavement conditions for asphalt road assessment. 

A transition of hydrocarbon dominated roads to mineral dominated roads is an indication of 

aging and deterioration, a phenomenon that was found to have spectral evidence. This 

illustrates yet another application of hyperspectral remote sensing.  

As previously illustrated in Figure 1-2, the continuous spectra of vegetation presents an 

excellent opportunity to analyze biophysical parameters of vegetation [49]. Zhang et al., 2008 

[49] illustrated a method for extracting leaf chlorophyll content from airborne hyperspectral 

imagery wherein, extensive field work and laboratory experiments were used to determine the 

input parameters for the PROSPECT [50] model. A geometrical-optical model 4-scale was 

combined with a modified PROSPECT model to estimate chlorophyll content from CASI [42] 

imagery to obtain results having good agreement between inverted and measured leaf 

reflectance.  

Disturbances in the riverbed ecosystems had led to the application of hyperspectral imaging for 

mapping the probability of invasive species in Japan. Lu et al., 2012 [51] applied binary logistic 

regression, using two variables of original reflectance bands and MNF (Minimum Noise 

Fraction) for detecting the invasive species of weeping love grass (Eragrostis curvula) on the 

riverbed of the Kinu River. The research not only strengthens the ability of hyperspectral 

imagery being applicable to differentiate species, but also shows that dimensionality reduction 

(MNF) improves the accuracy of detection of the invasive species.  

Phenological or plant age classification allows for improving accuracy for species discrimination, 

improve in understanding the spatial variation of plant growth, amongst other advantages [52]. 

Knox et al., 2013 [52] investigated the applicability of five vegetation indices for phenological 

studies and proposed a phenological index (PhIX). PhIX was found to produce the best 

phenological classification accuracy. Although discrimination between seedling and dormant age 

classes and adult and flowering classes was problematic, PhIX could still be considered an 

essential index to map spatial variation and monitor plant growth in savannah and grassland 

ecosystems [52].  

Nakazawa et al., 2012 [53] attempted to use hyperspectral remote sensing techniques for 

detecting illegal poppy fields amongst other crops. Identifying a possible improvement to 

previous technique of poppy field detection through IKONOS based change detection 

methods [54]; the authors applied the spectral difference of poppy against wheat crop. Amongst 

linear discriminant analysis using two bands, red edge position (REP) and partial least square 
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discriminant analysis (PLSDA), red edge analysis was found valid for differentiating wheat and 

poppy, while PLSDA was found appropriate when poppy crop was found in agricultural area 

with various crops.  

Vegetation stress is another possible application to hyperspectral remote sensing. Pontius et al., 

2007 [55] mapped the stress in Ash, due to infestation by emerald ash borer (EAB). The study 

also examines the capabilities of SpecTIR VNIR spectrometer to map ash decline due to 

infestation.  

2.2. Dimensionality Reduction 

Most hyperspectral imagery processing must achieve two fundamental goals: 1) to detect and 

classify every pixel in the scene; 2) reduce the data volume/dimensionality without loss of 

critical information [11]. Conventional classification methods may not be useful without 

dimensionality reduction, which is mostly done by applying linear transformations [11], like 

PCA [36], MNF [9], etc. This is primarily due to ‗curse‘ of dimensionality. Hughes (1968) [10] 

first described the problem of dimensionality for statistical pattern recognition. Results showed 

that recognition accuracy first increases as the number of measurements made on a pattern 

increase, but decay of the same occurs after the complexity crosses an optimal value. 

Interpreted for classification with hyperspectral data, the ‗Hughes phenomenon‘ translates into 

increase in accuracy when a subset of the data is considered, but increase in dimensionality of 

the data causes a decay of accuracy measure. Stating this to be an ‗apparent paradox‘, further 

research by Van Campenhout (1978) [56], amongst others, criticize the approach of Hughes as 

―making improper comparisons of models that are partially but not totally ordered.‖ However, 

even with criticism to the methodology adopted by Hughes, the phenomenon of curse of 

dimensionality stands as a complication of high spectral resolution of hyperspectral data.  

A commonly used and highly accepted method of dimensionality reduction is that of Principal 

Component Analysis [8]. Rodarmel and Shan (2002) [36] provided a detailed explanation of this 

method of dimensionality reduction of hyperspectral data. The authors analyze PCA as a pre-

processing technique for classification. Besides establishing the applicability of PCA, the study 

showed that after the first 10 components, the data would contain only noise [36] i.e. no 

valuable amount of information. A comparison of computational duration was also done, along 

with the accuracy assessment. This provides adequate proof that classification after pre-

processing with PCA reduces the computational effort required to perform classification of 

data. PCA calculates orthogonal projections that maximize variance in data, yielding data in a 

new uncorrelated coordinate system [12]. However, hyperspectral data might not always match 

such projections [57]. This led to further research in the methods of dimensionality reduction.  

Typical techniques of data reduction, like PCA, employ linear transformations to produce a new 

set of uncorrelated images in terms of decreasing information [58]. This reduced dimensionality 

is called ―intrinsic dimensionality‖ [59]. Most approaches, up until that of Harsanyi and Chang 

(1994) [11], do not emphasize individual spectral classes or signatures of interest. The authors 

attempted to simultaneously reduce the dimensionality and classify the dataset, applicable for 
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both pure and mixed pixels. Each pixel vector is projected into a subspace orthogonal to that of 

the undesired signature. Once the undesired signals are removed, the residual is projected onto 

the signature of interest maximizes the signal-to-noise ratio and results in a single component 

image that represents the classification of the signature of interest.  

Plaza et al., 2005 [12] describes a sequence of extended morphological transformations for 

filtering and classification of high dimensionality remotely sensed hyperspectral datasets. 

Generalization of mathematical morphology transformations are performed by simultaneously 

considering spectral and spatial information from the dataset and applied to urban and 

agricultural classification problems. The proposed technique was well suited for separating 

slightly different spectral features that have distinct spatial properties. Yet another nonlinear 

dimensionality reduction approach was proposed by Qian and Chen (2007) [2]. The authors 

propose a method of combining Locally Linear Embedding (LLE) [60], [61], which preserves 

local topological structures, with Laplacian Eigenmaps, which preserve locality characteristics in 

terms of distance between data points [62]. The results showed that the new method can locate 

as many endmembers as PCA and LLE, but accuracy in terms of the endmember location is 

better.  

Feature selection refers to algorithms that output a subset of the input feature set, while 

methods that create new features based on transformations or combinations of the original 

feature set are called feature extraction algorithms [63]. The procedures not only reduce the cost 

of recognition by reducing the number of features needed, but in some cases provide better 

classification accuracy due to finite sample size effects [64]. The paper clarifies the difference 

between feature selection and extraction procedures applied on high dimensional data. 

Providing a brief bibliographic review of all dimensionality reduction methods, Silva et al., 2008 

[7] provide a new method of feature selection using Genetic Algorithm, a search technique 

inspired by the natural evolutionary process. This research and the following couple of papers 

provide an overview of feature selection and extraction techniques, as a prelude to the present 

research of extracting indices from airborne hyperspectral data.  

Jain and Zongker (1997) [63] research the various algorithms of feature subset selection. A large 

dataset is created by pooling together features from four different texture models, to classify 

SAR data. Feature selection of this dataset illustrates: 1) the existence of curse of dimensionality; 

and 2) combining features from different texture models improves classification accuracy 

against using only one of the models. Of the two outputs, the one that gains significance in the 

present context is the curse of dimensionality and the importance of feature subset selection 

algorithms. The research shows the various advantages of feature subset selection algorithms. 

The work also details the implications on feature selection, when training data is limited. Jain et 

al., 2000 [65] provides a comprehensive review of statistical pattern recognition techniques. 

Further feature subset selection research can be found in Kohavi and John (1997) [66]. 

Introducing the methods of filter based and wrapper based approaches of feature subset 

selection, the work compares both methods of feature subset selection, showing significant 

improvement in accuracies.  
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Dimensionality reduction procedures (feature selection and extraction) have found applications 

beyond that of hyperspectral datasets. Khoshelham and Elberink (2012) [67] illustrate the 

advantages of the dimensionality reduction in classification of damaged building roofs in 

airborne laser scanning data through a segment based approach. Experimental results showed 

that classification accuracy improves even for less complex classifiers when number of training 

samples in proportion with the input features, is small. Considering only two classes of intact 

and damaged roofs in this literature leaves a future research scope for extending the 

methodology with more classes.  

Research for dimensionality reduction (both feature selection and extraction) has been 

described. However, amount of scientific literature is aplenty; therefore, a brief comparison of 

classification accuracy achieved with wrappers, filters and PCA approaches was researched by 

Janecek and Gansterer (2008) [68]. Describing the three types of feature selection approaches; 

filters, wrappers and embedded approaches, the literature, although not applied to spatial 

remote sensing data, provides an in-depth description of PCA and feature selection techniques.  

2.3. Pixel based Spectral Indices 

Jensen (1983) [69] reviewed the progress of remote sensing of fundamental biophysical 

variables. Introducing the colour and spectral signature of features through a human perspective 

of interpretation [32], [33], [70], the author determines the possibility of extracting spectral 

signatures that could uniquely identify an object or a characteristic. This signature provides 

quantitative information on how the electromagnetic radiation interacts with materials at 

various wavelengths. The work also discusses the interpretation of surface roughness and 

texture, stating the quality of a remote sensor to record these characteristics as a frequency of 

change and arrangement of tones in the image [33], [70].  

The formulation of spectral indices began with the early research oriented around Simple Ratio 

(SR) of bands. Jordan (1969) [20] was able to illustrate the application of a simple ratio of 

infrared and red reflectance to estimate the Leaf Area Index (LAI). The ratio is based on the 

principle that leaves absorb relatively higher amounts of red when compared to infrared light 

due to selective absorption by leaf pigments. To maximize this ratio, the highest reflectance in 

infrared region around 800 µm and maximum absorption in 675 µm are considered.  

One of the most applied and accepted index for vegetation is the Normalized Difference 

Vegetation Index (NDVI). Proposed by Rouse et al., 1974 [19], the index utilizes reflectance of 

the infrared and red regions to highlight vegetation in the study area. The study was done using 

Earth Resources Technology Satellite (Landsat 1) MSS data, while formulating a Band Ratio 

parameter which was found to be highly correlated with above ground biomass and vegetation 

moisture content [19]. The extensive research conducted in the Great Plains Corridor of USA 

proposed a modified version of the previous SR index. NDVI = (Band 7 – Band 5)/ (Band 7 + 

Band 5) was majorly proposed for vegetation mapping and reducing the propagation of errors. 

To avoid working with negative values of the above mentioned vegetation index, a transformed 

vegetation index was also proposed, i.e. TVI = √(R+0.5). It has found a multitude of 
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applications in various vegetation studies [71], [72]. Besides the obvious applications of a 

vegetation index, it has been used in studies to map urban regions, using the NDVI result for 

exclusion of vegetation from study area [28]. Many variations to NDVI formulation have been 

attempted [73]–[78]. Although popular, NDVI has its pitfalls. Studies revealed that NDVI 

cannot overcome the influence of soil reflectance [21]. Derived from NDVI, another index was 

defined for remote sensing of liquid water from space. This index was named Normalized 

Difference Water Index (NDWI) and utilized the reflectance at 0.86 µm and 1.24 µm, i.e. 

NDWI = (R0.86 – R1.24)/ (R0.86 + R1.24); where R denotes the reflectance.  

Research on SR and NDVI had triggered a research in spectral indices for mapping vegetation. 

These indices were found to be highly correlated with various vegetation parameters like green 

leaf area, biomass, percent green cover, etc. [21]. Research by Huete (1988) [21] attempted to 

develop an index that would remove the limitations of atmospheric influence and soil substrate 

differences. Identifying a significant influence of soil on the results of vegetation indices of 

intermediate levels of vegetation cover, soil-vegetation spectral behaviour is modelled 

graphically through adjustment of the NIR-red wavelength space. Finally, the index is defined in 

Eq. (2-1):  

                                                     𝑆𝐴𝑉𝐼 =
 𝑁𝐼𝑅−𝑅𝑒𝑑  

 𝑁𝐼𝑅+𝑅𝑒𝑑+𝐿 
×  1 + 𝐿                                                           Eq. (2-1) 

In the given SAVI formulation, L defines prior knowledge of the study area, in terms of density 

of vegetation covers, i.e. low vegetation cover (L=1), intermediate vegetation cover (L=0.5) and 

high density cover (L=0.25). Single adjustment factor (L=0.5) has been found to reduce soil 

noise through all vegetation densities, but there could be no ideal factor. As an improvement to 

the SAVI, Qi et al., 1994 [79] formulated an index that required no prior knowledge, thereby 

eliminating the ―L‖ factor in Eq. (2-1). The defined MSAVI index in Eq. (2-2): 

                          𝑀𝑆𝐴𝑉𝐼 = 0.5 2𝑅𝑁𝐼𝑅 + 1 − (2𝑅𝑁𝐼𝑅 + 1)2 − 8 𝑅𝑁𝐼𝑅 − 𝑅𝑅𝑒𝑑                            Eq. (2-2) 

The transformed SAVI index does not require any prior knowledge of the vegetation cover 

density.  

Elvidge and Chen (1995) [80] detailed the implications and applications of narrow band 

technology in their work. The authors evaluated the ‗power‘ of narrow band against broad band 

indices using AVHRR, TM and MSS data against their capability to estimate LAI and percent 

green cover. Gaining the basic understanding of indices being formulated from contrasting 

intense chlorophyll absorptions in red and high reflectance in NIR regions [81], the authors use 

previously formulated vegetation indices, and also formulate three indices of their own, 

1DL_DVGI, 1DZ_DGVI and 2DZ_DGVI, each being a derivative green vegetation index. 

Results showed that NDVI and Ratio Vegetation Index were influenced by background effects, 

while PVI and SAVI reduced the same. Also, slightly better accuracy was obtained when using 

the narrow band data for index formulation. Background measures were minimized using the 

derivative based indices, formulated in this study, which applied the chlorophyll red edge 
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amplitude. This study illustrates both applicability of indices and the advantages of narrow band 

data acquisition.  

Broge and Leblanc (2000) [25] studied the prediction power of previously formulated indices 

with respect to green LAI and canopy chlorophyll density (CCD) and their sensitivity analysis 

was accomplished. Indices studied were SR [20], NDVI [19], perpendicular vegetation index 

(PVI) [82], SAVI [21], TSAVI [83], etc. and the proposed triangular vegetation index (TVI). The 

proposed index, TVI, describes the energy absorbed by the pigments as a function of relative 

difference between red and NIR reflectance in conjunction with the maximum amount of 

reflectance in green [25]. The paper concludes that SAVI2 is the least affected by background 

reflectance and is the best predictor of LAI. RVI is the best estimator of both LAI and CCD for 

low vegetation canopy densities, while the new proposed indices were best suited for medium 

range vegetation densities.  

MCARI (Eq. 2-3), a modification of Chlorophyll Absorption in Reflectance Index (CARI), was 

used by Daughtry et al., 2000 [26] for estimating the chlorophyll content in corn leaves from leaf 

and canopy reflectance. CARI, the original index, was defined by Kim (1994) [84] to minimize 

the effect of non-photosynthetic materials on spectral calculations of photosynthetically active 

radiation. The proposed MCARI adds the depth of the absorption at 0.67 µm relative to that at 

0.55 µm and 0.7 µm. Although proposed for calculation of chlorophyll variation, it was found 

that LAI, chlorophyll and chlorophyll LAI interaction accounted for 60%, 27% and 13% 

respectively, of MCARI variations [15], [26] as in Eq. (2-3):  

                        𝑀𝐶𝐴𝑅𝐼 =   𝑅700 − 𝑅670 − 0.2 𝑅700 − 𝑅550  ×  
𝑅700

𝑅670
                                   Eq. (2-3) 

Research for LAI estimations was forwarded by the work of Haboudane et al., 2004 [15]. The 

research identified the scope to determine the effect of leaf chlorophyll variations on LAI-

vegetation index relationships. The main purpose was to formulate a vegetation index that is 

suitable to accurately determine the LAI of crop canopies, that is less susceptible to variations 

of leaf chlorophyll. Modelling was done using the PROSPECT [50] and SAILH [85] radiative 

transfer models. The work provides the following new indices; MCARI1 (Eq. (2-4)) and MTVI1 

(Eq. (2-5)); and MCARI2 (Eq. (2-6)) and MTVI2 (Eq. (2-7)).   

                               𝑀𝐶𝐴𝑅𝐼1 = 1.2 2.5 𝑅800 − 𝑅670 − 1.3 𝑅800 − 𝑅550                                   Eq. (2-4)  

                                 𝑀𝑇𝑉𝐼1 = 1.2 1.2 𝑅800 − 𝑅550 − 2.5 𝑅670 − 𝑅550                                   Eq. (2-5)  

                                  𝑀𝐶𝐴𝑅𝐼2 =
1.5 2.5 𝑅800−𝑅670  −1.3 𝑅800−𝑅550   

  2𝑅800 +1 2− 6𝑅800−5 𝑅670  −0.5

                                                         Eq. (2-6) 

                                      𝑀𝑇𝑉𝐼2 =
1.5 1.2 𝑅800−𝑅550  −2.5 𝑅670−𝑅550   

  2𝑅800 +1 2− 6𝑅800−5 𝑅670  −0.5

                                                      Eq. (2-7) 

The extensive work by Haboudane et al., 2004 [15] points out the applicability of the new 

formulated indices through estimations of LAI using simulated data of PROSPECT [50] and 
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SAILH [85] radiative models and linearity analysis using real world CASI hyperspectral data. 

Results showed that MCARI2 (Eq. (2-6)) and MTVI2 (Eq. (2-7)) were the most robust indices 

to estimate green LAI. New modelling algorithms are developed using the PROSPECT-SAILH 

model and then tested with CASI data, leading to highly positive results.  

Zarco-Tejada et al., 2001 [86] researched the applicability of optical narrow band indices for 

chlorophyll estimation. This study is yet another proof of applicability of indices for intrinsic 

hyperspectral data related applications. The study is an attempt to understand the link between 

leaf reflectance and transmittance and canopy hyperspectral data for chlorophyll content 

estimation. CASI data is used, along with canopy reflectance models of SAILH [85] and 

MCRM, coupled with the leaf radiative transfer model of PROSPECT [50]. Listing the various 

indices formulated to estimate the above mentioned properties, results of the research show 

that red edge indices are the best suited for Cab estimation at canopy level. Extending this 

research with further investigations of combined indices like MCARI, TCARI and OSAVI, 

Zarco-Tejada et al., 2004 [13] yielded reasonable results of Cab estimation in open-canopy tree 

crops. 

Zarco-Tejada et al., 2005 [14] attempted to estimate and devise methods of monitoring 

physiological condition and chlorosis detection in Vitis vinifera L. (vineyard) through Cab 

estimations at leaf and canopy levels. Gaining information from an extensive study of viticulture 

applications of remote sensing by Hall et al., 2002 [87] and understanding the need for research 

in precision viticulture using remote sensing, the authors identified that the best indicators Cab 

estimation were narrow band indices, but with poor performances from traditional indices, like 

NDVI. Using field dimensional data and the PROSPECT model of inversion, it was found that 

a combination index of TCARI (Transformed Chlorophyll Absorption in Reflectance Index) 

[88] and OSAVI (Optimized Soil-Adjusted Vegetation Index) [89] in form of TCARI/OSAVI 

was the most consistent for estimating Cab [14].  

Many indices have been formulated since NDVI was first applied by Rouse et al., 1974 [19] and 

Simple Ratio [20]; like SAVI [21], PRI (Physiological Reflectance Index) [75], NPQI [74], VOG 

(Vogelmann Indices) [23], MSAVI [79], NPCI(Normalized Pigment Chlorophyll ratio Index) 

[76], SRPI (Simple Ration Pigment Index) [78], RDVI (Renormalized Difference Vegetation 

Index) [73], OSAVI (Optimized SAVI) [89], CTR (Carter Indices) [22], [90], LIC (Lichtenthaler 

Indices) [77], MSR (Modified Simple Ratio) [91], GM (Gitelson and Merzlyak) [24], MCARI 

[26], TVI [25], ZM (Zarco and Miller) [86], CRI (Carotenoid Reflectance Index) [92], MTVI1, 

MTVI2, MCARI1 and MCARI2 [15]. Each of the mentioned indices was formulated to serve a 

specific purpose, possible due to the narrow band nature of data acquired by hyperspectral 

sensors. Properties like LAI, chlorophyll content, stress, etc. are possible only due to continuous 

spectra in which the data is acquired by these sensors. If not formulated for hyperspectral 

sensors, the indices have been modified to find better accuracies in application with narrow 

band data [80].  

Recent studies have also applied indices, using hyperspectral data, for estimation of biomass 

production. Cho and Skidmore (2009) [93] attempted to create predictors that help in 

monitoring grass/herb biomass production on a yearly basis. Considering spectral indices and 
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linear regression models for prediction, the authors were able to establish that despite high 

correlation of vegetation indices with biomass, the prediction errors of modelling from indices 

data was inadequate when compared to identification and utilization of red edge position. In a 

related research, Cho et al., 2008 [17] uses the estimation of red edge position as a possible 

method to discriminate species of vegetation using hyperspectral indices at leaf and canopy 

scales.  

Amongst indices research, one work by Verstraete and Pinty (1996) [94] talks about designing 

optimal indices for remote sensing applications using red and NIR reflectance of AVHRR data, 

considering perturbing effects and formulating Global Environmental Monitoring Index 

(GEMI). Although in the multispectral domain, the work establishes an alternate way to 

formulate indices, that can optimally work for applications of vegetation indices, a subset of the 

class of spectral indices [94].  

2.4. Texture based Spatial Indices 

Spatial indices are defined or approached in many ways. While some interpreted it in terms of 

geo-spatial indices for measuring urban sprawl in Beijing using Area Index, Shape Index, etc. 

[95], others argued of using spatial elements to analyze segregation, i.e. spatial distribution of 

population groups [31]. Some research analyzed spatial metrics, in combination with remote 

sensing, to derive and model information of land use change. However, in the present research, 

texture illustrates the spatial distribution of tonal variations in a band [32]. Extensive 

information can be found in Haralick et al., 1973 [32], Berberoglu and Curran (2004) [96]. 

When humans visually interpret remotely sensed imagery, they take into account context, edge, 

texture and tonal or colour variations [32], [33], [97]. Haralick et al., 1973 [32] regard the most 

important identification elements to be spectral, textural and contextual features. As shown in 

Figure 1-3, Estes et al., 1983 [33] supports this viewpoint, attributing colour/tone to be the 

primary/basic element of visual image interpretation, followed by size, shape and texture (all of 

which are spatial elements). Many a research has been attempted or are attempting to 

incorporate these human derived interpretation characteristics into digital image analysis and 

classification [32], [97]. While considering tone/colour, it is a set of pixels having the same or 

almost the same pixel value (brightness value) [97]. When a region of pixels has a ―wide 

variation of discrete tonal features, the dominant property of that area is texture‖ [97]. Jensen 

(1996) [97] provides a basic understanding of textural analysis, the approaches to automatic 

texture analysis, etc.  

Identifying ―texture as one of the important characteristics used in identifying objects or regions 

of interest in an image‖ [32], Haralick et al., 1973 researched the applicability of textures in 

classifying or identifying objects from image data. The texture analysis and its validity were 

tested on three types of image data: photo-micrographs, 1:20000 panchromatic aerial 

photographs and ERTS MSS imagery. Deriving information from the human perspective of 

visual image interpretation, the work highlights the significance of spectral, spatial and 

contextual information for identifying objects in the image data. Studies previously were limited 
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to developing algorithms for understanding coarseness and edges. All textures are derived from 

angular nearest neighbour grey-tone spatial dependence matrices or co-occurrence matrices [32], 

[34], considering the statistical nature of textures. Results showed an accuracy of 89%, 82% and 

83% for object identification in photo-micrographs, aerial photographs and MSS image data, 

respectively.  

Texture information has been used in many a research to spatially describe the objects in the 

image data. Spatial metrics are used widely in urban environments to describe the spatial 

distribution of population and housing [34]. However, Herold et al., 2003 [34] use a 

combination of texture measures and spatial metrics as features for quantitatively describing 

urban spatial characteristics. The work uses the object oriented approach to classify the large 

urban areas. Homogeneity was identified as a GLCM texture that was most valuable in 

providing spatial information, contributing to the 76.40% overall accuracy of land use 

classification.   

Research has been also carried in terms of interpreting SAR imagery using grey level co-

occurrence texture statistics by Clausi (2002) [98]. The co-occurrence probabilities provide a 

second order method for generating texture features [32] were used for interpreting SAR sea-ice 

imagery. Fisher linear discriminant (FLD) was used for classification of the datasets, results 

showed that it might not be advisable to use all the texture analysis features collectively, but a 

few might add information sufficient to classify the object classes. The independent statistics of 

Contrast, Entropy and Correlation are found to be the best suited to be added as features. 

2.5. Classifiers and Classification  

Traditional methods of remote sensing supervised classification, training information and 

results are depicted in the one-pixel-one-class method [99]. As class mixing cannot be taken into 

consideration while training ‗hard‘ classifiers, this limitation has reduced the classification 

accuracy. Wang (1990) [99] provides a fuzzy supervised classification technique applying the 

principles of fuzzy sets. The literature describes the method in two steps; 1) estimation of fuzzy 

parameters from fuzzy training data, and 2) fuzzy partition of spectral space. A theoretical 

description of fuzzy sets and fuzzy partition of spectral space is given [99], in addition to 

estimation of fuzzy parameters, training and membership functions of the classification 

algorithm. Encouraging results of 91.21% accuracy was achieved as a result of fuzzy 

classification against 86.10% accuracy of ‗hardened‘ conventional classification. This research 

work supports the applicability of fuzzy based classification techniques against conventional 

―one-pixel-one-class‖ methods. The fundamental drawback of all such classification techniques 

is that most spectral information is lost in the process of transforming the remotely sensed data 

to generate a thematic map [100]. Foody et al., 1992  [100] were able to successfully modify the 

Maximum Likelihood (ML) classifier to obtain membership probabilities.  

Foody (2004) [101] talks in detail about sub-pixel methods in remote sensing. Understanding 

the classification methods, advantages and applicability of sub-pixel classification techniques is 

important to understand the significance of these methods in present context. Considering that 
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data is obtained in varying spectral and temporal resolutions, many accurate methods of 

classification have been researched and published. However, this doesn‘t change the fact that, in 

practice, absolute accurate classification of land cover is a difficult task [102]. It is important to 

note that use of fine spatial resolution data does not necessarily eliminate the problem of mixed 

pixels, as the class‘s constituent parts may carry importance and fine resolution data over large 

regions is impractical. Amongst the various approaches for sub-pixel scale information [103], 

two methods are discussed in this literature; spectral unmixing and soft classification. Usually, 

distribution of the classes is represented through fraction images, wherein each fraction image 

corresponds to one class, the grey level depicting the coverage of the class [101].  

Spectral unmixing is a basic linear mixture model that bases the assumption on spectral 

responses of a pixel being a linear weighed sum of its component classes [104]. However, the 

use of least square error criterion makes the analysis prone to outliers and the assumption of 

linear mixing does not apply, for example, in cases of vegetation regions where radiation 

interactions are non-linear [101]. Also, detailed descriptions of four methods of soft 

classification were provided; 1) Maximum Likelihood classification, 2) Fuzzy c-means (FCM), 3) 

Possibilistic c-means (PCM) [105] and 4) Neural networks.  

Certain assumptions need to be made in case of hard classification techniques, like [101]: 

 All the pixels in the image data are pure. 

 All the classes are discrete, mutually exclusive and exhaustively defined.  

In this regard, the concepts of soft or fuzzy classification can provide a method of sub-pixel 

information extraction. In soft classification, pixels are not required to show membership to 

only one class. They could show multiple and partial class membership, ―since a single class 

label is no longer to forced upon pixels‖ [101]. Outputs of soft classification are also derived 

similar to linear unmixing, i.e. a fraction image corresponding to each class [106].  

Detailed statistics of ML classifier, FCM and PCM are detailed in the literature [101]. 

Introduced as a clustering (unsupervised) technique [101], the ML algorithm was modified so 

that classification is based on class centres that are provided by the user, making it a supervised 

classification technique. Although widely applied and accepted, the FCM algorithm, like the ML 

classifier has the constraint that the membership values will equate to 1 for each pixel [101], 

[107]. This translates into the requirement of the user exhaustively specifying the classes in the 

data. In situations where the user is unable to do so, the PCM algorithm is better than the 

previously mentioned algorithms as the membership values derived are ―measures of the 

absolute strength of class membership‖ [101], [107]. Therefore, the membership values attained 

by the pixels classified using PCM are not affected by the presence of untrained classes, making 

PCM more feasible in cases where the classes may not be exhaustively identified [108]. 

Extensive information, insights and other information about Possibilistic c-Means algorithm can 

be found detailed in Krishnapuram and Keller (1993, 1996) [105], [107].  

Bastin (1997) [109] comparatively evaluated three popular soft classification techniques. 

Through this particular research, the author compared the accuracy of classification using FCM, 

linear mixture model and ML classifier through probabilities or membership values generated. 
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The author analyzed the capabilities of both ‗hard‘ and ‗soft‘ classification techniques, stressing 

on the mixed pixel problems due to scales and resolutions. With extensively cited research 

literature and description of algorithms, the methods area applied to coarse images generated 

from 30m Thematic Mapper images through mean filtering and asymmetric filter kernel. Results 

showed that the FCM classifier made the best predictions of sub-pixel land cover types.  

2.6. Entropy and Accuracy Assessment 

Remote sensing process is completed in three steps; 1) data acquisition; 2) image processing; 

and 3) interpretation processes [110]. All the techniques applied in each of these stages are 

prone to uncertainty [110], [111]. Uncertainty may be imposed on classifiers design and 

implementation due to [110]: 

 Problem of determination of number of land cover types; 

 Existence of mixed pixels and classes; 

 Limitation of number of training samples and Hughes phenomenon 

 Use of improper classifier 

Entropy provides a method to study and understand the variation of uncertainty in classification 

outputs. The measure of degree of uncertainty of the classification results assist in evaluating 

the classifier performance, thereby indirectly providing a measure of how accurately a pixel is 

assigned to its class label [106], [110]. If a pixel has maximum probability or membership value 

of belonging to a class, entropy value is minimum [112] along that pixel‘s membership vector 

(Eq. 2-8). Since soft classification outputs explicitly carry a certain degree of uncertainty, 

measures of the same are adequately supported and researched, like entropy [113]. Note that 

uncertainty is distinctly different from error, as error indicates a certain amount of knowledge of 

the deviation from the truth [110].  

Mathematically, entropy expresses the amount of statistical information of a system described 

by N discrete levels [112]. Entropy is evaluated from the membership vector of a pixel. The 

membership vector (µ (P/x)) of a pixel is the membership value of a pixel in each of the classes‘ 

fraction outputs.  

                             𝜇  𝑃 𝑥  =  𝜇 𝑝1 𝑥  , 𝜇 𝑝2 𝑥  ,𝜇 𝑝3 𝑥  …𝜇 𝑝𝑘 𝑥  …𝜇 𝑝𝐶 𝑥                       Eq. (2-8) 

Where µ (P/x) is the membership vector; of class ―k‖ for pixel ―x‖ for ―C‖ classes.  

Entropy is a criterion that summarizes the classification uncertainty in a single number, per 

pixel, per class or per image [110]. It calculated using Eq. 2-9: 

                                                     𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −  𝜇 𝑝𝑖 𝑥  log2 𝜇 𝑝𝑖 𝑥  

𝐶

𝑖=1

                                          Eq. (2-9) 

Maselli et al., 1994 [112] discusses the applicability of entropy for estimation of accuracy of soft 

ML classification. The ML classifier using non-parametric priors yielded a high accuracy, 
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supported by low entropy values. Results support the assumption of low entropy relating to 

better classification accuracy.  

There is a requirement of fuzzy ground data as compared to the traditionally used hard ground 

truth data to assess the accuracy of fuzzy classification [114]. Foody (1995) [114] addressed the 

need to identify a method of accuracy assessment that would apply to fuzzy classifications. The 

author identified and emphasized the need of fuzzy ground truth to accurately assess fuzzy/soft 

classification outputs. Considering fuzzy ground truth information and comparing it with 

hardened classification results and assessment, it was established that in the presence of fuzzy 

ground truth data, cross-entropy, a derivative of entropy, could be used to assess the accuracy 

of land cover mapping. Cross-entropy is calculated from the probability distributions of class 

memberships derived from the remotely sensed and ground data sets [114]. The author reflects 

that a pixel with low entropy is generally considered to represent an accurate classification, but a 

useful indicator when the ground truth data is ―hard‖, i.e. pixels are pure. Identifying the pitfalls 

of entropy and cross-entropy, in spite of their advantages, they are suggested to be accurate 

indicators of accuracy of classification when both ground and remotely sensed datasets are 

fuzzy. Conventional methods can still be applied; ―hardening‖ of outputs and traditional 

methods of accuracy assessment are still suggested and supported as supplements to support 

entropy measures.  

Entropy was used as a measure of uncertainty in the study applied to MSS data by Dehghan and 

Ghassemian (2006) [110]. The research evaluates two classifiers, MLC and ANN, in terms of 

correctness (Accuracy and Reliability) and certainty (Mean Relative Error (MRE), Root Mean 

Square Error (RMSE), Linear Correlation Coefficient (LCC) and Entropy) measures. Among 

the results of two independent experiments, the interpretation of the relation between accuracy 

and entropy (proposed) was made. It was evidently noticed that with an increase in accuracy, 

there is decrease in entropy values. This supports the claim that there is decrease in uncertainty 

with reduction of entropy values. Entropy was also used by Kumar and Dadhwal (2009) [106] 

as a parameter addition to Fuzzy c-Means classifier as a soft classification attempt to handle 

mixed pixels information.  
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3. DATASET AND STUDY AREA 

European Space Agency ventured into the development of the Airborne Prism EXperiment 

(APEX) in 1993, after identifying the need of a flexible hyperspectral mission against overseas 

acquisition systems like CASI (Compact Airborne Spectrographic Imager), GERIS 

(Geophysical Environment Research Imaging Spectrometer) and DAIS (Digital Airborne 

Imaging Spectrometer) [44]. Co-funded by Switzerland and Belgium, APEX instrument, 

operating between 380 and 2500 nm in 313 freely configurable bands [44], [45], is designed to 

provide high quality spectroscopic data for scientific applications [45]. APEX sensor and its 

data acquisition are illustrated in Figure 3-1. The indicated yellow lines show the path of light. It 

can even operate in 534 bands in full spectral mode [44]. Spatial synchronization of VNIR and 

SWIR images [44], which is feature offered separately from other sensors. This synchronization 

has led to a design that offers low data uncertainty.  

Detailed information regarding the ESA-APEX program, sensor characteristics and other 

information can be found in Schläpfer et al., 2000 [115], Itten et al., 2008 [44], and Hueni et al., 

2009 [116] and Jehle et al., 2010 [45]. Appendix – A provides detailed information regarding the 

APEX sensor and pre-processing of the Open Science Dataset (OSD).   

 

 
Figure 3-1: Illustration of at-sensor data acquisition by APEX. Source - [45] 

Due to its high spectral, spatial and radiometric quality and the unprecedented performance 

requirements of the APEX mission [117], the instrument is expected to serve as a strong data 

source for a variety of applications. The various levels of processing [44] of the dataset, from 

acquisition and through the intermediary stages, indicate varying capabilities of the dataset. 

Information regarding these products can again be found described in Itten et al., 2008 [44]. 

Each corresponding product has its own applicability and field of significance, ranging from 
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atmospheric sensing (aerosol retrieval) [118], geological applications, vegetation and ecological 

applications, etc [44].  

The APEX OSD [44], [45] was acquired in June 2011. The dataset was processed from RAW 

state to Level1, relying on the calibration information [119]. The dataset was imaged in the 

vicinity of Baden, Switzerland on a clear day, with the sensor mounted on a Dornier DO-228 

aircraft. Various methods of correction and calibration have been performed (details listed in 

the official APEX OSD Leaflet [119] and in Appendix – A). After extensive calibration and pre-

processing of the raw data to Level1 processed data, the dataset is made available on the 

website, http://www.apex-esa.org/content/free-data-cubes [120], as Open Science Dataset 

with a spectral resolution of 285 bands and spatial resolution of 1.8 meters, in RAW (imaging 

geometry), ENVI cube format.   

 
Figure 3-2: True Colour Composite of APEX Open Science Dataset. 

http://www.apex-esa.org/content/free-data-cubes
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Although the dataset is the priority in this case, an understanding of the study area is also 

important due the motivation of the present research. The dataset was acquired, as stated 

previously, in the vicinity of Baden, Switzerland. The study area (Figure 3-2) is on the banks of 

the Limmat River, and is an urban mixture of natural and manmade objects (vineyards, pastures, 

forested regions, buildings, railways, roads, highways, etc.) as shown above. A detailed 

identification of the object ―classes‖ analyzed in this research will follow in Section 4.1. The 

APEX OSD data is provided along with ground truth information of 6 classes through a 

SPECCHIO spectral database [121] also assisted in the identification of classes. 

It is very important to understand, at this point, about the ground truth information and its 

acquisition. Ground truth and knowledge of class sites plays an important part in the 

classification approach. This knowledge serves three purposes: 

i. Training the classifier; 

ii. Entropy calculations; 

iii. Testing the classification using these are testing sites. 

The classes (Figure 4-5) were identified from interpretations from SwissTopo web portal [122]. 

Regions of Interest (ROIs) were collected, verified with the data providers and used for 

classification and accuracy analysis.  

-- 
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4. METHODOLOGY 

This section provides an overview of the methodology adopted in this research, and depicted 

below in Figure 4-1. A broad division of the workflow into baseline classification and proposed 

approach of dimensionality reduction (DR) and classification (each segment is explained 

subsequently) is illustrated and discussed.  

 
 

 

The research is broadly divided in two sections; 1) Baseline Classification Approach and 2) 

Proposed Classification Approach.  

The baseline classification uses a traditional dimensionality reduction approach to reduce the 

number of features of the APEX dataset. A subsequent classification and accuracy assessment 

establishes a benchmark for comparison against the proposed dimensionality reduction and 

classification approach. The proposed classification approach uses a knowledge-based 

(understanding of the object classes, reflectance curves and indices formulations) approach of 

spectral and spatial descriptors (indices) to reduce the dimensionality of the dataset. Against 

previously used filter and wrapper dimensionality reduction approaches [66], the proposed 

Proposed Classification Approach 

APEX Open 

Science Data 

Baseline Classification Approach 

DR approach – Principal 

Component Analysis  

Classification using 

Possibilistic c-Means  

Entropy based Selection 

of Optimal Principal 

Components database 

Accuracy Assessment 

Determination of 

Spectral Indices 

Spectral 

Indices based 

Database 

Texture Analysis 

(Spatial Indices) 

Spectral and 

Spatial Indices 

based Database 

Classification using 

Possibilistic c-Means  

 

Entropy and Accuracy 

Assessment 

Classification using 

Possibilistic c-Means  

 

Entropy and Accuracy 

Assessment  

Proposed Dimensionality 

Reduction Approach 

Figure 4-1: Adopted Methodology for Present Research 
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approach attempts to enhance the classification procedure by using indices, defined from 

knowledge of the object classes. A comparison of respective classes‘ accuracies provides an idea 

of overall accuracy and, if any, improvement of specific class identification.  

4.1. Data Processing and Identification of  Classes 

The APEX OSD is made available after extensive pre-processing (Appendix – A). The data is 

interpreted in terms of classes constituted in the study area and identification of vital training 

and testing data sites. Due to the high spectral resolution of the hyperspectral dataset, very 

detailed spectral response curve analysis can be made of the classes (or object classes) on the 

ground. To exploit this advantage, classes were selected of different types of vegetation and of 

different health/stress conditions. Besides the high spectral resolution (of 285 bands), the 

dataset has a fine spatial resolution of 1.8 meters. An attempt is initiated at combining both 

these characteristics, through the indices database, for better identification of specific classes 

from the airborne hyperspectral data.  

 
Figure 4-2: Mixed Deciduous vs. Mixed Coniferous Forest (Reflectance Curves) 

 

 
Figure 4-3: Clay Soil vs. Grass vs. Stressed Grass vs. Vineyard (Reflectance Curves) 
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Figure 4-4: Different Sports Surfaces (Reflectance Curves) 

Figures 4-2 to 4-4 illustrate the continuous spectra of the APEX data, specific to the indicated 

classes. The possibility of differentiating classes closely related and otherwise impossible to 

differentiate from multi-spectral data can be interpreted from the Figures (4-2 – 4-4). The 

reflectance curves are analyzed to differentiate object classes and, combined with interpretations 

from SwissTopo portal, identify pixels belonging to classes, to build training and testing set. 

Identified object classes from map sources, like the web portal [122], are denoted in Figure 4-5: 

 
Figure 4-5: Depiction of object classes in the study area 
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The object classes (Figure 4-5) from the study area for this study are: 

1. Artificial Turf (Fig. 4-4) 

2. Black Roof 

3. Building 

4. Clay Soil (Fig. 4-3) 

5. Grass (Fig. 4-3) 

6. Lawn Tennis Court 

7. Mixed Coniferous Forest (Fig. 4-2) 

8. Mixed Deciduous Forest (Fig. 4-2) 

9. Pasture 

10. Railway 

11. Red Roof 

12. Red Synthetic Ground (Fig. 4-4) 

13. Road 

14. Roofs 

15. Sand 

16. Stressed Grass (Fig. 4-3) 

17. Synthetic Sports Surface (Fig. 4-4) 

18. Vineyard (Fig. 4-3) 

19. Water  

20. Yellow Tartan 

Identifying object classes, like types of forests, stressed grass, etc. on the ground is a 

characteristic advantage of high resolution airborne hyperspectral imagery. Spectral curves were 

analyzed for ‗keys‘. Keys are bands which show distinct spectral curve response or behaviour 

that can assist in distinguishing the classes. An example of this differentiation was done by Zha 

et al., 2003 [28] where differentiation of built up areas and vegetation was done using the 

decrease and increase of reflectance, respectively, from red to infrared wavelengths in the multi-

spectral data. Similar identification of varying reflectance curve behaviour was done to identify 

and separate the classes.  

 
Figure 4-6: Reflectance curve of stressed grass 
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Figure 4-7: REP analysis for Stressed Grass using first derivative method 

 
Figure 4-8: Reflectance curve of grass 

 
Figure 4-9: REP analysis for Grass using first derivative method 

Distinguishing vegetation health/stress levels (Grass (Fig. 4-6) vs. Stressed Grass (Fig. 4-8)) can 

be checked using Red Edge Position (REP) analysis (discussed in Section 4.4). The first 

derivative method of the spectral curve helps identifying the REP (the point of maximum 

amount of reflectance per unit change in wavelength). It can be observed that REP shifts from 

the 64th band (for Grass; Fig. (4-9)) to 56th band (for Stressed Grass; Fig. (4-7)). This shift 

towards the red wavelengths is an indication of vegetation stress due to changes in chlorophyll 

content [123], which is responsible for maximum absorption in the red region of the spectra.  

56 

64 
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4.2. Classifier and Classification 

Amongst the available techniques of classification, the high spatial and spectral resolutions of 

the airborne hyperspectral data prompted a classification approach that could solve problems of 

mixed pixels and exhaustive definition of object classes. Intending to exploit the advantages of 

fuzzy classification approaches, FCM and PCM classifiers were evaluated for the research. 

Although FCM has shown better classification accuracy [101] amongst the two, it is greatly 

hampered in the presence of unknown classes. FCM also fails when it is used in applications 

where membership values need to be a measure of typicality, instead of relative output 

membership values [105]. Therefore, Possibilistic c – Means algorithm is used for classification 

of the input datasets (due to the significant advantage of using the classes‘ training data, without 

influence of classes that have not been identified).  

Possibilistic c – Means algorithm was proposed by Krishnapuram and Keller (1993) [105] in 

order to overcome the probabilistic constraints of FCM and FCM derived classification 

algorithms. The memberships generated by FCM ―do not always correspond to the intuitive 

concept of degree of belonging or compatibility‖ [105]. PCM classifies the data in terms of 

possibilistic divisions, wherein the output membership values are degree of possibility of the 

pixel belonging to a class. The algorithm overcomes the probabilistic constraint of previous 

algorithms and classifies the data as ―measures of the absolute strength of class membership‖ 

[101], [105], [107].  

The membership function constraints for PCM classification [101], [105] are shown below: 

𝑢𝑖𝑗 ∈  0,1  for all 𝑖 and 𝑗; 

0 <  𝑢𝑖𝑗

𝑁

𝑗=1

≤ 𝑁 for all 𝑖;  and 

max
𝑖

𝑢𝑖𝑗 > 0 for all 𝑗. 

In the above constraints of PCM algorithm, 

 𝑢𝑖𝑗  is the grade of membership value of pixel 𝑥𝑗  belonging to class (or cluster) 𝛽𝑖 ; 

 𝑁 is total number of feature points (or pixels) 

The only constraint that is placed on the membership value calculations is that it must lie in the 

interval (0, 1). The constraints above result in the distinct possibilistic partition of the feature 

space. The resulting membership values are possibilistic in nature and not ―hard‖ in the case of 

a single class in the dataset. The constraints allow the membership function to calculate the 

values using the absolute strength of the trained classes, without the influence of untrained 

classes.  
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The FCM algorithm minimizes the objective function with the probabilistic constraint of all 

membership values to sum up to 1. The modified PCM objective function [101], [105] is shown 

in Eq. (4-1). 

                                          𝐽𝑚  𝐿,𝑈 =    𝑢𝑖𝑗  
𝑚
𝑑𝑖𝑗

2

𝑁

𝑗=1

𝐶

𝑖=1

+  𝜂𝑖

𝐶

𝑖=1

  1 − 𝑢𝑖𝑗  
𝑚

𝑁

𝑗=1

                                      Eq. (4-1) 

In the above objective function,  

 L = (𝛽1,𝛽2,𝛽3,… ,𝛽𝐶) where 𝛽𝑖  is the 𝑖𝑡ℎ  class.  

 𝐶 is the number of classes;  

 𝑁 is the total number of feature vectors;  

 𝑢𝑖𝑗  is the membership value of feature point 𝑥𝑗  of 𝛽𝑖);  

 𝑑𝑖𝑗
2  is the distance of feature point 𝑥𝑗  from signature feature of class𝛽𝑖 ;  

 𝜂𝑖  is a parameter that specifies the distance (in the feature space) from the class centre 

when membership value is 0.5 ;  

 𝑚 ∈ [1, ∞) is the user defined weighing factor that defines the degree of fuzziness.  

The first term minimizes the distance of the pixels from the feature vector and the second term 

maximizes the membership value (𝑢𝑖𝑗 ) [105]. The PCM algorithm membership function [101], 

[105] that calculates the membership values of the feature points (pixels) are shown in Eq. (4-2):  

                                                                        𝑢𝑖𝑗 =
1

1 +  
𝑑𝑖𝑗

2

𝜂𝑖
 

1

𝑚−1

                                                         Eq. (4-2)  

A value of 𝑚=1 signifies conventional hard classification. Most studies use a value in the range 

1.5<  𝑚<3.0 [124]. The iterative process of determination of membership value is solely 

dependent on the distance of the feature point from the training feature vector of the respective 

class, with no relation to the locations of other classes. The classification procedure provides 

soft outputs, as many as number of classes. Each of the output layer is a grey-scale image, 

corresponding to each class, with values ranging from 0 (class completely absent) to 255 (class 

present with complete possibilistic membership).  

The PCM classifier has been used for all the classification approaches through this research. 

The procedure for analysis, classifier, parameters, etc. has been constant for all approaches to 

evaluate the applicability and advantage of the principal components, spectral and spatial indices 

input databases.  

4.3. Principal Components database and Baseline Classification 

Two broad groups of reducing the dimensionality of data exist; 1) Feature Selection and 2) 

Feature Extraction [63]. Feature selection consists of algorithms that output a subset of the 

input feature set that performs the best under some classification system while feature 
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extraction algorithms create new features based on transformations of the original feature set 

[63].  

Principal Component Analysis (PCA) is one the most important and widely used method of 

reducing the dimensionality of data. It produces new attributes/features through linear 

combinations of the original feature set, orthogonal to each other and quantifies the variation in 

the data [68]. These new features are called Principal Components (PCs). The four main 

properties/advantages of PCA [68] are: 

 The features have 0 covariance; 

 Output features are ordered in descending order with respect to variance or amount of 

data; 

 First output feature contains the maximum amount of information (maximum variance 

of data); 

 Each successive feature captures as much variance of data as possible (information).  

In order to establish a baseline classification to compare results of spectral and spatial indices 

input database, a traditional method of dimensionality reduction, in PCA, and subsequent 

classification has been performed. The APEX data consists of 285 bands. Hughes phenomenon 

and training data constraints prevent classification without dimensionality reduction.  

The principal components are generated, displaying the respective Eigen values and percentages 

of information contained in the respective components (Figure 4-10). Figure 4-11 graphically 

illustrates the reduction in gain of information with increasing PCs. Depending on the amount 

of information and lack of gain of variance in the increasing PCs, the initial intrinsic 

dimensionality is reduced to 8 components. However, the optimal components or PCs input 

database was determined from the results of the classification. The combination of optimal 

number of PCs is the considered database used as input for determining the baseline 

classification.  

 
Figure 4-10: Percentage depiction of gain in variance with increase in PCs 

Very small gain 

of information 
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Figure 4-11: Graphical depiction of reduction of variance with increasing PCs 

The inputs to the classifier considered are (PC1), (PC1 and PC2), (PC1, PC2 and PC3)..., (PC1, PC2 

... PC8). The end result of adding one PC at a time to the input helps understand which database 

of PCs is an optimal choice for baseline classification, i.e. the reference classification.  

An entropy analysis of the end result is done in order to select the optimal choice of PCs and 

the baseline classification values. The formula shown in Eq. (2-9) calculates the entropy of the 

membership vector. However, the constraint of entropy calculation ( 𝜇𝑖 = 1𝐶
𝑖=1 ) is the same as 

that of FCM. In application of the PCM classifier, where this constraint is not followed, the 

calculation of entropy is modified to Eq. (4-3) [110]: 

                                                  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =
−  𝜇 𝑝𝑖 𝑥  log2 𝜇 𝑝𝑖 𝑥  𝐶

𝑖=1

 𝜇 𝑝𝑖 𝑥  𝐶
𝑖=1

                                    Eq. (4-3) 

In the above equation, the denominator summation of membership values is applied to 

normalize the membership values calculated by the PCM algorithm.  

4.4. Exploring Spectral Indices  

Hyperspectral remote sensing acquires imagery in multiple bands, enabling contiguous 

reflectance curve. These reflectance curves serve as vital inputs to assess properties that cannot 

otherwise be identified from multi-spectral imagery. Spectral indices have been formulated to 

highlight certain object classes using the properties from their spectral curves.  

Identification of specific ‗keys‘ or distinguishing properties in the reflectance curve played a vital 

role in the definition of the indices input database. The spectral curves of the object classes 

listed in Section 4.1 were individually analyzed for identifiable changes in reflectance and then 

comparatively analyzed for differentiating reflectance behaviour. For example, reflectance curve 

of ―Artificial Turf‖ for first analyzed for find the bands suitable for band ratio (a significant and 

6th Component 

8th Component 
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sudden increase in reflectance portion) and then comparatively analyzed with similar classes like 

―Synthetic Sports Surface‖ and ―Red Synthetic Ground‖ to avoid conflict of index outputs. 

Parallel analysis was performed in combinations of all 20 classes, through vegetation and 

manmade classes, to build an input of indices database that identify a specific class or set of 

classes.  

Note that dimensionality of the dataset is reduced as the feature selection of a subset of the 

original data is being done and an index formula transforms the choice of features into a single 

input feature that assists in classification of the class itself. Therefore, this approach towards 

dimensionality reduction can be considered to be a knowledge driven feature selection and 

extraction process as it combines the understanding of the reflectance curve with the selection 

of bands and subsequent transformation of the subset selected.  

An understanding of the spectral curve behaviour and the properties associated with the curve 

are important. Table 4-1, adopted from Thenkabail et al., 2002 [125], illustrates the properties 

that are associated with parts of the reflectance curves of vegetation. These properties play a 

vital role in identifying keys for definition of narrow band indices for vegetation classes, as 

classification of variations of stress and species is also an important part of the present research.  

Table 4-1: Wavelengths and Significance. Source - [125]  

Wavelength 

Portion Name 

Wavelength 

(λ) in µm 
Band Description and Significance 

Blue 0.49 
Sensitive to loss of chlorophyll, browning, ripening senescing and 

soil background effects [126]. Also sensitive to Carotenoid pigments 

Green 1 0.52 

Maximum ―positive change in reflectance per unit variation in 

wavelength‖ of visible spectrum is seen around this green 

wavelength and is sensitive to pigment content. 

Green 2 0.55 
Green peak in the visible spectrum; strongly related to chlorophyll 

content 

Green 3 0.575 

Maximum ―negative change in reflectance per unit variation in 

wavelength‖ of visible spectrum is seen around this green 

wavelength and is sensitive to pigment content. 

Red 1 0.66 Chlorophyll absorption pre-maxima (reflectance minima – 1) 

Red 2 0.675 
Chlorophyll absorption maxima. Greatest soil – crop contrast seen at 

this wavelength.  

Red edge – 1 0.7 

Chlorophyll absorption post-maxima (reflectance minima 2). This 

point marks the change of maximum red-absorption to dramatic 

increase in red reflectance along the red edge. This has been found 

to be sensitive to stress levels in vegetation. 
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Red edge – 2 0.72 

Critical point on the red edge where the ―maximum change of slope 

reflectance spectra per unit change in wavelength‖ occurs. Sensitive 

to temporal changes in crop growth, stress, etc.  

NIR 0.845 Centre of the ―NIR shoulder‖. Strongly correlated to chlorophyll.  

NIR peak – 1 0.905 

Peak of the NIR spectrum. Sensitive to stress or growth stages of 

some crops, where there is significant change in reflectance along the 

NIR shoulder [126]. Useful for calculating crop moisture sensitive 

index [127] 

NIR peak – 2 0.920 Peak of the NIR spectrum.  

NIR – Moisture 

Sensitive 
0.975 

Centre of moisture sensitive portion of NIR. Various measures of 

plant moisture can be made from this wavelength‘s reflectance.  

Similar analyses of other object classes in the study area derive distinctive reflectance behaviour 

properties, which were applied to simple band ratio. Simple band ratio, originally defined by 

Jordan (1969) [20] for extraction of LAI, identifies the sudden increase in reflectance from red 

to infrared wavelengths in vegetation. This logic was applied to object classes other than 

vegetation too, defining indices for classes that had similar distinctive increase in reflectance  

After extensive analysis of the reflectance curves and the properties of classes, the indices 

tabulated in Table 4-2 form the input database of spectral indices for classification. The logic 

behind the indices was studied and applied to the APEX dataset as variations of bandwidths 

and centre wavelengths of the bands govern changes and reassessment of indices. Indices like 

NDWI, NDBI, etc. were formulated initially using multi-spectral datasets. The principles of the 

index were analyzed and applied to narrow band (APEX) data. All the indices reviewed from 

literature in Section 2.3 were investigated, applied and interpreted for their feasibility in the 

classification.  

Table 4-2: Spectral indices for indices database as input for classification 

Object Class 
Index 

Formulated/Applied 

APEX Band Combination 

(Wavelength in µm) 

Artificial Turf Band Ratio  95, 76 (0.8752 µm, 0.7716 µm) 

Black Roof Band Ratio 160, 149 (1.45 µm, 1.343 µm) 

Buildings NDBI 160, 145 (1.45 µm, 1.304 µm) 

Clay Soil Band Ratio 236, 225 (2.09 µm, 2.007 µm) 

Mixed Coniferous 

Forest 

Band Ratio 85, 53 (0.8167 µm, 0.6816 µm) 
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Mixed Deciduous 

Forest 

MTVI1 81, 17, 52 (0.7958 µm, 0.5567 µm, 0.6784 µm) 

Red Synthetic Ground Band Ratio 197, 192 (1.782 µm, 1.74 µm) 

Stressed Grass Band Ratio 234, 226 (2.074 µm, 2.015 µm) 

Vineyard Modified NDVI (devised 

from spectral curve behavior 

in SWIR) 

236, 225 (2.09 µm, 2.007 µm) 

Water NDWI 183, 146 (1.662 µm, 1.314 µm) 

Roof Band Ratio 142, 122 (1.275 µm, 1.082 µm) 

Basic Vegetation Index MSAVI 85, 53 (0.8167 µm, 0.6816 µm) 

Every index, however, does not extract a unique class. One such example is illustrated in Figure 

4-12, wherein the reflectance curves of Artificial Turf (white) and Roofs (Red) are shown. The 

Artificial Turf index (Table 4-2) is derived considering the 95th and 76th bands as keys for a band 

ratio index. These keys were identified from the increase in reflectance of this class within these 

bands. Note that in the indicated region (Figure 4-12), the Roofs class also shows similar 

increase in reflectance. In the index output, however, these classes show different values i.e. in 

the range of 132-154 and 78-93 for Artificial Turf and Roofs respectively (on a scale of 0 – 255).  

 
Figure 4-12: Spectral curve of Artificial Turf vs. Roofs 

As illustrated in Figure 4-12, it is possible that a single index can extract more than one class. 

Therefore, the separation of the classes in the feature space is based on the classifier choice and 

the actual classification process, wherein signature vectors would differentiate the classes from 

the input indices database. Table 4-3 lists other classes identified in the indices used for 

classification.  
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Table 4-3: Depiction of index intended class and additional classes identified 

Object Class Specific Index Additional Class Identified through Index 

Artificial Turf Roof 

Black Roof Water 

Buildings Multiple Classes 

Clay Soil Artificial Turf, Vineyards 

Mixed Coniferous Forest - 

Mixed Deciduous Forest Grass 

Red Synthetic Ground Multiple Classes 

Stressed Grass Clay Soil, Vineyard 

Vineyard Clay Soil, Stressed Grass 

Water - 

Roof - 

Basic Vegetation Index All vegetation in the study area 

4.5. Spatial Information through Textural Analysis  

APEX Open Science Dataset is a high spectral resolution (285 bands) and fine spatial resolution 

(1.8m) source of information. The spectral characteristics of the data have been exploited while 

creating the spectral indices database through feature selection and extraction. However, the 

spatial domain of the dataset remains unexplored. Within a particular index, it is possible to use 

spatial statistics to differentiate object classes of similar spectral characteristic. For example, 

spatial analysis of spectral index output for Forests vs. Grass can distinguish between the two 

on the basis of its distributions. Texture analysis has been chosen for this research as a method 

of exploiting the spatial information of the classes.  

Haralick et al., 1973 [32] provides a detailed description of these Grey-Level Co-occurrence 

Matrix (GLCM) texture analysis. Texture analysis was done by selecting neighbourhoods and 

assessing the variation of grey levels in these regions for all the spectral indices, in search for 

optimal texture features for classification. These neighbourhoods translate into window sizes 

while application in tools that calculate these textures. A detailed processing of all the statistics 

was done for texture analysis (Eq. 4-4 – 4-6; Appendix – B). Eq. 4-4 – 4-6 illustrate the 

calculation of the textures that were added to the spectral indices database for further 

classification and analysis [32]:  
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                                         𝑀𝑒𝑎𝑛  𝜇𝑖 =  𝑖 𝑃𝑖 ,𝑗  

𝑁−1

𝑖 ,𝑗=0

;  𝑀𝑒𝑎𝑛  𝜇𝑗  =  𝑗 𝑃𝑖 ,𝑗  

𝑁−1

𝑖,𝑗=0

                                Eq. (4-4) 

                                                                𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  𝑃𝑖,𝑗  − ln𝑃𝑖,𝑗  

𝑁−1

𝑖,𝑗=0

                                                  Eq. (4-5) 

                                                              𝑆𝑒𝑐𝑜𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡 =  𝑃𝑖 ,𝑗
2

𝑁−1

𝑖 ,𝑗=0

                                                     Eq. (4-6) 

In the equations 4-4 – 4-6: 

 𝑃𝑖 ,𝑗  is the  𝑖, 𝑗 𝑡ℎentry in a normalized gray tone spatial dependence matrix.  

 𝑁 are the number of gray levels in the quantized image 

Note that the textures do not always yield interpretable results. All GLCM textures were 

analyzed, but only the above 3 textures provided discernable results that could be added to the 

spectral indices input database.  

Table 4-4: Spatial indices (texture analysis) added to input database of spectral indices 

Source Spectral Index Texture Window Size (Neighborhood) 

Black Roof Entropy 3×3 window 

Clay Soil Mean 3×3 window 

Mixed Coniferous Forest Second Moment 3×3 window 

MSAVI Vegetation Index Second Moment 5×5 window 

Roof Mean 3×3 window 

Texture analysis is performed on all the spectral indices and investigated. In all, five spatial 

indices (Table 4-4) were added to the spectral indices database, thereby formulating a 

combination of spectral and spatial indices for input to the classification process. Second 

Moment texture generates high results when there lie a few pixels with high magnitude, in the 

neighbourhood window. Considering this property of highlighting highly distributed data, the 

texture finds application in vegetation classes. When the input elements in the window are 

relatively equal, Entropy textures output high values. This principle makes the texture applicable 

in cases like continuous and consistent pixel values, i.e. Black Roof in the study. Considering a 

mean calculation within a neighbourhood window, Mean texture tends to highlight pixels of 

high value and increasing the separability of the classes. This texture finds applicability in cases 

of Roof and Clay Soil classes. 



Spectral and Spatial Indices based Specific Class Identification from Airborne Hyperspectral Data 
 

Page | 39 

To understand the effect and applicability of each of these spatial indices, they are individually 

reduced from the indices database and the accuracy is assessed. The increase or decrease of 

accuracy would signify the influence of the texture feature. Results of this analysis are shown in 

the Chapter 5 (Table 5-2 – 5-3).  

4.6. Entropy analysis and Defuzzification  

The completion of the classification procedure requires adoption of methods to assess the 

accuracy of the procedure. Considering the fact that the classification approach remains the 

same for each of the inputs, the end result would be an interpretation of the influence of the 

input database for classification.  

Based on various analysis and review, two approaches have been decided for assessing the 

classification outputs. Entropy calculation (as a measure of degree of uncertainty) and Accuracy 

assessment (as a measure of degree of correctness) are selected for the present research.  

The outputs of the classification process are individual, grey-scale class soft outputs. The 

successful classification of an object class was assessed by a method of mean difference 

calculations (Figure 4-13). The illustration depicts a choice of random pixels in known class 

locations and calculating the difference. If the difference is significant, it implies that the class is 

separable after classification. If a certain class has been successfully classified, entropy measures 

and accuracy assessment are attempted to quantify their accuracy of identification. Generalizing, 

the particular class shows a better contrast in the output with reference to other classes.  

 
Figure 4-13: Illustration of class differentiation from soft outputs 

Entropy calculations (Eq. (4-3) and Section 2.6) define the degree of certainty with which the 

classifier assigns a class label to a certain pixel. However, measures of entropy should be 

supported with accuracy assessment for acceptable interpretations [114]. The entropy measures 
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of the classes are established as an average of 50-75 membership vectors, depending on the 

spatial extent of the classes.  

Defuzzification of the 20 soft outputs in all the cases is done by a simple maximum value 

approach. The algorithm reads the membership values along the pixel vector and assigns the 

class with the maximum membership to the pixel. The combination of 20 soft outputs, each 

corresponding to its respective class, is ―hardened‖ to a single output, containing classification 

results that can be evaluated by traditional methods of accuracy assessment (user‘s and 

producer‘s accuracy), using a combination of ‗user-defined‘ and randomly generated test sites.   
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5. RESULTS AND DISCUSSION 

This chapter details the results obtained during the course of the present research and elaborates 

their possible interpretations. Section 5.1 discusses the determination of optimal PCs input. 

Section 5.2 provides an overview of the results of the classification approaches. Section 5.3, 5.4 

and 5.5 depict the classification outputs and related discussions of all the approaches. The 

unclassified classes are discussed in the Appendix C – E.   

5.1. Determination of  Optimal PCs input database 

In order to establish a baseline assessment of classification for the APEX data, traditional 

dimensionality reduction approaches were studied first. The most commonly used and accepted 

method is Principal Component Analysis (PCA). As discussed previously in Section 2.2, PCA 

has been used a pre-processing step to classification [36], wherein the algorithm transforms the 

data into orthogonal projections that maximize variance using linear transformations [12], [58]. 

In order to define an optimal baseline assessment, optimal number of Principal Components 

(PCs) has to be decided upon. This choice is based on three aspects: 

 Amount of information contained in the principal components;  

 Number of classes successfully identified in the classification output;  

 Minimal entropy (degree of uncertainty).  

With regard to the amount of information in the principal components, Figures 4-10 and 4-11 

(Ch. 4) illustrate the amount of information gained with addition of each principal component. 

As it can clearly be observed, the amount of information gained beyond the 8th component 

becomes highly trivial. With a gain of 0.04%, adding dimensions becomes questionable. 

Therefore, 8 PCs were considered for further processing.  

As depicted in the methodology (Ch. 4; Figure 4-1), the approach follows a dimensionality 

reduction and optimal determination of PCs using entropy for the baseline classification 

assessment. Each of the PCs is individually added to 1 PC, thereby making the inputs (1PC), 

(1PC, 2PC), (1PC, 2PC, 3PC)... (1PC, 2 PC ... 8PC). An optimal PCs input would show the 

maximum number of successful classes identified and comparatively minimal entropy. The 

corresponding accuracy of the optimal PCs will serve as the baseline for the present research for 

comparison and assessment purposes.  

Figure 5-1 provides a graphical illustration of classes identified (X axis) with their corresponding 

entropy values (Y axis). Note that the classes are in the order of identification with respect to 

increasing PCs input. Therefore, for example, ―Lawn Tennis Court‖ and ―Buildings‖ classes 

were identified after adding 7 and 8PCs respectively to the input principal components 

database. ―Clay Soil‖ was successfully identified from the initial considered 3 PCs. An input of 

the first or first two PCs was not considered as the 2-dimensional signature vector could not 

distinguish most of the classes, resulting in uninterpretable outputs. Even in the absence of 

considering the maximum number of classified classes, the entropy values show significantly 
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higher values for classes like ―Mixed Coniferous Forest (MCF)‖ while considering lesser PC 

inputs.  

.  

Figure 5-1: Graphical illustration of entropy of classes identified with respective to PCs 

 
Figure 5-2: Entropy of classes with respective to 7 and 8 PCs 

With reference to previously defined criteria for choice of baseline classification accuracy, 

maximum number of classes (9) were successfully classified (Figure 5-1) while considering an 

input of 7PCs and 8PCs. Figure 4-13 illustrates the determination of successful classification of 

a particular class. Considering the individual soft outputs and thresholds of membership values 

were used to analyze the conflicting classes. A comparative analysis of entropy values for 7PCs 

and 8PCs (Figure 5-2) was approached to determine the optimal baseline classification. Similar 

or lesser entropy can be associated with 7PCs input when compared to 8PCs (Figure 5-2). 

Therefore, the optimal PCs input is decided to be 7PCs as there is no significant variation in 

entropy measures with increasing dimensionality of the principal components input. Entropy 
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measures define the certainty with which a class label has been assigned to a pixel. A 

combination of amount of information in components, number of classes determined and 

entropy values is, therefore, used to determine the baseline classification. Also supporting this 

assessment is the defuzzified evaluation of 8PCs classification output, wherein an accuracy of 

57.50% was obtained against 59.50% of 7PCs.  

5.2. Entropy and Accuracy Assessment Comparison 

In this section, an overview of the results is detailed, which are referred in the following 

sections. The classes that are denoted in red signify those classes that could not be identified in 

their respective soft outputs without conflict from other considered classes in the study. This 

indicates that pixels belonging to different classes were found to have membership values 

higher than the established class threshold. User‘s (UA) and Producer‘s Accuracy (PA) are also 

calculated from the defuzzified outputs of classification.  

Table 5-1: PC and Indices input database – Entropy and Accuracy Assessment  

Class 
No. 

Class  
PC Input Database (7 

features) 
Indices Input Database (12 

features) 

    Entropy UA PA Entropy UA PA 

1 Artificial Turf 
 

20 100 1.94 100 100 

2 Black Roof 
 

62.5 83.34 
 

55.56 100 

3 Building 1.35 100 50 
 

100 42.86 

4 Clay Soil 1.334 88.89 80 1.45 90 100 

5 Grass 
 

40 44.45 
 

40 57.14 

6 Lawn Tennis Court 1.26 70 100 
 

40 100 

7 Mixed Coniferous Forest 1.3 60 40 1.62 80 57.14 

8 Mixed Deciduous Forest 
 

80 29.63 1.6 90 50 

9 Pasture 
 

30 100 1.46 55.56 100 

10 Railway 
 

28.57 100 
 

30 50 

11 Red Roof 1.1 100 25 
 

66.67 54.55 

12 Red Synthetic Ground 1.15 60 85.71 
 

60 100 

13 Road 0.86 90 47.37 
 

70 23.34 

14 Roof 
 

40 50 0.68 100 66.67 

15 Sand 1.23 50 100 
 

10 100 

16 Stressed Grass 
 

40 40 1.49 70 70 

17 Synthetic Sports Surface 
 

100 100 
 

44.45 100 

18 Vineyard 1.07 30 50 1.49 66.67 75 

19 Water 
 

100 90.9 2.06 100 90.91 

20 Yellow Tartan 
 

33.34 100 0.6 30 100 

  
Overall Classification 
Accuracy 

59.50% 65% 

Table 5-1 describes comparative implications of PC inputs and Indices input (Section 4.4; Table 

4-2) to the classifier for extracting specific class information. Besides the increase in overall 
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classification accuracy of the processes (65% while using indices compared to 59.50% for 

optimal principal components), note that 7 classes previously unclassified while using optimal 

principal component (PC) inputs were successfully classified. However, some classes like Lawn 

Tennis Court were not classified while using indices input database. Also, there are variations in 

classification accuracy for Vineyards, etc. wherein entropy results show an increase, while 

classification accuracy from the ―hardened‖ results shows an improvement. The results are 

discussed subsequently in Section 5.3 (classification of PC inputs) and 5.4 (classification of 

indices inputs). Comparison with the baseline classification, accuracy measures and entropy is 

conducted with every combination of output. For all the classification output sets, entropy 

(Section 4.3; Eq. (4-3)) was calculated as an average of 50 membership vectors per class.  

Table 5-2: Spectral-spatial indices – Entropy and Accuracy Assessment (1) 

Class 
No. 

Class  
Indices and Textures 

Database (17 features) 

Indices and Textures Database 

(without MSAVI Mean texture) 

(16 features) 

    Entropy UA PA Entropy UA PA 

1 Artificial Turf 1.146 80 80 1.274 100 100 

2 Black Roof 
 

37.5 75 
 

12.5 100 

3 Building 0.63 60 31.58 0.44 100 63.63 

4 Clay Soil 1.212 80 100 1.2 100 100 

5 Grass 1.004 60 85.71 1.25 90 90 

6 Lawn Tennis Court 0.64 80 66.67 0.5 88.89 100 

7 
Mixed Coniferous 
Forest 

0.956 100 71.43 1.34 100 83.33 

8 Mixed Deciduous Forest 1.02 80 61.54 1.35 100 76.92 

9 Pasture 0.966 71.43 83.34 1.25 44.44 100 

10 Railway 
 

10 33.34 
 

25 100 

11 Red Roof 
 

20 100 0.46 100 91.67 

12 Red Synthetic Ground 0.65 81.82 90 0.55 42.86 100 

13 Road 
 

50 15.625 0.44 88.89 24.24 

14 Roof 
 

30 27.27 
 

71.43 75 

15 Sand 
 

20 33.34 
 

14.29 100 

16 Stressed Grass 1.126 80 80 1.3 87.5 100 

17 Synthetic Sports Surface 0.65 50 100 0.55 87.5 100 

18 Vineyard 0.94 80 88.89 1.1 90.91 83.34 

19 Water 1.44 100 76.92 1.85 90 75 

20 Yellow Tartan 
 

10 100 0.5 33.33 100 

  
Overall Classification 
Accuracy 

62.50% 80.50% 

At the outset, the classes identified through while considering spectral-spatial indices input are 

notably higher. Comparison with Table 5-1 infers information regarding classification thus 

discussed. All the classes, without exception, show a significant decrease in entropy values. The 

degree of uncertainty in determination of class labels to the pixels is lesser when spatial indices 



Spectral and Spatial Indices based Specific Class Identification from Airborne Hyperspectral Data 
 

Page | 45 

(Section 4.5; Table 4-4) are added to spectral indices feature set to better describe the classes. 

Although the uncertainty is lesser; the accuracy assessed for the hardened output shows an 

overall classification of 62.50%. Significant improvement of classification was noted (Section 5-

5) for sub-pixel classification and identification of vegetation classes, like Vineyard.  

Further, the classification was assessed in terms of the features of the input spectral-spatial 

indices. The ―Mean‖ texture derived from the MSAVI vegetation index (initially used to 

separate vegetation and non-vegetation classes) was omitted from the input feature set. An 

overall accuracy of 80.50% was achieved with better individual accuracies of classes and lesser 

degree of uncertainty of determination of class labels, when compared to PC and indices input 

to classification. This input feature set (16 features) of spectral-spatial indices best describes the 

classes in the study area.  

Table 5-3: Spectral-spatial indices – Entropy and Accuracy Assessment (2) 

Class 
No. 

Class  

Indices and Textures Database 

(without MSAVI Mean and Black 

Roof Entropy textures) (15 features) 

    Entropy UA PA 

1 Artificial Turf 1.296 100 100 

2 Black Roof 
 

30 100 

3 Building 0.399 100 70.59 

4 Clay Soil 1.14 100 100 

5 Grass 1.17 80 80 

6 Lawn Tennis Court 0.46 75 100 

7 Mixed Coniferous Forest 1.18 100 83.33 

8 Mixed Deciduous Forest 1.2 90 81.82 

9 Pasture 1.19 70 100 

10 Railway 
 

12.5 33.33 

11 Red Roof 0.44 63.64 70 

12 Red Synthetic Ground 0.52 75 85.71 

13 Road 0.41 73.33 28.95 

14 Roof 
 

72.73 66.67 

15 Sand 
 

0 0 

16 Stressed Grass 1.16 100 63.64 

17 Synthetic Sports Surface 0.54 75 100 

18 Vineyard 1.1 50 100 

19 Water 1.138 100 83.33 

20 Yellow Tartan 0.5 11.12 100 

  
Overall Classification 
Accuracy 

72% 

The primary objective of using indices to reduce the dimensionality of the hyperspectral data 

and thereby improve the overall accuracy in comparison to PCA in this research stands 
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achieved. Further reducing the input feature set with omission of ―Entropy‖ texture of Black 

Roof index and classifying the feature set of 15 indices; classification accuracy reduces to 72%. 

Note that classes that remain unidentified when considering the Possibilistic c-Means sub-pixel 

classification approach yield accuracy measures after defuzzification. This is reasoned in relation 

to the method of defuzzification being a maximum membership value approach. The pixel is 

assigned the class label of the class having maximum value along the membership vector.  

The subsequent sections detail and discuss the results of the classification process while 

considering the three inputs. Besides PC (Section 5.3) and indices inputs (Section 5.4), the 

results of the spectral-spatial indices (Section 5.5) that yielded the maximum accuracy of 80.50% 

will be discussed as the optimal combination of spectral and spatial features for dimensionality 

reduction and classification.  

5.3. Classification using PCA based database 

The estimation of optimal principal components ensures an appropriate input of PCA based 

input database. The measure of entropy has already been applied for obtaining the optimal 

input, while defuzzification will provide an assessment in terms of user‘s, producer‘s and overall 

classification accuracy. Pixels depicted in red are those that have a membership value higher 

than a threshold, i.e. 0.6 for most cases.    

 
Figure 5-3: Optimal PC input-classification – Clay Soil 
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Successful classification with pixels gaining high membership values are shown over the grey-

scale image of the output. ―Clay Soil‖ class (Figure 5-3) is successfully identified while using the 

optimal principal components input. Indicated are the areas of identification of the class of 

interest, verified from ground truth knowledge.   

 
Figure 5-4: Optimal PC input-classification – Red Roof 

Successful classification of Red Roofs (Figure 5-4) in the study area was also achieved. 

Verification of conflict from other classes was checked above the threshold membership value 

of 0.6. If all pixels above the threshold belong to a single class, the class of interest is considered 

to have been successfully identified and classified. Ground truth knowledge of sites where the 

class is ‗present‘ and ‗absent‘ are noted and verified subsequently. These sites were used for 

calculation of entropy.  

Roads are significantly distributed in the study area. Considering the urban nature of the study 

area, identification of roads occupies a substantial weightage in the classification procedure. 

Showing accuracies of 90% and 88.89% while considering PC (Table 5-1) and spectral-spatial 

inputs (Table 5-2) respectively, Figure 5-5 illustrates the classification results of the ―Road‖ class 

while considering optimal principal components input.  
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Figure 5-5: Optimal PC input-classification – Roads 

 
Figure 5-6: Optimal PC input-classification – Sand 
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Although, occupying a very small area with respect to the extent of the study area, the ―Sand‖ 

class has been classified with a high membership value when using the principal components 

input (Figure 5-6).  

 
Figure 5-7: Optimal PC input-classification – Mixed Coniferous Forest 

The study area of Baden, in this APEX dataset, is characterized by mixed forests around the 

urban portion. Coniferous, Mixed Coniferous, Deciduous and Mixed Deciduous Forests exist in 

the study area. Considering the overall distribution and the capability of hyperspectral data in 

differentiating vegetation of varying species, Mixed Coniferous (Figure 5-7) and Mixed 

Deciduous Forests were attempted for classification.  
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Figure 5-8: Optimal PC input-classification – Red Synthetic Ground (A); Vineyard (B) 

The study area consists of 3 different kinds of sports surfaces. As their purposes vary, so do 

their characteristic material. This results in slight but observable variation in spectral reflectance 

responses (Figure 4-4). Of these, Red Synthetic Ground (Figure 5-8 (A)) has been classified 

while considering the PCA based approach.  

Hyperspectral data, due to its contiguous spectra, has the potential to separate classes of 

vegetation. The study area consists of stressed grass, grass, vineyards, etc. Although accuracy 

assessment shows a low percentage of successful classification, the identification of vineyards 

has been successfully done. There is confusion while comparing the classification of Vineyard 

against Stressed Grass and Clay Soil classes, mainly due to the season of data acquisition. The 

APEX OSD was acquired in June 2011. Considering the life cycle of grapes, June is the time of 

fruit formation. Therefore, there is a significant amount of reflectance from the underlying soil 

and very small amount of grapevine-characteristic spectra. Even in this scenario, successful 

classification of vineyards (Figure 5-8 (B)) while using the PCM algorithm is achieved.  

Although a conflict of classes between the classes Lawn Tennis Court and Buildings (Figure 5-9 

(B)) occurred considering PCs until the 6PCs composite, the classes were separable beyond the 

7PCs input. The spatial distribution of the Buildings class is very small, with one dominant site. 

All the other structures in the study area relate to either Red Roof or Roofs classes. Therefore, 

the localised nature of the class was identified in the 7PCs composite, along with the Lawn 

Tennis Courts (Figure 5-9 (A)).  

A B 
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Figure 5-9: Optimal PC input-classification – Lawn Tennis Court (A); Buildings (B) 

For the purpose of appropriate illustration, the hardened outputs of the individual approaches 

have been shown in images of portions (i – iii) of the study area. This provides a better 

understanding, rather than an overview of the output.  

 

A 

B 

i 
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Figure 5-10: Defuzzified optimal PCs classification output (i – iii) 

 

iii 

ii 
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Due to the spatial extent of the study area, it is divided into 3 parts while depicting the 

defuzzified output (Figure 5-10) of the research work. Although the entropy provides a degree of 

uncertainty of class label being assigned to a pixel, it does not account for misclassified pixels. 

Therefore, a simple maximum value defuzzification algorithm is applied and accuracy measures 

(Tables 5-1, 5-2 & 5-3) are calculated from this defuzzified output.  

5.4. Classification using Indices based database 

 
Figure 5-11: Spectral indices input-classification – Artificial Turf (A); Clay Soil (B) 

As the baseline classification accuracy estimates have been established, an initial analysis for 

improvement of classification (Table 5-1) was done using spectral indices input. Considering 

the high spectral dimensionality of the input dataset (285 bands), an attempt is realised to 

exploit this through indices.  

The classification results show an improvement in identification of 10 classes (as compared to 9 

in the case of optimal PCs). However, an inference of identification of vegetation classes is 

made in this case. Considering the PCM classification outputs, the classes show a better 

identification of classes as compared to that of PCs input. Also supporting the assumption of 

indices better describing the classes is supported by the increase in accuracy measures of the 

subsequently hardened outputs. One such class is that of Clay Soil (Figure 5-11 (B)). The class 

shows a similar entropy result, considering the increase in accuracy measures. Previously, in 

PCs approach, unclassified class of Artificial Turf is accurately classified (Figure 5-11 (A)) while 

considering the indices input, having added the spectral index as an input feature (Table 4-2).  

A B 
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Identification of vegetation classes, utilizing their spectral characteristics was one of the main 

motivations for the present research. One such scenario of differentiating vegetation using their 

spectral responses was that of separating the two forest types in the study area. Mixed 

coniferous and mixed deciduous forests are characteristic of different leaf structures, and 

therefore, indices that were used for the purposes of LAI were used (Table 4-1, 4-3).  

  

Figure 5-12: Spectral indices input-classification – Mixed Coniferous (A) and Deciduous (B) Forests 

Mixed Coniferous (Figure 5-12 (A)) and Mixed Deciduous (Figure 5-12 (B)) Forests were 

distinctly separable from the classification outputs, with minor conflicts from classes like Grass. 

These were, however, dealt with while defuzzifying the soft classification outputs..  

Although assumed to be of the same constituent grass, Pastures, as a class, was separately 

classified (Figure 5-13 (A)) from the dataset. The spectral curve in comparison to that of Grass 

(Figure 4-3) showed variations that were exploited through spectral indices.  

Considering the extensive urban distribution in the study area of Baden, through the APEX 

OSD, the class of Roof was intended to be classified utilizing the advantages of band ratio of 

infrared bands (Table 4-3). The consequent result shows a very promising classification of roofs 

in the study area with very low entropy of 0.68 and accuracies of 100% (UA) and 66.67% (PA). 

Note that this class is not further classified while considering spatial indices and therefore, 

spectral indices stand as the optimal option for classification of roofs in the study area. Note 

that the combination of spectral index (Table 4-2) and spatial index of ―Mean‖ texture over a 

A B 
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3X3 neighbourhood extracts roof information, without a further classification with an 

exception of a few pixels from the Water class (Appendix – E, Figure E-1). 

 
Figure 5-13: Spectral indices input-classification – Pasture (A); Roofs (B) 

  
Figure 5-14: Spectral indices input-classification – Stressed Grass (A); Vineyard (B) 

A B 

A B 
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As previously discussed in the case of vineyard classification for optimal PCs input, there is an 

inherent confusion between stressed grass and vineyards due the season of data acquisition. 

Therefore, some pixels of both classes are classified in their respective outputs (Figure 5-14 (A), 

(B)). However, noting the significant amount of membership values assigned to the pixels of 

the class of interest, upon defuzzification, were able to deal with the mis-classification. This is 

supported by the significant increase in the classification accuracy measures of both classes 

(Table 5-1).  

 
Figure 5-15: Spectral indices input-classification – Water (A); Yellow Tartan (B) 

Supported by NDWI spectral index (Table 4-2) for water classification, the Water class has 

been successfully identified, although with a higher entropy (Table 5-1, 5-2) than while 

considering spectral-spatial indices. The overall classification accuracy is also better (Table 5-1, 

5-2).  

A B 
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Figure 5-16: Defuzzified spectral indices input database classification output (i – iii) 

i 
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The defuzzified output of the indices input classification is illustrated in the Figure 5-16, along 

with its associated legend (above). The defuzzified output allows for calculation of accuracies 

for classes that could not be identified without conflict in the soft outputs of the PCM 

classification. These classes showed conflict with other classes, but upon maximum value 

defuzzification were able to be identified, with varying degrees of accuracy.  

5.5. Proposed Approach of  Spectral and Spatial Indices database for 

Classification  

Considering the improvements of classification while considering spectral indices (65%), when 

compared to the traditional dimensionality reduction approach of PCA (59.50%), the 

encouraging results assist in progress of the study to exploiting the spatial characteristics of the 

data. Individual class determination accuracies also improved, with specific emphasis on 

vegetation classes. APEX sensor acquires the data at a spatial resolution of 1.8 m. This allows 

for a possible application of neighbourhood characteristics for constructing spatial indices. Of 

the various types of spatial indices, texture analysis has been chosen for the present study.  

Of the various combinations of spectral and spatial indices assessed, three acceptable 

combinations have been listed in Tables 5-2 and 5-3. Note that the final result of the present 

research is an input feature set of 16 indices, i.e. 12 spectral and 4 spatial indices. The 

classification accuracy of 80.50%, better than both PCs and spectral indices inputs, shows that 

knowledge-based dimensionality reduction approach, through feature selection, provides better 

identification of classes from a study area.  



Spectral and Spatial Indices based Specific Class Identification from Airborne Hyperspectral Data 
 

Page | 59 

 

Figure 5-17: Spectral-Spatial indices classification – Artificial Turf (A); Building (B) 

An improvement of classification is observed while considering spectral and spatial input 

database. Note that the entropy values of all the classes reduce (Table 5-2) when compared to 

previous approaches (Table 5-1). A significant improvement when compared to PCs input 

classification; Artificial Turf is accurately classified (Figure 5-17 (B)) while considering spectral 

and spectral-spatial inputs, but comparatively better classified in the latter. This is supported by 

the reduction in entropy values of the class.  

Although determined with a lesser degree of uncertainty, the Building class shows high 

membership values, a characteristic of the soft output that is enhanced after defuzzification. 

Improvements in producer‘s accuracy of the class indicate accurate identification of the class 

labels assigned to the ground pixels.   

Clay Soil (Figure 5-18 (A)) and Grass (Figure 5-18 (B)) are two classes that were successfully 

classified with lesser entropy measures. While Clay Soil (also classified from PCs and Spectral 

indices approaches) was classified with better UA and PA measures, Grass is identified without 

conflict from Mixed Deciduous Forest class as in previous cases (Figure 8-2 (A) and 8-8 (A)). 

The addition of spatial descriptors is considered responsible for differentiating similar spectral 

responses from these classes, as textures for grass and trees is significantly different. 

Classification improves to 90% from 40% (PCs and spectral indices inputs, Table 5-1).   

A B 
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Figure 5-18: Spectral-Spatial indices database-classification – Clay Soil (A); Grass (B) 

   

Figure 5-19: Spectral-Spatial indices classification – Lawn Tennis Court (A); Pasture (B) 

A B 
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As interpreted from the Figure 5-19 (B), Pasture class shows conflict of lower memberships 

near the threshold from classes like Vineyard. Note that although the entropy measures are 

lower (Table 5-1, 5-2), the accuracy measures are lower than PCs and Spectral Indices 

approaches. Also, the feature set input of 17 indices (Table 5-2) provides the best results for 

Pasture class. With a minimal entropy and better accuracy than other input feature sets, the 

class is said to be best classified with the presence of the vegetation deriving ―Mean‖ texture of 

MSAVI spectral index.  

Minimal entropy and maximum accuracy measures for classification of Lawn Tennis Courts 

(Figure 5-19 (A), Table 5-2) are obtained while describing the hyperspectral information 

through a dimensionality reduction approach of spectral and spatial indices. Through 

defuzzification, all the sites of this class are successfully identified and classified.  

  
Figure 5-20: Spectral-Spatial indices classification – Mixed Coniferous (A); Deciduous (B) Forests 

As previously discussed, differentiating species of vegetation was made possible with addition 

of spatial information descriptors. Through textures, the different tonal distributions of the two 

types of forests allowed definition of signature vectors that resulted in the eventual successful 

classification.  

Figure 5-20 illustrates the successful identification of Mixed Coniferous (A) and Deciduous (B) 

forests. The class labels were assigned with entropy lesser than that of the spectral indices 

input, while the accuracy measures were better while compared to previous approaches (Table 

5-2).  

A B 
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Figure 5-21: Spectral-Spatial indices classification – Red Roof (A); Red Synthetic Ground (B) 

The classes illustrated in Figure 5-21 (A, B) are identified with lesser entropy in the spectral-

spatial indices approach. Defuzzification of the classification outputs produces encouraging 

results, however, with the exception of Red Synthetic Ground being classified with 81.82% 

(UA) accuracy while considering 17 input feature sets.  

The Road class (Figure 5-22 (A)) is classified with an accuracy of 88.89% (UA) as compared to 

similar measures while considering PCs input. The entropy, however, is significantly lower. 

Synthetic Sports Surface is yet another class that was not identified through the PCs and 

Spectral Indices approaches. This class is classified while considering the spectral-spatial indices 

input (16 features) with a minimal entropy of 0.55 at an accuracy of 87.5%. The spectral-spatial 

indices composite of 16 layers renders the successful classification of this class possible, after 

defuzzification of soft outputs.  

As previously discussed, there lies a degree of conflict of membership values for some of the 

classes. One such class combination is that of Stressed Grass and Vineyard (Figure 5-23). 

Considering Figure 5-23 (A), the stressed grass sites show high membership value, while the 

pixels with membership value near the considered threshold membership of 0.6 tend to lie in 

the sites of Vineyard class. Defuzzification procedure successfully eliminates conflict of classes 

of interest.  

A B 
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Figure 5-22: Spectral-Spatial indices classification – Road (A); Synthetic Sports Surface (B) 

  
Figure 5-23: Spectral-Spatial indices classification – Stressed Grass (A); Vineyards (B) 

A B 

A B 
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Figure 5-24: Spectral-Spatial indices classification – Water (A); Yellow Tartan (B) 

The final classes of analysis are those of Water and Yellow Tartan. The Water class has been 

classified in Spectral Indices approach while considering the NDWI feature in the input dataset. 

The class is identified with lower entropy compared to Indices input database. Yellow Tartan, 

like some of the other classes in the study occupies a very small spatial extent. Due to this 

reason and characteristics of signature vector, their classification occurs with conflict from 

some of the other classes. However, considering the defuzzification results, it can be inferred 

that their classification accuracies are comparatively lower than other classes (Table 5-2). 

 

i 
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Figure 5-25: Defuzzified spectral-spatial indices input database classification output (i – iii) 
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6. CONCLUSIONS AND RECOMMENDATIONS 

Summarizing the research results, a direct inference can be drawn in regard to the impacts on 

classification accuracy. Considering that the classification process remains the same, variations in 

the input and dimensionality reduction approaches are a key to understanding the applicability of 

the proposed approach in this research work. The research deals with an initial establishment of 

baseline measures for the purpose of comparison, wherein a traditional dimensionality reduction 

approach of PCA is considered. Possibilistic c – Means algorithm is used to derive the initial 

classification results. With an overall classification accuracy of 59.50%, the baseline classification 

established a reference for the subsequent methodology. In an attempt to exploit the 

characteristics of the airborne hyperspectral dataset, spectral indices are constructed from 

literature review based analysis and knowledge of spectral response curve behaviour. Indices were 

formulated specific to the APEX dataset and band ratio combinations were used for distinctive 

class behaviour.  

The formulated indices were tabulated (Table 4-3) and discussed in detail (Section 4.4). 

Distinctive properties that allowed formulation of these indices were detailed and ―keys‖ from 

the spectral curves were identified. Texture analysis (Table 4-4) from neighbourhood operations 

of GLCM, as spatial descriptors; added spatial information to the spectral indices input feature 

set.  

Results proved that the addition of these spatial descriptors to the spectral indices feature set 

enhances the classification of the classes. They depicted a reduction in measures of uncertainty 

and improvement of overall and individual classification accuracies from the initial PCA based 

dimensionality reduction approach to knowledge-based feature selection and classification 

approach. A classification accuracy of 80.50% with indices based input database to dimensionality 

reduction achieves the objectives set to be achieved. The extensive study of spectral curves and 

their properties facilitated formulation of indices from the APEX dataset. Indices were 

formulated specific to the dataset, highlighting the applicability of the approach through the 

results. Also, using the principles of previous studies [13]–[15], [19]–[21], [25], [28], [79], indices 

were constructed from the spectral curve. 

Research Question: Which object classes require formulation of indices in terms of airborne 

hyperspectral data?  

Hyperspectral spectrometers collect information in many, very contiguous bands, allowing a 

detailed analysis of the target class/ground. This characteristic of the data creates a problem or 

―curse‖ of dimensionality. Famously known as the Hughes phenomenon, the dimensionality 

problem reduces the accuracy of class identification due to inadequacy of training samples.  

Object classes with distinctive spectral characteristics require the formulation of indices. 

Considering the nature of the APEX data, airborne and resolutions, object classes of great detail, 

like roofs can be identified. Most of the class based indices have been uniquely formulated, either 

considering different bands or specificity to the dataset. Due attention was paid to the indices of 
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the vegetation classes, as the improvement in classification and separability of these classes, 

compared to PCA based approaches, was one of the primary motivation of this study. Enhancing 

the spectral characteristics of these object classes, spatial indices were chosen on the basis of their 

neighbourhood operations and overall texture analysis.  

Research Question: Which bands are relevant for the definition of indices?  

The relevance of bands and their choice served two purposes in this study. Firstly, it described 

the object class in lesser dimensionality, as a transformation of 2 or more bands. Secondly, it 

assisted in dimensionality reduction, as out of 285 (APEX) bands, the object class is defined in 

terms of one index output. This reduction is considered knowledge based, as the choice of bands 

requires an understanding of spectral curves and their associated properties.  

The choice of bands relevant for the definition of indices was assisted by prior understanding of 

the spectral curves (Table 4-1). Vegetation reflectance spectra and understanding assists in choice 

of specific ―keys‖ that identify properties that differentiate the type of vegetation. Similar analysis 

is done for other classes, but identification of keys depends on unique properties/behavior of the 

classes‘ curves.  

Research Question: Which characteristics would be selected as spatial indices of the object 

classes?  

The various spectral indices (Table 4-3) are supplemented by the spatial indices (Table 4-4) in 

describing the information of the APEX dataset in lesser dimensions. As the results proved, the 

addition of these indices indeed improves the classification.  

Spatial information is of formidable weightage in the present study. This is due the high spatial 

resolution of 1.8m, associated with the APEX data. Utilizing this information through 

neighborhood operations using GLCM textures was the considered approach in the present 

study. The choice of textures depends on separability of the classes. Interpretation of texture 

analysis was done in order to judge their applicability to effectively add meaningful information to 

the input feature set, and is considered case specific. Mean, Entropy and Second Moment 

(Section 4.5), amongst other GLCM approaches, were chosen as appropriate spatial descriptors. 

For instance, the two forest types, not distinguished from spectral indices input, were separable 

after the addition of the spatial descriptor, Second Moment texture.  

Previous studies [98] have proven that consideration of all textures collectively does not improve 

the accuracy and thus, of the analyzed textures (Section 4.5; Appendix-2), the optimal choice was 

made on the basis of interpretation of the texture analysis and the separability of classes. 

Therefore, the above mentioned measures (Table 4.4) are considered as the spatial indices for this 

research.    
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Research Question: Which classifier is appropriate for the baseline classification, and 

subsequent classifications, and why?  

The choice of the classifier for the baseline classification, and the overall classification approach 

was governed by the characteristics of the data. The classification process is used for evaluation 

of the input feature set, therefore decided on the characteristics of the dataset and number of 

classes chosen.  

Considering the mixed pixels problem largely associated with land use land cover classification, 

the intended classifier is expected to accommodate for possibility of more than one class in a 

single pixel, thus focusing on sub-pixel classification approaches. Of the various algorithms for 

the same, Possibilistic c-Means was chosen. The objective function of the PCM algorithm 

removes the constraint of membership values adding up to 1, thereby extracting the class values 

from the strength of their signature vectors. Through this algorithm, the membership values of 

classes that are present in the pixel are maximized and other classes subsequently minimized. 

Although the membership values in the membership vector do not add up to 1, the possibility of 

the class in the pixel is evaluated against probability in cases of other fuzzy algorithms. This 

property of PCM has a major advantage. It is possible that the ‗user‘ cannot exhaustively identify 

all the classes in the study area. Considering an urban area dataset like that of APEX OSD, where 

a unique mix of vegetation and urban classes are present, all the existing classes are not possible 

to be identified. While considering constrained objective functions (like FCM, etc.), unidentified 

classes are misclassified into the class that has the maximum probability of belonging. This can be 

avoided, and unidentified classes remain unclassified and do not affect the classification process 

while considering PCM.  

Research Question: What is a suitable method to combine data from multiple bands in a single 

index?  

As discussed, indices serve a dual purpose in this research, dimensionality reduction and class 

identification. Identification of relevant bands has also been discussed. A suitable method to 

combine these bands would be the appropriate choice of bands and index. The properties and 

applications of the indices were studied and used to accommodate for different properties. For 

example, indices formulated for LAI assist in the discrimination of the two forest types that have 

significantly different leaf structures. Considering the multiple bands, from the overall feature set 

effectively reduces the dimensionality with regard to identification of a specific class.  
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Recommendations for Future Research:  

The results of this present research have supported the motivation of using spectral and spatial 

indices to reduce the dimensionality of the dataset and improve the classification. An established 

database of formulated indices was developed from spectral curve understanding and 

neighborhood operations.  

Some recommendations for future research would be: 

 The present research has been successfully completed using pixel based classification 

techniques. Further research can be performed with Object Oriented classification 

approaches. While signature vectors mark the classification input for pixel based 

classification approaches, various segmentation approaches could be used to create 

segments for classification. Object based image analysis accounts for both spectral and 

spatial properties of the object classes.  

 Classes like Sand, Black Roof, etc. were not classified in any of the approaches. This has 

been attributed to a comparatively smaller spatial distribution of these classes and 

inadequate information added to these classes through the indices. The information 

through signature vectors was not sufficient to differentiate these classes from the 

remaining, therefore an improvement for these classes‘ identification could be scope for 

future research. These classes, in other study areas, might be of some significance. 

Formulating indices suitable for these classes could be the way forward. 

 Optimal choice of hyperspectral bands is a research domain in itself. For the specified 

indices, an automated procedure to calculate the band combinations for indices could be 

attempted. An optimal choice of bands would yield the highest accuracy amongst all 

computed combinations of bands for a specific index. Supporting literature for a similar 

process of optimal agricultural crop characteristics estimation is available, wherein 

evaluation for optimal choice of hyperspectral bands has been done using a reference of 

field collected biophysical variables [125].  

 

 

-- 
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APPENDIX – A 

APEX Sensor Parameters, OSD Detailed Description and Known 

Issues 

Besides the information presented in Table 8-1, detailed information about the APEX sensor, 

its development and calibration, and other related information can be obtained in Itten et al., 

2008 [44]. Detailed calibration and validation concepts information are available in Schläpfer et 

al., 2000 [115]. The structure, components and interfaces of the APEX data archiving facilities 

was described by Hueni et al., 2009 [116]. The performance of the sensor, besides other aspects, 

was illustrated by Jehle et al., 2010 [45].  

The performance of the APEX system is very important in understanding its data acquisition 

method. The details are listed in the Table 8-1.  

Table A-1: APEX Selected Performances. Source - [45] 

APEX Performance 

Spectral Performance VNIR SWIR 

Spectral Range 380.5 – 971.7 nm 941.2 – 2501.5 nm 

Spectral Bands Up to 334, def. 114 198 

Spectral Sampling Interval 0.55 – 8 nm 5 – 10 nm 

Spectral Resolution (FWHM) 0.6 – 6.3 nm 6.2 – 11 nm 

Spatial Performance 

Spatial Pixels (across track) 1000 

FOV 28º 

IFOV 0.028º (~0.5 mrad) 

Spatial Sampling Interval (across track) 1.75 m @ 3500 m AGL 

Sensor Characteristics VNIR SWIR 

Type CCD CMOS 

Dynamic Range 14 bit 13 bit 

Pixel Size 22.5 µm ± 22.5 µm 30 µm ± 30 µm 

Smile Average < 0.35 pixel 

Keystone (Frown) Average < 0.35 pixel 

Co-registration Average < 0.55 pixel 

Other Information  

Data Capacity 500 GB on SSD 

Data Transfer Spectral frames: 30 MB/s, HK data: 20 kB/s 

Data Rate for default config.  0.4 GB/km (1250 km max.) 

 

APEX data is made available on the website after a series of pre-processing. The pre-processing 

performed with the RAW data, to make it available as a Level1 processed data, from the APEX 

sensor are [45], [119]:  
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 Dark Current Correction using linear dark current modelling per flight line. 

 Radiometric correction. 

 Bad Pixel replacement by spatial linear interpolation. 

 Wire pixel replacement by spatial linear interpolation. 

 Negative radiances, typically appearing in water vapour absorption bands, have been set 

to zero. 

 Spatial mis-registration (frown) correction by linear resampling to common across track 

angles. 

 Spatial co-registration of the VNIR and SWIR detector. 

 Destriping. 

The APEX system is experimental, therefore, some known issues prevail in the data even after 

pre-processing [119]:  

 Residual along track striping; 

 Residual across track striping; 

 Interpolated wires; 

 Image crispness; 

 Radiometric artefacts; 

 Saturated pixels; 

 Directional effects; 

 Low SWIR HCRF; detailed descriptions and information can be found in the APEX 

OSD Leaflet [119] and the official APEX website [120].  
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APPENDIX – B 

Texture analysis  

In this section, the additional textures calculated and analyzed during texture analysis are given 

and discussed. These textures were not considered due to inconclusive results obtained. The 

output of these textures created incoherent data, when applied on spectral indices. As the key 

criterion for using a texture as a spatial descriptor was that it could assist in extracting classes, 

the below statistics were not considered. These statistical measures of tonal distribution are also 

called GLCM (Grey Level Co-occurrence Matrix) [32].  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒  𝜎𝑖
2 =  𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

 𝑖 − 𝜇𝑖 
2;  𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒  𝜎𝑗

2 =  𝑃𝑖,𝑗

𝑁−1

𝑖 ,𝑗=0

 𝑗 − 𝜇𝑗  
2
 

Variance is a measure of the degree of dispersion of the values in the window, with respect to 

the mean and can be considered similar to Entropy measures.  

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  
𝑃𝑖 ,𝑗

1 +  𝑖 − 𝑗 2

𝑁−1

𝑖,𝑗=0

 

Homogeneity is a measure of the similarity in the pixel values in the neighbourhood window.  

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =   𝑃𝑖,𝑗  𝑖 − 𝑗 2

𝑁−1

𝑖 ,𝑗=0

 

An obvious converse of Homogeneity, Contrast is a measure of the local variation in an image 

or neighbourhood window.  

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  𝑃𝑖,𝑗  𝑖 − 𝑗 

𝑁−1

𝑖,𝑗=0

 

Similar to Contrast, Dissimilarity outputs high values when contrast is high.  

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  𝑃𝑖 ,𝑗

 
 
 
  𝑖 − 𝜇𝑖  𝑗 − 𝜇𝑗  

  𝜎𝑖
2  𝜎𝑗

2 
 
 
 
 𝑁−1

𝑖,𝑗=0

 

Correlation measures the linear dependency of grey levels of neighbouring pixels.  
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APPENDIX – C  

Principal Component Analysis and Additional Classification 

Outputs 

The input of 7PCs, optimally decided upon, yielded outputs of corresponding classes. The 

process of PCM classification led to the successful identification of some classes (Section 5.3), 

and the remaining are discussed here. The Figures depict the concerned class and its 

corresponding conflicting classes to understand the mis-classification.  

 
Figure C-1: Optimal PC input-classification – Artificial Turf (A); Black Roof (B) 

The sole purpose of these results are to illustrate that the classification approach using PCM 

algorithm has failed to separate these classes while considering the PCA dimensionality 

reduction approach. Although these classes are not classified in their soft outputs, 

defuzzification allows for quantification of the approach. Figure C-1 (A) discusses the conflict 

of classes Artificial Turf (i), Railway (ii), Water (iii) and Roads (iv). Artificial Turf conflicts with 

the mentioned classes. Through analysis, it can be inferred that the 7PCs input is insufficient in 

defining a distinctive signature vector for these classes. The classification relies on the 

definition of adequate signature from the PCs input, for all the classes. Some classes like Sand, 

Black Roof, etc. occupy a very small spatial area, in comparison to the study area. Their 

distribution could be a factor in the misclassification of pixels belonging to these classes. 

Similarly, Fig. C-1 (B) illustrates a conflict between Black Roof (i), Water (ii) and Railway (iii) 

classes.  
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Figure C-2: Optimal PC input-classification – Grass (A); Mixed Deciduous Forest (B) 

 
Figure C-3: Optimal PC input-classification – Pasture (A); Stressed Grass (B) 

Both classes, Mixed Deciduous Forest and Grass, show similar spectral behaviour (Figure 4-2, 

4-3), although the reflectance values are different. This implies that the classes cannot be 

A B 

A B 

ii 

i 

i 

ii 
i 

ii 

i 

ii 



Spectral and Spatial Indices based Specific Class Identification from Airborne Hyperspectral Data 
 

Page | 87 

separately classified solely on the basis of spectral information. This inference is adequately 

supported by the classification accuracy results of Grass (Table 5-1). As indicated in Figure C-2 

(A – Grass (i), Mixed Coniferous Forest (ii) and B – vice versa), both classes are identified in 

their respective PCM classification outputs.  

Figure C-3 (A & B) is yet another illustration of spectral information being insufficient to 

differentiate between vegetation classes. As discussed previously and understood from their 

spectral curves (Figure 4-3), vegetation classes show similar properties in similar spectral ranges. 

When a simple dimensionality reduction approach is followed, the subsequent classification 

relies completely on spectral information, and therefore misclassification of these classes 

occurs. Figure C-3 A (Pastures (i) and Vineyards (ii)) and B (Stressed Grass (i) and Vineyard (ii)) 

depict the misclassification of these classes in the study area. The discussed classes of Stressed 

Grass and Pastures show low accuracy assessment values (UA – 30% and 40% respectively; 

Table 5-1), quantifying this misclassification.  

The conflict of classification for Railway class (Figure C-4 – (i)) persists through all the 

approaches, indicating at the requirement of a different approach for classification. While 

considering the PCA approach, the class conflicts with Roads (ii) and Water (iii). As 

recommended, a different approach might be used to classify the Railway class.  

Considering the urban nature of the study area, adequate numbers of roofs are encountered. Of 

the many, through ground truth consultation and verification, 3 types were considered for this 

study area i.e. Black Roof, Red Roof (Figure C-4 – B (ii)) and Roofs (Figure C-4 – B (i)).  

 
Figure C-4: Optimal PC input-classification – Railway (A); Roof (B) 
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Figure C-4 (B) illustrates the misclassification of Roof class, against Red Roofs. Red Roofs were 

accurately classified with a high UA (Table 5-1), while the conflicting class of Roofs‘ 

misclassification is quantified at a low 40% (UA).  

  
Figure C-5: Optimal PC input-classification – Synthetic Sports Surface (A); Water (B) 

The classifier algorithm fails to differentiate between the classes Synthetic Sports Surface (i) and 

Yellow Tartan (ii), illustrated in Figure C-5 (A) while considering the soft classification 

approach. Defuzzification in this research is based on a simple, maximum value principle, and 

therefore, resultant output shows a high accuracy of this class‘s identification.  

As shown previously in Figure C-1 (A & B) and C-4 (A), Water class conflicts with 

classification of multiple classes. The same case follows while considering the Water class 

output. However, like in the previous case of Synthetic Sports Surface,  defuzzification results 

in high classification accuracy (UA) for this class the pixel carry the highest membership values, 

while locations of the conflicting classes have a lesser membership value.  

Low classification accuracies characterize the Yellow Tartan class throughout the research, 

irrespective of the approach followed. This has been attributed to low spatial distribution of the 

class and inadequacy of indices (spectral or spatial) in describing the properties of the class. As 

illustrated, pixels of conflicting classes carry a membership value higher than the threshold, 

thereby describing misclassification in Figure C-6 (Yellow Tartan (i) and Synthetic Sports 

Surface (ii)).  
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Figure C-6: Optimal PC input-classification – Yellow Tartan 
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APPENDIX – D  

Additional Spectral Indices input database Classification Results 

As the cases of misclassification while considering the PCs input was discussed in Appendix – 

C, here we discuss the dimensionality reduction approach of using spectral indices. The 

classification achieved was at a better accuracy of 65% (compared to 59.50% for optimal PCs 

input). The input database of features in this approach was of spectral indices corresponding to 

classes, hoping to best describe class information through these. Although an improvement was 

achieved and usage of spectral indices as input features was justified, a few classes still remained 

unclassified through PCM soft classification.  

Classification accuracy for Black Roof (Figure D-1 (A)) reduces from the PCs input approach 

(Table 5-1, 5-2). The conflict of the classes above the threshold of membership values shows 

that Roads, Building and Sand classes conflict with the successful identification of Black Roof 

class. Similar conflict of class identification occurs in the case of Building (Figure D-1 (B-(i))) 

with Roads (Figure D-1 (B-(ii))). 

 
Figure D-1: Spectral indices input-classification – Black Roof (A); Buildings (B) 

Conflict of classification of Grass (Figure D-2 (A (i))) persists with Mixed Deciduous Forests. 

Application of indices successfully classifies the two forest types in the study area (Figure 5-12), 

but the spectral information alone is not sufficient to differentiate Grass (evidence of similar 

spectral curve behaviour (Figure 4-2, 4-3).  
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Figure D-2: Spectral indices input-classification – Grass (A); Lawn Tennis Court (B) 

  
Figure D-3: Spectral indices input-classification – Railway (A); Red Roof (B) 

Illustrated in Figure D-2 (B), Lawn Tennis Court (i) indicates a conflict of identification with 

Building class (ii) and Synthetic Sports Surface (iii). Similar spectral properties of these classes 
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illustrate a conflict even in the PCA dimensionality reduction approach. It is due to this conflict 

that the classes remain unclassified up until the 7-8PCs input feature database (Figure 5-1). 

Illustrated here is yet another example of spectral information being insufficient to separate 

these classes.  

Similar spectral response curve behaviour of the sports surfaces in the study area create 

adequate amount of confusion in the classification approach. Note that between the bands 

considered as keys for Red Synthetic Ground (Table 4-2) index, these surfaces show similar 

spectral behaviour. Illustrated in Figure D-4 (A), these classes are misclassified while 

considering the spectral indices input for the classification.  Figure 4-4 depicts the spectral 

curves of these classes. Similar conflict of class identification was also seen between Roads 

(Figure D-4 (B-(i))) and Railway (Figure D-4 (B-(ii))) classes. Both classes in Figure D-4 are 

however considered identified after defuzzification of the classification results with respectable 

accuracy measures (Figure 5-1).  

 
Figure D-4: Spectral indices input-classification – Red Synthetic Ground (A); Road (B) 

Sand is yet another class whose misclassification has been attributed to similar spectral 

properties with other classes and lesser spatial distribution. Considering that the class has only a 

few pixels, information for training the classifier remains inadequate. This class might be some 

significance in other study areas, and applicability of an indices based approach could be 

researched in that situation. A similar understanding as that of Figure D-4 (A) is reiterated for 

Figure D-5 (B).  
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Figure D-5: Spectral indices input-classification – Sand (A); Synthetic Sports Surface (B) 
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APPENDIX – E  

Additional Spectral-Spatial Indices input database Classification 

Results 

The classification using spectral and spatial indices for exploiting the airborne hyperspectral 

data is the primary motivation of this research. Through the process, a specific combination of 

indices stands out. Roofs occupy a significant portion of any urban study site, and the present 

study area of Baden is no different. Extraction of this class deserves a dedicated description. 

Figure E-1 illustrates the end output of a simple Band Ratio (spectral) (Table 4-2) and Mean 

(spatial) (Table 4-4) index combination that yields the result of highly specific identification of 

Roofs. This index was later used as a feature to the classification.  

 
Figure E-1: Spectral-spatial index for ―Roofs‖ class 

The additional results of the spectral-spatial input database classification are discussed. It is to be 

noted that this approach dimensionality reduction greatly improves the classification. 

Understanding the dimensionality reduction approach and the end classification result is vital in 

establishing the applicability of spectral and spatial indices.   

The classes in the Figures E-2 and E-3 were considered to be unclassified through any of the 

applied approaches. Dimensionality reduction through indices could be a major research area, 

and these classes could be the scope for future research. Black Roof, Railway, Roofs and Sand 

remain unclassified.  
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Figure E-2: Spectral-Spatial indices database-classification – Black Roof (A); Railway (B) 

  

Figure E-3: Spectral-Spatial indices database-classification – Roofs (A); Sand (B) 
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The classes Railway and Roofs produce no interpretable outcome to the classification while 

Sand and Black Roof conflict with the indicated classes.  
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APPENDIX – F  

Publications 

1. A. Kallepalli, A. Kumar and K. Khoshelham, Entropy based Determination of Optimal Principal 

Components of Airborne Prism EXperiment (APEX) imaging spectrometer data. (Draft Prepared; To 

be submitted in a peer reviewed Journal) 

2. A. Kallepalli, A. Kumar and K. Khoshelham, Spectral and Spatial Indices based identification of 

Specific Class from Airborne Prism EXperiment (APEX) OSD. (Draft Prepared; To be submitted 

in a peer reviewed Journal) 
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