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Abstract

Since, the advent of remote sensing technology it has become an attrac-
tive option to capture the information about land cover classes at a global
scale in less time in form of digital images. These images are available over
a large range of temporal and spatial scales. But the complete utilization of
this information is dependent on the availability of efficient and accurate
methods of image analysis. Image classification is one of the important
image analysis methods.

The efficiency of image classification to map the real world scenario is
restricted by the presence of mixed pixels. To some extent fuzzy based
classification methods such as Fuzzy-c-Means or FCM, can handle these
mixed pixels. FCM gives the membership value of the pixel to various
classes. But the accuracy of this approach is found to be less than that of
Possibilistic c-Means (PCM). The membership value generated by PCM is
interpreted as the degree of belongingness instead of degree of sharing i.e.
generated by FCM.

But PCM exploits the information present only in spectral domain. Where
as, it has been observed that including the information from spatial domain
increases the accuracy of the classifier. This spatial domain information or
spatial contextual information can be integrated with PCM to provide more
accurate results.

In this research work, a PCM and spatial contextual information based
sub-pixel classification method has been developed. Also, two different
MREF prior models have been used. It has been observed that using Dis-
continuity Adaptive prior models preserve the edges and also, increase the
overall accuracy of the classifier.

It has been found with the experiments performed, that not all sub-pixel
accuracy assessment techniques are suitable in case of PCM classifier such
as PCM-MRF, as it doesn’t follow the hyperline constraint. For generating
the reference data set, a finer resolution image was used. It has also been
discussed with results, that same classifier is more appropriate to use for
generating the reference data set.

Keywords

Possibilistic -c-Means, Markov Random Fields, DA models, edge preserva-
tion
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Chapter 1

Introduction

1.1 Background

Many countries all around the world, including India, now depend on remotely
sensed data and images for monitoring, planning and development of natural
and man-made resources.

For the preparation of thematic maps and quantitative analysis of the im-
ages, capability of computer to interpret the images, identify pixels and label
them based on their numerical properties is exploited [1]. The method is com-
monly referred to as Image Classification. And as the images are acquired and
process in digital format it is better known as Digital Image Classification.

Conventional classification methods assume that the area under study is
composed of number of unique, internally homogenous classes that are mutu-
ally exclusive [2]. Also known as hard classification, it follows the classical set
theory i.e. if land cover classes are assumed to be set of pixels, then a pixel
will belong to only one such set and have zero membership to all other sets.
Mapping the same in feature space, where feature space is partitioned into
clusters, which are made up of points representing DN values of individual pix-
els in the image. As per hard classification, the pixel will belong to either one
of these clusters (also, known as spectral classes /information classes, accord-
ingly), thus, partitions will have defined boundaries in the feature space. But
this is not always the case. The pixels may belong to two or more classes. In
real world, the pixels are large enough to accommodate sub-pixel objects such
as trees, sub-pixel linear objects viz. rivers, boundaries of more than two land
cover types or intergrade phenomena may be observed (figure 1.1) [3]. That
is the pixels are mixed in nature and not pure, in terms of classes they cover.
This commands a need of classifiers which can handle mixed pixels by giving
membership value to the pixels in different classes. Thus, providing classified
outputs which are near to real life scenarios.
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Figure 1.1: The sub-pixel issues Based on (3)

1.2 The fuzzy classifier

1.2.1 The Problem

As described by Zhang and Foody [2], the reason behind mixed pixels can be
mainly attributed (there can be other reasons, though) to following three sources:-

1. In real world, different land cover types are rarely homogenous but are
heterogeneous resulting in intergrade phenomena i.e. classes do not have
crisp boundaries. This is fuzziness due to the geographical phenomena.

2. A pixel value is the result of interaction of electromagnetic waves with
the ground objects and/or atmosphere. The sensor records this spectral
response which may differ for similar entities, while dissimilar entities
may show similar spectral response, depending on the ground situations.

3. Finally, due to coarse or medium spatial resolution of sensors (e.g. AW-
IFS and LISS III), a pixel may not consist of single class but two or more
classes irrespective of the fact that on the ground the class may be ho-
mogenous. This can be defined as fuzziness due to resolution of the sensor.

1.2.2 The Solution(s)

Fuzzy set theory [4] is one of the possible ways which takes care of the above
problems to an extent. It assigns membership value to a pixel, in different
classes. These membership values can take any real number between zero and
one. Fuzzy c-Means (FCM) [7] is a popular fuzzy set theory based sot classifier,
which handles the vagueness of a pixel at sub-pixel level.
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FCM has been successful in assigning the membership (u;;) of a pixel to
multiple classes but the assignment is relative to total number of classes de-
fined [6, 5]. This is because of the constraint on the membership values given
by the equation 1.1:-

C
> uiy=1,Yj (1.1)
i=1

where, j varies from 1 to N (N is the total no. of pixels in the image) and C is
the total no. of classes defined by the analyst.

Equation 1.1 can be interpreted as, sum of membership values for a pixel in
all the classes should be equal to one [6, 7].

Krisnhapuram and Keller in 1993, gave a variation of FCM, called Possi-
bilistic c-Means (PCM) which relaxes the constraint on membership value in
equation 1.1, ensuring the condition given in equation 1.2 [6] :

max Uij > 0, Vj (12)

In case of PCM, this membership value represents the “degree of belonging-
ness or compatibility or typicality”’[6], contrary to that represented by FCM ,
where it is , “degree of sharing”[6]. Overcoming this constraint gives higher ac-
curacy of supervised classification using PCM as compared to that of FCM[30,
29]. Also, PCM can handle noise and outliers [6, 11]. Noise and outliers af-
fect the prototype parameters i.e. cluster means. Also, PCM, as a supervised
classifier, works better in case of untrained classes , when compared with FCM
(as supervised classifier)[5]. Untrained classes here are those classes which are
present in the image but are not known to the analyst; hence, the classifier is
not trained with that unknown class.

Thus, the advantages of PCM over FCM are the motivation behind selecting
PCM as sub-pixel classification approach in this research.

1.3 Contextual Information and Markov Random Fields

In traditional classification methods, the classiification is performed based only
on the pixel’s spectral value. These methods assume that the spectral proper-
ties of a pixel are independent of the properties of pixels in the neighbourhood.
This situation seldom exists in the actual geographical phenomena. On the con-
trary, there is a correlation between a pixel and its adjacent pixels in the image
space. This happens primarliy due to two reasons [1]:

1. The reflected energy reaching the sensor is not solely from the pixel but
also, consists of energy from neighbourhood pixels as well.

2. The classes on the ground are usually, large enough to cover more than one
pixels and in fact, they cover at least few pixels. Thus, hardly, any pixel
exists in isolation. A pixel belonging to a forest has a high probability to
have forest pixels as its neighbours.
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The information from neighbouring pixels (in image space) is known as spa-
tial contextual information.

Spatial contextual information, if exploited properly, may allow the elimi-
nation of ambiguities (such as two pixels may have similar spectral values but
belong to different classes that can be recognized only with the context), recov-
ery of missing information and the correction of errors [8], and thus, can provide
spatially and spectrally consistent thematic maps.

The methods to add context are categorized into three broad categories [1]:

1. Image pre-processing In this method, the contextual information is
dealt-with before classification, by modifying or enhancing the spatial
properties of the pixel.Various methods include median filters, averaging
filters, ECHO classification methodology, generating seperating channels
such as texture channel.

2. Post-Classification After the classification, a filter such as Majority Fil-
ter, Thomas Filter [14] can be applied over the classified image.

3. Label Relaxation This method incorporates spatial contextual informa-
tion into classification process in a logically consistent way using a method-
ological framework [17]. Markov Random Fields (MRF) is based on the
Hammersley Clifford Theorem of MRF-GRF equivalence. It is an attrac-
tive option as it provides a flexible stochastic framework for modelling a
given scene, expressing spatial contextual information by means of ade-
quate energy function[9] . Since, classical paper by Geman & Geman in
1984 [10], MRF (with Simulated Annealing) has become a popular and
powerful tool for incorporating spatial contextual information in the im-
ages for processes such as segmentation, restoration of noisy images, clas-
sification etc.

1.3.1 Edge Preserving priors

Generally, MRF assumes smoothness or homogeneity in the images but its im-
proper use can lead to undesirable over-smoothing. This usually occurs at the
discontinuities such as edges. Therefore, it is important to select MRF models
(also called MRF priors and regularizers) which take into account the discon-
tinuities. The MRF models include various regularizers such as standar reg-
ularization model, line process, weak string & memberane and Discontinuity
Adaptive (DA) smoothness models which focus on first order derivatives [21].

In this thesis, two MRF models have been used, one is standard regulariza-
tion model and other is Discontinuity Adaptive smoothness priors.
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1.4 Problem Statement

Fuzzy based techniques such as FCM are used for sub-pixel classification of im-
ages, giving higher accuracy over the hard classifiers as it incorporates vague-
ness of classes. An even higher accuracy has been registered by using PCM as
compared to FCM in sub-pixel classification methods [28, 29, 30]. It has also
been shown that in case of hard classification algorithm [8] as well as in case
of FCM [12, 13], that if the spatial contextual information is included then it
becomes more robust as compared to purely spectral based classification [1].

As PCM work only in spectral domain thus, a PCM and spatial contex-
tual information based sub-pixel classification method has been developed, that
takes into account the fuzziness of classes and also, incorporates spatial contex-
tual information.
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1.5 Research Identification

To achieve the solution of the problem statement defined in sectin 1.4, follow-

ing research objectives and corresponding research questions, have been formu-
lated (Table 1.1).

Table 1.1: Research Objectives and Questions

Research Objectives Research Questions

I)To develop a PCM based sub-pixel | 1) How to modify the PCM objective
classifier incorporating function so as to include the

spatial contextual information spatial contextual information
using MRF that preserve edges. using MRF?

2)Which smoothness prior model will
be suitable for PCM-MRF ?

3) Which sampler will be suitable

for PCM-MRF?

IT) To assess the performance of 4) Which classifier to be used for
PCM-MRF in presence of classifying finer resolution images
untrained classes noise and i.e. LISS IV images, to generate
outliers. the reference data set?

5) Which accuracy assesment tech-
-nique is suitable to assess the

accuracy of PCM-MRF sub-pixel
classifier?

6) Which accuracy assessment tech-
nique will be suitable to assess the
accuracy of PCM-MRF at edges?

7) How does PCM-MRF performs in case
of noise/outliers/

untrained classes?




Chapter 1. Introduction

1.6 Research Setup

To answer the research questions and fulfill research objectives, the layout of
the steps followed in this research thesis is given in Figure 1.2.

LIS lllimages | AWIFSimages LISS IV images

Figure 1.2: Flow Diagram of the complete research setup
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1.7 Thesis Structure

The whole thesis has been organised into eight chapters. The first chapter
includes background information on the major aspects of the research topic,
the problem statement, research objectives and questions and research setup. In
Second Chapter literature review of the research done in the topics relevant
to this thesis is givens. Third and Fourth Chapter throws light on theory
behind PCM and MREF, respectively. Fifth chapter provides information on
Study Area and the data set used. Sixth chapter has been dedicated to details
of the complete methodology. Followed by results and their discussion in sev-
enth chapter. Finally, in eighth chapter the thesis has been concluded with
recommendations pertaining to further research in the area.



Chapter 2

Literature Review

2.1 Possibilistic c-Means and fuzzy based clustering
methods

Krishnapuram & Keller [6] gave a specific implementation of Zadeh’s [4] possi-
bility based method, called Possibilistic c-means. It assigns pixel to more than
one cluster in the form of membership value and this membership value doesn’t
follow the constraint in FCM (equation 1.1) called hyper-line constraint [6].

Krishnapuram & Keller [11] gave some recommendations based on their
findings and issues raised by Barni et al. In this paper, they said that ‘fuzzifier
(m)’ is different for both FCM and PCM as its interpretation is differs. Another
parameter in PCM i.e 7); was defined as the distance at which membership value
becomes 0.5 .

Foody [5] showed that supervised PCM in case of untrained classes (ex-
plained in section 3.2.1, chapter3) gave lower RMS error and r, when compared
to that of Fuzzy C-Means.

Kumar et al. [31] have given the comparison of FCM vs. PCM as sub-pixel
methods and results show that PCM with Euclidean Norm had the highest
overall accuracy of 99.29%, whereas FCM with Euclidean Norm showed the
overall accuracy of 97.9%.

In another work by Kumar et al[29], in which PCM and FCM were applied
first on first three bands and then later on first nine bands, followed by 14 bands
of ASTER data. The results on all three cases gave the higher performance of
PCM as compared to FCM in terms of accuracy. While overall accuracy of FCM
in case of 3 bands was 76.4%, it was 86% for PCM. In case of 9 bands also, when
FCM was 81.7%, the overall accuracy of PCM was 88.9%.

The performance of PCM has been shown to be better than FCM [5, 31, 29]
because PCM overcomes the hyperline constraint in FCM.

2.2 Markov Random Field and Image Analysis

Markov Random Field has been used in image analysis for both medical and
Remote Sensing images. It has been used for including contextual information,
particularly, spatial contextual information.
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The seminal paper by Geman and Geman [10], showed the implementation
of Simulated Annealing using Gibbs Sampler for MRF in image restoration.
Following this MRF has been used extensively in image analysis.

Solberg et al[17] proposed a MRF based model for classification of remotely
sensed data obtained from multiple sources. They exploited both spatial and
temporal contextual information, successfully. When multi-temporal MRF fu-
sion model was used, the overall accuracy imrovement was reported to be 2.7%
as compared to reference model. And with the inclusion of crop field border map
from GIS data, there was a significant increase in the overall accuracy, which
was 79.6%.

Pham [12] included spatial contextual information with FCM using MRF for
image segmentation in Magenetic Resonance Images (MRI) of brain and called
it as Robust Fuzzy C-means or RFCM Algorithm. Convergence of the objec-
tive function was achieved when change in the objective function was less than
a defined threshold. To obtain the value of 3 which controls the smoothness
performed by the penalty function (or objective function), cross-validation tech-
nique used. The results were compared using misclassified rate (MCR) which
was 14.14% for FCM, whereas for RFCM it was 0.52%.

Binaghi et al [18] integrated the Fuzzy based knowledge classifier with con-
textual information using MRF and remote sensing data from multiple sources.
The attempt was emulate the process of human thinking in solving problems
pertaining to classification.

2.2.1 Preventing Oversmoothning

MRF use smoothness priors to include spatial contextual information and to
avoid over smoothning, Regularizers and Discontinuity Adaptive (DA) Models
have been introduced.

Li [22, 23], gave DA models to be used as prior models in MRF, which are
said to take into account the discontinuities and avoid over smoothning. In
[23], it was shown that solution to DA models can be obtained by using gradient
descent method, but its direct use may cause getting trapped into local minima.
Further details are also, provided in [21].

Smits and Dellepiane [34] gave a ‘Discontinuity Adaptive MRF’ model for
segmentation of SAR images using unsupervised mode of segmentation. Be-
cause it is important to preserve the discontinuities (in particular, small struc-
tures) in SAR images as it is obscured by speckle noise [34].

Tso & Olsen [32] developed a method for classifying multispectral images
by incorporating contextual information and also including edge information.
The edge information was extracted from high resolution panchromatic im-
age at multiple scales and then later on fused using fuzzy line process models
with contextual information. The authors used ICM for energy minimization.
They also stated that at boundary the MRF tends to over-smooth the image and
causes introduction of error. Thus, to avoid errors it is important to identify and
preserve the edges and reduce their contribution in classification, particularly
in smoothness prior model.

Hou et al[35], used modified FCM that includes spatial contextual infor-



Chapter 2. Literature Review

mation using moving average filter based on [12] as the regularizer. An accu-
racy was tested using different noise levels and similar results as seen in [12],
were obtained with reduced time complexity by 30%. Thus, they gave another
method of including regularizer in FCM based clustering for segmentation.

As seen in the literature survey, MRF has been included into fuzzy based
approaches but use of MRF with PCM for sub-pixel classification has not been
in seen in the literature, especially in the field of remote sensing image. Neither
edge preserving models for MRF with PCM has been used for soft classification.

2.3 Validation Techniques

Accuracy assessment and validation for sub-pixel classifiers is still a subject of
research. No standard methods are available for sub-pixel classifiers, unlike
that in hard-classifiers such as Error Matrix and Kappa Coefficient.

In 2006, Pontius and Cheuk[46] gave a set of composite operators for com-
putation of cross-tabulation matrix for soft classified outputs. These composite
operators are combination of single operators including boolean, multiplication
and minimum operators. These operators are used in building cross-tabulation
matrix and assess the results for the comparison of classifier.

Another measure that can be used to provide the quantitative measure of
the reliability of classification is entropy. Ricotta and Avena [48] described a
generalized function of entropy that is sensitivity to the presence of abundant
class and a rare one.

Dehghan and Ghassemian [47] have given the entropy as an absolute mea-
sure of uncertainty for the classified output. It is called absolute because it
doesn’t take into account any other reference data set like in case of RMSE and
correlation coefficient. Also, it states that a single number can be used to give
the uncertainty of the classified output at per pixel level or per class level or
even at image level. It states, that higher entropy implies higher uncertainty
and vice-versa. A classifier with lower entropy is a better classifier.

11
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Chapter 3

The Possibilstic c-Means

“Building Insights.Breaking Boundaries.” -Elseiver

This chapter is about what and why of PCM.“‘What’ implies, what is actually PCM
and ‘Why’ here tells, why it has been selected over FCM.
Based on the possibility theory given by [4], Krishnapuram and Keller [6] gave a

particular implementation of the possibility theory, termed as Possibilistic c-Means(PCM).

It is a clustering algorithm, which is the modification over FCM objective function.

In the following sections, only those terms pertinent to the current thesis work have
been covered. Section 3.1 talks about FCM, which in turn forms the basis of discussion
for the central theme of the chapter i.e. PCM in section 3.2. Thus, in section 3.1 and
3.2 an ‘insight is built’ into what and how of PCM and the mathematical constraint
overcome by PCM is all about ‘breaking boundaries ’.

3.1 Fuzzy C-Means

FCM, is primarily a partitioning algorithm [11]. In terms of image processing, it’ll
partition the feature space into number of clusters defined by the user (figure 3.1).
This is regardless of actual number of clusters present in the data set. It is mainly due
to the probabilistic constraint on the membership value mentioned in equation 1.1,
chapter 1.

The membership value generated using FCM gives the “degree of sharing” of the
pixel in the various clusters in the feature space. In other words, is the degree to which
a pixel will be shared among the clusters. It can be better explained by taking up a real
life example.

Example 3.1 Assuming that there is a tub of pudding that has to be shared among
a group of people. The constraint here is that stock of pudding is limited and will be
shared among given set of people. The size of the share will depend upon total number
of people in the group present, other factors such as ones liking and disliking are kept
in the background for the time being

The share here can be compared to the membership value of the pixel and the con-
straint, in case of FCM, is the sum of membership value of the pixel should be equal to
one (equation 1.1, chapter 1).

It has been observed that due to this constraint FCM does nots perform well in
case of noise and outliers as it affects the formation of clusters [6, 11]. Also, in case
of untrained classes (during supervised classification), as demonstrated by [5], FCM

13
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Figure 3.1: Partitioning of feature space using FCM

is less efficient than PCM. It is because it gives the relative membership value and
not absolute i.e. the share of pudding one gets depends on the total number of people
present.

Hence comes into the picture, PCM.

3.2 Possibilistic c-Means

3.2.1 Why PCM?

Unlike FCM, membership value generated by PCM can be interpreted as “degree of
belongingness or compatibility or typicality”’[6]. Degree of Belongingness implies the
degree to which the pixel belongs to a class. Degree of compatibility is the degree by
which the pixel is compatible to the other pixels in the cluster and the cluster mean.
Degree of typicality helps to differentiate between a highly atypical member of the clus-
ter versus moderately atypical member of the cluster. All, the three above give the
possibility of a point or pixel to belong to a class. This is contrary to that of FCM,
where it is the “degree of sharing”

The above stated difference in the interpretation of membership values in case of
FCM and PCM is observed as PCM relaxes the constraint on FCM given in equation
1.1, by following equation 1.2 (given in chapter 1). And this also, improves the perfor-
mance of PCM in case of:

1. Outliers. Outliers are those rare pixels which belong to a class but are at larger
distance from the cluster (in feature space) as compared to other pixels of the
same class. In other words, they depict an exceptional behaviour that does not
comply with the general characteristics of the cluster members.

2. Noise. The presence of noise affect the results of FCM and other classification
techniques as it influences the estimation of cluster centres [6, 15]. Noise can be
defined as anomaly in the set of pixels i.e. those pixels which do not belong to
any meaningful cluster.
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3. Untrained Classes.[5] demonstrated that PCM performs better as compared to
FCM in case of untrained classes, during supervised classification. Untrained
classes can be defined as those classes which an analyst fails to specify or recog-
nize during the training stage, though they are present in the image.

Referring back to the example of ‘pudding’, if the tub is bottomless i.e. the quantity
of pudding is very large, and then everyone will get enough pudding to satiate one’s
hunger. Comparing this with the constraint relaxed by PCM (equation 1.2, chapter 1),
i.e. if the membership value of a pixel in all the clusters is maximum, then it will give
the degree of belongingness of a pixel to different clusters. The share, here, will not
depend on total number of people which in the case of PCM are comparable to clusters.

3.2.2 What is PCM? Mathematics of PCM

In the last section, the difference between PCM and FCM was established. There it
was shown that PCM works by relaxing the constraint on FCM. But if this relaxation
of constraint is applied on the original objective function of FCM, (equation 3.1), it
results in a trivial solution[6].
c N
J(LU) =YY (uig)™dy; (3.1)

i=1 j=1

where,

L = (01,02,...,0c) , is the set of prototypes(cluster centers) for each class c.

U, is a C x N matrix known as fuzzy C-partition matrix. Fuzzy C-partion matrix
consists of membership values of each pixel in each class, where a row represents one
class and consists membership value of the pixels in the class i.

N, total number of pixels in the image

j, represents a pixel and varies from 1 to N
dfj, is the distance of feature point x; i.e. the pixel value to prototype ;.

And , u,; is calculated as (which is iteratively updated to minimize the objective
function equation 3.1):

- d12 1 _._
uig = [Y_ (D)™™ 3.2
k=1 ik

Thus, Krishnapuram & Keller in 1993 specified the modified objective fucntion for
PCM, which is as follows:

N N

C
Jm(L, U) = Z Z(Uij)md?j + Z i Z(l — ’U,ij)m. 3.3)
=1

i=1j=1 i=1  j=1

Where,

7, is called the “bandwidth or scale or resolution” parameter and is estimated from
the data. It is the parameter that determines the distance at which the membership
value becomes 0.5 [11]. It is calculated as:

S0 s,
= L (3.4)
Zj:l Uiy
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The membership value, in case of PCM, will be calculated from the following equa-
tion:

C_ 2w

wy =0 - ! (3.5)

e
k1 i

The first term in equation 3.3, forces the distances between the feature vectors i.e.
the pixels and their prototypes to be as low as possible. Whereas, the second term,
demands u;; to be as large as possible, thus, preventing the onset of trivial solution.

The objective function in equation 3.3 and the membership value in equation 3.5,
satisfies the criteria of maximization given in equation 1.2 and also, the following fuzzy
criterion (also, applicable for FCM) given below.

U5 € [0, 1],Vl,] (3.6)
N
0<> uy <1,V (3.7

Jj=1

The objective function of PCM (equation 3.3) explained here, will be used in later
chapters to explain the formulation of the final objective function for PCM-MRF and
thus, is of prime importance in the complete thesis.



Chapter 4

Theory behind Markov
Random Field

“He who loves practice without theory is like the sailor who boards ship without a rudder
and compass and never knows where he may cast.” -Leonardo Da Vinci

Contextual information or related information about the pixel other than just the
DN value of the pixel itself, constitutes an important aspect of Digital Image Interpre-
tation. Especially, in the case of image labelling problem, a pixel if considered in iso-
lation may lead to missing or incomplete information. It has been seen that including
the contextual information for Image Interpretation, particularly for image classifica-
tion, has proved to be beneficial [24, 17]. It gives additional information which helps in
improving the classification accuracy.

Contextual information or context, can be acquired from i) Spectral ii) Temporal
iii) Spatial domain. In this thesis, the context from spatial domain has been exploited
for the purpose of classification. It is based on the idea that the brightness value of a
pixel have statistical dependence on the intentsities of the surrounding pixels, unless
the image is nothing but “random noise "[16].

As stated in chapter 1 (section 1.3), MRF provides a logically consistent and math-
ematically tractable way of establishing the contextual relationship among pixels of
the image. MRF for deriving spatial contextual information, has been used widely in
classification [17], image denoising [16], image segmentation[12] etc.

The purpose to include this chapter in the thesis is to provide a required theoretical
background on MREF. In section 4.1, the basic components that contribute to shape up
MAP-MRF framework has been discussed. A complete section, section 4.2, has been
dedicated to the Discontinuity Adaptive priors. And the last section of the chapter i.e.
section 4.3 is about the MAP-MRF framework. Section 4.4, gives the summary of the
complete chapter.

4.1 Components of Markov Random Field

4.1.1 What is Markov Random Field?

Markov Random Field are nothing but undirected graph ,G = (V, E)(figure 4.1), where,
the node(V) of graph are the sites on which is defined a set of random variables say
X = x1,29,...,2,,. Here, m is the number of sites and family X is the random field.
These sites or nodes take up a label from the set £. Set L is dependent on type of

17
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application, e.g., for example for image restoration £={noisy data,significant data}, for
classification £ ={agricultural land, water, forest} and so and so forth. And E i.e. edges
of the graph show the probabilistic dependency.

Vi

/

Xi Xj

)

O-0-0-¢€
o000
o000

Figure 4.1: Diagram depicting MRF model as an undirected graph

Example 4.1 Taking up an example from electrical science, the nodes represent the
Junctions and their label x;, where 1 < j < m, represent the voltage at that point.
Visiting figure 4.1 again, and visualizing it as a circuit with junctions. The MRF model
here will give how the voltage varies and co-varies among the nodes in the graph or
the junction in the circuit. The depedency among the nodes can be captured using the
potential term V;;

Note: The term“potential “and other terms such as “temperature”used in MRF, di-
rectly come from statistical physics from where MRF intially originated.

MREF are suitable for establishing a model for probabilistic dependency among the
cites or variable,where there is no “apparent directionality to the dependence”[19]. And
the potential term V;;, given in figure 4.1 (as well the previous example) is used to
establish the probabilistic dependency among nodes, as explained later in the chap-
ter(section 4.1.3 and further).

A formal definition of MRF will be [8] :

Definition 4.1 For a random field to be a MRF with respect to its neighbourhood, the
probability function of MRF should satisfy following properties:-

1. Positivity :P(x) > 0 for all configurations of x.
2. Markovianity : P(z;|lzs—;) = P(xj|za;)
3. Homogeneity : P(x;|xy;)isthesame forallsitesr

where, S — j, is the set difference (i.e. all pixels in the set S excluding j). xs_;, denotes
the set of labels at the sites in S — r. Nj, is the neighbours of the site r.

4.1.2 The window of MRF : Neighbourhood System

Any random field, the probability function of which, satisfies the properties stated
in definition 4.1(section 4.1.1) with respect to its neighbourhood is called MRF. The
“Neighbourhood System” so much in discussion, can actually be defined as :
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Definition 4.2 N associated with site j’ is defined as a neighbourhood system if it
satisifies following properties :-

1 j¢N;
2. ke Nj < jeN;
Where, k, is from the complete set S of the sites other than target site j.

e Property 1, states that the target site i.e. in case of images, the target pixel
should not be a part of the neighbourhood system.

e Property 2, each should be neighbour of other.

See figure 4.2 for different orders of neighbourhood system.

<)

Figure 4.2: Neighbourhood system of different order for pixel j. a) First Order b) Second Order
©) Fifth order

For image ,which is a rectangular lattice, first order neighbourhood window will be
denoted by N (4,7) = [(i — 1,7), (i + 1,5), (3,5 — 1), (4,5 + 1)] .

This sytem of neighbourhood window, allows that the value of nodes in case of
MREF to depend only upon the local interactions. Unlike, the global dependency i.e.
dependency of every node on the complete set of nodes, in case of Gibbs Random Field
(GRF).

4.1.3 GRF-MRF Equivalence

In MRF it is required to establish a probability density function,which is done with the
help of “MRF-GRF Equivalence”. This MRF-GRF equivalence is given by Hammersley
Clifford Theorem (for proof refer book by Li[21]), which states that:-

Theorem 4.1 A random field is a Markov Field for the neighbourhood system X, if and
only if, it is a neighbour Gibbs Field for X. [16].

Also, it states that there exists a unique GRF for every MRF but only if GRF can be
defined in terms of clique on a neighbourhood system (see figure 4.2)[8].

As explained in section 4.1.2, GRF considers the global dependency of the nodes.
In other words, it gives joint probabilities of the variables in the global context, where
Gibbs distribution is given in equation 4.1.

P(z)=2""x e mU@ (4.1)
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a)

b)

Figure 4.3: The Cliques a)C1, is single cite clique b)Cs, is the pair-site clique.

7 ,is the normalizing constant given by equation 4.2
Z=Y e 7l (4.2)
zeX

where, T, is constant, termed as temperature.
U(x),is the energy function

The energy function can be stated as sum of clique potentials over all possible
cliques, given by :

Ux) = Ve(x) (4.3)
ceC

Cliques which are central to the GRF-MRF equivalence, can be stated as set of sites
in which all the sites are neighbours of each other (figure 4.3). They can be visualized
as subset of complete neighbourhood system. Hence, re-writing equation 4.3.

UX)=> Vilw)+ Y Valwj,ai)+ >, Va(wg,z,ajm) + ... (4.4)

jeCy J,3'€C2 J:3',3""€C3

Now, Using equation 4.1, equation 4.3 and GRF-MRF equivalence (Theorem 4.1)
the joint probability of MRF can be specified in terms of energy function and the clique
potential, as :-

P(X)=Z 1 x e T 2eec Vo) (4.5)
This helps to reduce the problem from global context to local context, hence, reducing
the complexity and making it mathematically tractable.
4.1.4 Prior Energy

Using equation 4.5, prior knowledge about the image is determined. And the energy
i.e. U(x) corresponding to it is called the prior energy. In case of image classification,
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smoothness assumption is usually used as the prior information[8]. Various functions
in the form of models exist in literature, which can be used to model the prior infor-
mation and are known as smoothness priors. Some of those are Ising Model, Auto and
Auto-Logistic Model, Multi-Level Logistic Model etc. [21, 20, 16, 8].

4.2 Discontintuity Adaptive Priors

Smoothness assumption, as discussed section 4.1.4 (previous section), implies that
there are no abrupt changes in physical properties of the system i.e the DN values
of the pixels do not change abruptly and are in coherence with each other. But again,
this is just an assumption. But in practical scenario, the images are piecewise discon-
tinuous [8] i.e. the discontinuity or abrupt changes is a reality. And if prior model is
formed using this assumption of smoothness it would lead to over-smoothing and thus,
undesirable results [23]. Hence, in this thesis, Discontinuity-Adaptive Smoothness pri-
ors and regularizers have been used to encode the prior energy.

The regularizer used in MRF are analytical regularizers, that are included in the
prior constraints and penalize the irregularities. The aim of a MAP-MRF framework is
to maximize the posterior probability (discussed in coming section) i.e to minimize the
corresponding posterior energy.

The general form of these regularizers is given by the equation [23]:

N N b
Ule) = 3" Unle) = Y- 0 [ ol (). (4.6)

where, U(x) is the prior energy and also, called n;h order regularizer, where N is the
highest order to be considered and \,, > 0 is a weighing factor.

Here, the potential function is g(z(")(y)) is the penalty function and is analogues
to clique potential discussed in section 4.1.3. And this function is what varies among
different regularizers.

In this thesis we have used two Regularizers :-

1. Standard Regularization
The standard regularizers use the quadratic function, given as :

gqla) = a? “4.7)

The equation implies that higher irregularity in 2("~" (y) at a site x, will lead to
higher value of |2(")| i.e. the derivative magnitude. This in turn leads to higher
value of g(z(™)), which causes increase in energy i.e. U(x).

This standard regularization method has been used previously by [13] with FCM
based classifier. The shortcomings of this regularization method is [23]:

(a) It considers a constant interaction, between neighbourhood sites, through-
out.

(b) and the smoothening strength becomes proportional to the derivative mag-
nitude, z(™).

According to [23], this will lead to over-smoothening even at discontinuities.

2. Discontinuity Adaptive MRF Model or DA Model The various regularizers
differ only by the method they follow to check the interactions among the neigh-
bouring sites and accordingly, adjust the strength. To avoid over-smoothing it is
important that at the discontinuities the interactions must be managed accord-
ingly and consequently, diminish. This is need is catered by DA models[21, 23].
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There are four choices of potential function i.e. g(«) available. These are also
known as Adaptive Potential Function or APF. The derivative of the APF is ex-
pressed as

g'(a) = 2ah(a) (4.8)

where, h is known as interaction function and influences the interaction between
the neighbourhood sites. It is parameterized by v and is written as ., and is also,
termed as Adaptive Interaction Function (AIF).

And the strength with which a regularizer will perform smoothening is given by
lg'(2")] = [22"h(2")] (4.9)

where, o (equation 4.7) is given as « = 2’ (y).

All of these equations and DA models are the result of analysis of Euler equation,
which is given as under :

ug(z,2') — dium/ (z,2") =0 (4.10)
Y

How DA priors works?

The necessary condition for a regularizer to be “discontinuity adaptive”is [23]:
lim |¢'(o)| = lim [2ah(a)] =C (4.11)

where, C is a constant and Ce[0, o).

C = 0 implies zero smoothing strength i.e no smoothening at all and this will
happen (as per equation 4.11) when o« — co and when C > 0 there will be bound-
ing smoothening [21]. This also means, h(«) should vary inversely with . In
other words, at large ||, h(a) will be small and as || — oo then , A(a) — 0. And
this is how, the DA model works.

Which DA model was used?

Out of four available DA models, given in [21], the DA model with following APF
and corresponding AIF, respectively was selected.

o

917(@) = v(a) =7’ In(1 + =) (4.12)
1
h47(0é) = W (4.13)
14 L

According to literature [21], this AIF (i.e. the fourth AIF among all the given
models) allows smoothing at discontinuities but it is limited. This is overcomes
the problem of boundless smoothing scene in case of standard regularization
when || — oo and also, doesn’t have abrupt end of smoothing as scene in case
of other regularizer model such as Line Process Model (LP). This is because this
APF’s and AIF’s band of convexity of B, is By, = (—00, +00).

Prior energy model based on both of the above stated, standard regularization as
well as DA, were used seperately in this thesis. As well as, their results were compared.
The details of which will be discussed in the ensuing chapters.
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4.3 MAP-MRF Framework

Maximum A Posterior Probability or MAP with MRF forms a MAP-MRF framework.
Here, the MAP-MRF model looks out for the most probable configuration for the sites
in the image. This is done by maximizing the posterior probability P(x|d) i.e. finding
the MAP estimate.

x = argmazx, P(x|d) (4.14)

The Bayesian formula gives the relationship between posterior, conditional and
prior probability:

P(xld) = W (4.15)
Following equation 4.1(seciton 4.1.2), the MAP estimate can be given as :

& = argmin,U(z|d) (4.16)
Using equation 4.15, equation 4.16 can be re-written as :

& = argming (U(d|z) + U(x)) (4.17)

where,

Z, is the optimal variable value assigned to a site and in case of classification it can
be stated as class label.

U(d|z), is the conditional energy

U(x), is the prior energy

In nutshell, the objective is to find the appropriate objective function which includes
this conditional and prior energy function. And to minimize the objective function so
as to obtain the optimal variable for the site
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4.4 Summary

In this chapter, the theoretical details about MRF has been discussed along with de-
scription of the prior models used in this thesis. In last section, MAP-MRF framework
has been discussed which shows the relation between prior, posterior and conditional
energy. It is important to understand and remember this MAP-MRF framework as it
has been used in the classification developed in this thesis and explained further in
chapter 6.



Chapter 5

Study Area and Data
Preparation

This chapter has been dedicated to the remotely sensed data used in this research. It
also includes the data preparation i.e. pre-processing of images, which is the first step
of the methodology (See flow the diagram in figure 1.3, section 1.6).

The structure of the chapter is as follows. Section 5.1 describes the area from which
the images have been taken to apply the classification method developed. Section 5.2 is
about the sensors and the satellite(s), images of which have been used. In section 5.3,
the discussion is on the pre-processing of the images and generation of reference data
set. Section 5.4 summarizes the complete chapter.

5.1 Study Area

The images used in this thesis are of Sitarganj Tehsil, Udham Singh Nagar District,
Uttarkhand, India. The state, Uttarkhand is in northern part of India, whereas Sitar-
ganj is located in the southern part of the state. It is near PantNagar Agricultural
University, famous for its participation during Green Revolution of India. In terms of
Geographic lat/long, the area extends from 28°52’29”N to 28°54’20”N and 79°34’25”E to
79°36’34”E. The area consists of agricultural farms with sugarcane and paddy as one
of the few major crops. Also, it has two reservoirs namely, Dhora Reservoir and Bhagul
reservoir (can be seen as two huge water bodies, in the north and south-east part of the
image shown in figure 5.1, respectively).

5.2 About the sensors

The images for this research thesis were taken from three different sensors all belong-
ing to the same satellite : IRS-P6 (Indian Remote sensing Satellite) also known as,
Resourcesat-1. This facilitates the use of the data set for classification as well as for
referencing (s.a. AWIFS for classification & LISS IIT and LISS IV for referencing) pro-
viding the same illumination conditions. The sensors are, namely, LISS IV (Linear Self
Scanning Sensor), LISS III and AWIFS (Advanced Wide Field Sensor). Table 5.1 has
the relevant details of these sensors.
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Uttarkhand

Sitarga.j

Figure 5.1: Location of area under study (Source:GoogleEarth,accessed on :13 Nov 2009)

5.3 Data Preparation

This section covers relevant details about image pre-processing and the generation of

reference data set.

5.3.1 Geometric correction of LISS IV images

First step in image pre-processing was image-to-map rectification of LISS IV image
with Survey of India (SOI) toposheet. The LISS IV image (dated : 15 October 2007)
was geo-registered precisely with SOI toposheet, numbered 53§.UTM projection was
used with spheroid and datum being Everest North, in zone 44. For this purpose the
SOI toposheet was scanned and converted into digital form before geo-registration.

Table 5.1: IRS-P6’s sensors’ speci-
fication

Specifications LISS IV LISS III AWIFS

Spatial Resolution(m) 5.8 23.5 56

Swath(km) 23.9(MX Mode) | 141 740
70.3(PAN Mode)

Spectral Bands(microns) | 0.52 - 0.59 0.52 - 0.59 0.52 - 0.59
0.62 - 0.68 0.62 - 0.68 0.62 - 0.68
0.77 - 0.86 0.77 - 0.86 0.77 - 0.86

1.55-1.70 1.55-1.70
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Figure 5.2: Comparing coarser resolution image with finer resolution image

LISS IV image was resampled at 5m resolution. The resampling was important
in particular, for accuracy assessment as each finer resolution image was used as a
reference data set for classified images of coarser data set. The resampling of all three
images i.e. LISS IV, LISS III and AWIFS was done in such a way that the pixel size in
all three images formed a ratio of 1:4:12, respectively. Thus, resampled size of pixel in
LISS IV is 5m.

Resampling is needed for geometric transformation and is similar to convolving
the input image with a uniform weighing function. The sampling method used here
is Nearest Neighbour Sampling, where the resampled pixel takes the value of the
nearest pixel in the neighbourhood. It is a fast resampling method, which do not re-
quire calculations. But the implications of this resampling is introduction of geometric
discontinuities in the order of plus-minus half pixel [26].

5.3.2 Geometric Correction of LISS III image

Geo-registration of LISS III image was done with geometrically corrected LISS IV im-
age with same specifications of datum, spheroid and projection as that of LISS IV.

The image was resampled to the spatial resolution of 20 m, as per already discussed
during the geometric correction of LISS IV.

5.3.3 Geometric Correction of AWIFS

Similar to that of LISS III, geo-registration of AWIFS also done with LISS IV in same
projection, at same spheroid and datum as that of LISS IV and LISS III.

The resampling of AWIF'S, using nearest neighbourhood, to spatial resolution of 60
m was done.

5.3.4 Generation of Reference data set

In this thesis, the comparison of the classified data set has been made with reference
data set generated by classifying the finer resolution images. Here, the reference data

27



5.3. Data Preparation

for AWIFS was LISS III and LISS IV. Similarly, the reference data set for LISS III was
obtained from LISS IV.

There has been an emphasis on generating the reference data set from a finer res-
olution image, instead of using data from field because of the following reasons :-

1. It is a difficult task to locate within-pixel classes on the ground.

2. The certainty to which the classes can be identified on the ground is a subjective
issue.[25, 5]

3. Ground data generated itself'is a kind of classification and thus, may have errors.
[25]

4. In-accessibility of the study area is another hindrance in obtaining the ground
data.

When the ground truth is not available as stated above, aerial photography is an-
other option [25]. But aerial photography is not possible in this case because of the
expenses incurred, government regulations and also, the satellite images are dated 2
years back. Thus, finer resolution images have been used.

In case of satellite image as reference data set, it is preferable to use both test and
reference images having same date of acquisition to avoid discrepancies cropping in
due to different illumination conditions. That has been taken care in this research, as
all the three images i.e. reference data and test data are taken from the same satellite
(section 5.2) and are of same date.

To compare the two reference data set with the test data, it is important to classify
the reference data set as well. For classification of the finer resolution to be used as
reference data set, there are two methods :-

Method 1: Multiple Resolution

This method implies aggregating the finer resolution pixels to form a coarser
resolution pixel. In the present case, it is to combine 4 x 4 i.e. 16 pixels of LISS
IV to form the coarser resolution pixel for the LISS III. Similarly, for AWIFS,
12 x 12 = 144 pixels of LISS IV will be aggregated to form one pixel of AWIFS.
And then classify it.

Though, visually it seems to provide the required outcome. But on closely ex-
amining it, the resultant membership value is a combination of proportion of the
pixels that constitute the class. In other words, they are not the result of ambigu-
ity or uncertainty in the classes. This also implies, that the sum of membership
value of a pixel should be one [46].

Also, it assumes that the pixels from finer resolution data set are pure which is
not true. A pixel at finer resolution (5m in the case of LISS IV) do have mixed
pixles and sub-pixel objects[5, 3].

Hence, this method is not suitable for assessing the accuracy of the method pro-
posed in this thesis.

Method 2: Using sub-pixel Classifier
Second method is to use a sub-pixel classifier to generate the reference data set.

Advantages

e This method has advantage over method 1, as the membership values gen-
erated will be the result of uncertainty or ambiguity of classes and may not
sum to one (unless, the constraint is otherwise specified as in FCM).
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e Also, from the preceding statement it is evident that the pixels are not as-
sumed to be pure, hence, giving more realistic results.

Hence, in this thesis, method 2 has been selected for generating the reference
data set.

Disadvantages But as all the methods have their own advantages and dis-
advantages. This method has two issues of concern :

1. The resolution of classified data set are different. To compare the reference
and classified data the reference data set is either resampled or aggregated
mean of pixels in reference data set is taken. In both the cases, there is an
unavoidable error is bound to be present which can be attributed to differ-
ence in scale. (For resampling, implications have been discuses in section
5.3.1)

2. When the classifier for the reference data set is different from test data
there are two cases that may arise. First, the performance of classifier data
set is better in terms of accuracy than the classifier that is being tested.
Second, the classifier that is being tested has better performance. In both
the cases absolute measure of performance cannot be given and thus, can
be stated that accuracy assessment will be of dubious validity.

In this research there was a choice two classifiers for generating the reference
data set, as enumerated:-

1. Using Support Vector Machine (SVM) classifier.
SVM is a statistical learning algorithm and has been shown to be an effi-
cient classifier, especially, for finer resolution data sets [28]. Also, the other
reason for selecting SVM is that, it has proved to perform better in terms of
accuracy as compared to FCM and PCM [28, 30]. But using this classifier
causes error both because of difference in resolution and due to different
classifier (as per points stated in disadvantages).

2. Using the PCM-MRF classifier or same classifier
The other method is to use the same classifier for both test and reference
data set. As in this case, te classifier is PCM-MRF , which is another option
to be used for classifying reference data set as well. This will eliminate at
least one drawback i.e. caused by use of different classifiers. And error will
be only because of difference in resolution of the images.

In this research, both the classifiers were used to generate the reference data set
and the results of accuracy assessment are given in chapter 7 (section 7.1.1 and
section 7.1.2), followed by discussion.

5.4 Summary

In this chapter, the data used for this research has been mentioned, including the
necessary pre-processing done. Apart from the technical benefits of having images of
same date and from same sensor, the another reason to select this particular image set
is its importance in the Indian context.

RESOURCESAT-I (IRS-P6) is tenth in the series of Indian Remote-sensing Satel-
lites (IRS) with the objective of natural resource management. With 24 day repeat
cycle, the sensors AWIFS, LISS III and LISS IV, the objective is to provide large spec-
tral and spatial coverage of natural resources in form of remote sensing images. The
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vast amount of data captured (in the form of digital images) is being used in preparing
thematic maps, which are further analysed and thus, utilized in study of crop yield,
crop stress, disease surveillance, disaster management etc [27]. This requires more
and more accurate classification algorithms which can classify the images with near to
real-life scenario.

There is need for further pre-processing before the images can be used for classifi-
cation that includes geo-referencing and image registration. It also includes generation
of reference data set, which in this research, has been generated from the finer resolu-
tion images instead of having ground truth. The error induced during these processes
are inevitable and carried along in the further steps including classification. Thus,
error/inaccuracy in the classifiers performance is not completely due to the classifier
itself, but also due to these pre-processing steps.



Chapter 6

A Hybrid Approach to Image
Classification : PCM-MRF

“Thought and theory must precede all salutary action; yet action is nobler in itself that
either thought or theory” - William Wordsworth

This chapter describes the “action” i.e. the steps that followed the development of
PCM-MRF based classification approach in the thesis.

LIsslilimages | AWIFSimages LISS IV images

Figure 6.1: The flow chart of the steps in methodology

The chapter is structured into sections. An attempt has been made to make each
section consistent with the individual steps, as given in the Methodology flow chart
(figure 6.1).
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Note: Step 1 & 2 i.e. “Acquire images from IRS-P6” and “pre-process the images”
has been covered in chapter 5.

6.1 Formulating the Objective Function

The procedure for solving a problem using MAP-MRF framework calls for the formu-
lation of objective function first. Here, two objective functions have been formulated
and utilized, for the reasons already stated in section 4.2, chapter 4. Both of them
have some similarity to the objective function of PCM and differ on the aspect how the
neighbourhood information has been included. The sequence of discussion starts with
the objective function of PCM, followed by two sub-sections, each corresponding to one
of the two objective functions.

The objective function of PCM discussed in equation 3.3, chapter 3, is minimized
with respect to membership function u,; and the mean of the cluster v;;, used in calcu-
lating the distance d;; given in equation 3.3 and restated here

C N N
=SS (i), +Zmz 1= ug)™. 6.1)
i=1  j=1

i=1 j=1

Equation 6.1 includes the information about the distance of the feature vector (that
forms the pixel) from the cluster mean in the feature space but it does not include
information on spatial context. The spatial context here includes, as discussed, the
influence of the neighbouring pixel on the target pixel in the image space.

As discussed in section 4.3, chapter 4, the MAP-MRF framework works by maximiz-
ing the posterior probability which is related to prior and conditional energy (equation
4.15 to equation 4.17). The global posterior energy has been defined in equation 6.2
(given below) :-

U(z|d) = U(d|x) + U(x) (6.2)

Where, x is the class label that minimizes the global posterior energy. The con-
ditional energy function (U(d|x)) comes from the spectral information and the prior
energy function (U(z)) is the smoothness prior or the spatial information.

In order to balance the contribution of the two information i.e. the spectral and
spatial information a parameter ) is introduced in equation 6.3 .

U(z|d) = (1 — NU(d|z) + \U(2) (6.3)

The value of lambda may vary from 0 to 100, but for the sake of simplicity lambda
has been limited between 0 to 1 in this thesis. And as the equation 6.3 suggests, higher
the value of A the contribution of smoothness prior increases and that of spectral infor-
mation decreases and vice-versa.

6.1.1 Objective function with Standard Regularizer

Equation 6.4 is the first objective function formulated with standard regularizer. This
objective function is referred to as PCM-MRF I from now on.

N C

C N
U(uijld) = (1=N)[D > (uig)™ +Z Mi Z (1=ui) ™D D Buij—uij)*)(6.4)

i=1 j=1 = j=11i=1 j'eN;
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Where, the symbols have the meaning as explained in Chapter 3 and Chapter 4.
Except, 3, which is the weight given to the neighbouring pixels in the window. And z
has been replaced with the membership function u;;

In equation 6.4, spectral information has been included using the objective function
of PCM (equation 3.3) and spatial information is incorporated in the form of Standard
Regularizer.

The similarity between PCM and MAP-MRF lies in the goal to minimize the objec-
tive function and the same has been exploited.

6.1.2 Objective function with Discontinuity Adaptive Priors

As discussed in section 4.2, chapter 4, the Discontinuity Adaptive Priors (or DA priors)
avoid over smoothing. They have been used to preserve the edges as they account for
discontinuities (e.g. edges of the agricultural fields). Edge preservation is important
because the errors usually occur around edges and thus, contribute to inaccuracy in
overall accuracy assessment [32]. Also, if the edges are preserved

The objective function with DA priors is (equation 6.5):-

N C
U(ugjld) = ZZU”‘DQ *ZWZ (1=ui))™) A=A D (vInl=+*In 1+‘"|)))(6.5)

i=1 j=1 j=11i=1 j’eN;

Where, all the symbols have the usual meaning, except two new symbols intro-
duced.

~, AIF (see section 4.2, chapter 4), is parameterized by

1, 18 u;j — iy Le. difference between target pixel’s membership value and it’s neigh-
bourhood pixel’s membership value in a neighbourhood window.

Equation 6.5 uses the APF discussed in section 4.2, chapter 4 and replaces the
standard regularizer with the given APF. From now on, equation 6.5 i.e. the second
objective function is referred to as PCM-MRF II.

Equation 6.4 and 6.5 are the final objective functions that give the posterior energy. In
succeeding sections, emphasis is on utilization of these function for classification.

6.2 Simulated Annealing and Sampling Algorithm

Once, the objective function, which corresponds to the posterior energy is formulated
the task is to determine the optimal solution. Optimal solution here is the membership
values of the pixels which will minimize the posterior energy. The minimization of
energy function involves finding the global minima.

Annealing is one of the popular methods, which determine the global minima with-
out getting stuck at the local minima [10, 17, 21]. Annealing can be broadly categorized
into two categories [21]:-

1. Deterministic, such as graduated non-convexity algorithm (GNC)
2. Stochastic, such as Simulated Annealing.

GNC and Simulated Annealing are two popular algorithms in case of MRF related
problems [21]. Simulated Annealing (proposed by [37] & [38] independently) was used
in this thesis. It has been found efficient in finding the global minimum of the objective
function which may have various local minima as in case of image processing with MRF.
Thus, has been extensively used in solving problems related to image processing such
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as super-resolution mapping using MRF[49, 54], texture based image segmentation
using MRF [33] and SAR image segmentation [36], image classificationDuttaThesis,
and vision after the classic paper by Geman & Geman in 1984.

As the name itself suggests, “Simulated Annealing”’emulates the physical anneal-
ing process where the solid is first melted by heating it to a very high temperature and
then, it is slowly and gradually cooled down to the desired "frozen”state which has the
minimum energy configuration[39]. In the context of image classification, it implies
first perturbing the labels of the pixels randomly which is similar to melting of the
metal. Then image is passed through the cooling schedule (described in equation 6.7)
and by determining the global minima the final classified image is obtained i.e. the
“frozen state”.

Psuedo Code After deciding upon the neighbourhood system and estimating the
parameter of the objective function (this will be dealt with in the next section, section 6.3)
following steps have been followed for simulated annealing [21, 8].

Begin

1. Set initial state of image which is the image classified using PCM.
2. Set initial temperature T=4 and no. of iterations N=1000.

3. Set the cooling schedule i.e. T'(t) = kT'(t — 1)[37], where, T'(¢) is the temperature
at time t and « is the update rate of temperature.

4. Estimate the new membership values using Gibbs Sampler.

5. Calculate the initial posterior energy using the objective function (either equa-
tion 6.4 or 6.5) U(z|d); and the new posterior energy U(z|d)s.

6. Find A = U(z|d); — U(z|d)2,
if A >0,
replace previous membership values with new membership values
else if exp(A) > random|0, 1]

replace previous membership values with new membership values.

7. Repeat step 4 to 6 N times.

8. When no. of iterations = N+1, update T using the cooling schedule described in
step 3.

9. Repeat step 4 to 7 until T — 0 i.e. "frozen”state is reached.

end
In step 2, T i.e. intial temperature was estimated as 4 (discussed in section 7.1.2).
Equation 6.6 below, gives a popular cooling schedule [21].

T,
T(t) = ——2>
®) log(1+ N)
But this has been rendered too slow for practical purposes [21]. Thus, cooling sched-
ule given by Kirkpatrick et al. in 1983 [21] has been used and described in equation
6.7 below (also, in step 3 of pseudo code):

(6.6)

T(t) = &T(t — 1) (6.7)

Where, « varies from 0.8 to 0.99 and has to be estimated based on the problem.
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Sampling Algorithm : Gibbs Sampler As mentioned in step 4 of the pseudo
code, Gibbs Sampler has been used to generate the next membership value. A Gibbs
Sampler is a special case of Metropolis-Hastings algorithm for sampling, where, based
on the conditional probability the next configuration is generated [40]. As expressed in
equation 6.8 below :

e—U(JJ)/T

This produces a Markov chain and comes under the umbrella of Markov Chain
Monte Carlo Methods (MCMC)[40].

6.3 Parameters to be estimated

Simulated Annealing process described in the pseudo code (section 6.2), requires fol-
lowing parameters as input.

1. Fuzzifier (m)

2. Initial Temperature (T,)

3. Temperature Update Rate (k)
4. Lambda ()\)

5. Gamma (v)

These parameters do not have fix values and estimation is required. According
to [21], there is no standard technique to estimate these parameters. Various methods
such as comparing RMSE, Total Energy etc. has been used in estimating these parame-
ters [13, 49]. In this work, estimation of parameters has been done using RMSE, which
gives the relative measure (explained in section 6.4.2). In order to have the absolute
measure of uncertainty, entropy has been used (explained in section 6.4.4).

The results of parameter estimation has been discussed in chapter 7 (Results and
Discussion).

6.4 Methods adopted for Accuracy Assessment

After classifying the images and obtaining the classified output it becomes is imper-
ative to measure its accuracy. This aids in quantitatively assessing the efficiency of
the classification method in terms of its accuracy. In this section, techniques used for
accuracy assessment in this research work, has been described.

6.4.1 Fuzzy Error Matrix and other operators

For assessing the results of classified outputs of mixed pixels, there is has not been any
standard procedure yet. Sometimes, the output is defuzzified to produce hard outputs
but it is the loss of information and also, the purpose of classifying the mixed pixels is
nullified.

Therefore, to preserve the result of sub-pixel classified outputs various methods
have been proposed. E.g. : Fuzzy Error Matrix (FERM) [53], composite operators MIN-
MIN, MIN-LEAST and MIN-PROD [46] and Sub-pixel confusion-uncertainty matrix
(SCM) [43].
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1. FERM

Fuzzy Error Matrix by [42] is based on the traditional error matrix but unlike
traditional error matrix which requires hard classified images as input, it takes
the fraction images as the input. Thus, rows and columns have real values in-
stead of the integers. It is based on MIN operator (given as equation 6.9 below)
which gives the complete overlap of the fuzzy sets and also, known as intersection
operator[43].

P’I’Lj,j = MIN(P?’LIL,P’HJ) (69)

2. Composite Operators and SCM The composite operators given by [46] es-
pecially, MIN-LEAST and MIN-PROD are suitable for the multiple-resolution
based classification and thus, follow the constraint i.e. Zf:l u;; = 1 (see, equa-
tion 1.1, chapter 1). Thus, have not been found suitable for the accuracy assess-
ment of the possibilistic based method used in this thesis. The possibilistic based
methods gives the membership value acknowledging the ambiguity, unlike, that
of multiple-resolution where each pixel has membership according to proportion
contribution by that pixel at coarser resolution.

SCM also follows the constraint that of MIN-PROD and MIN-LEAST (equation
1.1) making it unsuitable for the use in possibilistic based method.

3. MIN-MIN
MIN-MIN is a composite operator which uses MIN operator for calculating both

diagonal (agreement) and off-diagonal elements(disagreement) of the error matrix[43].

For accuracy assessment of the classified output of the PCM-MRF method(s)(developed

in this research), FERM and MIN-MIN has been found suitable. Where-as, MIN-
PROD, MIN-LEAST and SCM are not suitable for assessing the accuracy PCM-MRF
because of their hyperplane constraint.

6.4.2 Root Mean Square Error

Root Mean Square Error is given by taking a square root of the sum of squared differ-
ence between the membership values of the classified image and the reference image,
see equation 6.10:-

\/Z;‘Vzl > i=19(Cy — Ryj)?
M x N

RMSE = (6.10)

Where,

C;j, is the membership values from the classified image

R;;, is the membership values from the reference image

M x N, is the size of the image

RMSE gives the measure of both systematic and random errors [44]. It is the aver-
age measure of how much the membership values of the classified image differs from
the membership values of the reference data set. The RMSE values are always greater
than or equal to zero, as it is evident from the equation 6.10. To interpret RMSE, a
good result is one, where RMSE values is minimum i.e. tends to zero.

For the given data, RMSE is calculated in two ways : Global and per class.

Global RMSE is the RMSE of the complete image i.e. all the fraction images and is
given by equation 6.10. For calculating RMSE per class equation 6.11 has been taken
into account.

\/E; 1 U_ LJ)2

M x N

RMSE(perclass) = (6.11)
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6.4.3 Correlation Coefficient

Correlation Coefficient is used to measure the linear association between the two vari-
ables say X and Y. Among all the available correlation coefficients "Pearson-moment
correlation coefficient” is best known [50].

In this thesis, the two variables of which the correlation is to be determined are the
membership values of the classified image and the membership values of the reference
image . And is given by equation 6.12 :

ro VR C) (6.12)
OROC
Where,

cov(R, C), represents the covariance between the Reference(R) and Classified (C)
data.

or & o¢ , are the standard deviation of R and C, respectively.

The range of r is from -1 to +1. If the variables (R and C) are in perfect straight
line then, » = +1 implies increasing linear association and r = —1, is decreasing linear
association. » = 0, which is a special case, shows no correlation between the variables.
A value from 0.5 to 1, states a strong correlation between two variables [45].

6.4.4 Measure of Uncertainty : Entropy

FERM, MIN-MIN etc. are used to evaluate the performance of the classifier in terms
of its correctness. Where as, RMSE and correlation coefficient (section 6.4.2 and 6.4.3)
are the uncertainty measures. But these methods, are defined based on the difference
between the expected and actual results and are relative measures. Thus, they are
sensitive to error variations and not to the uncertainty variations [47].

According to [47], entropy is an absolute measure of uncertainty, calculated only
from the classified data without requiring any other external information. Hence, in
this research, entropy has been incorporated as another measure of uncertainty on
experimental basis.

Based on Shanon’s Entropy theorem and as discussed in [48, 47, ?] following en-
tropy based on fuzzy membership value can be calculated as given in equation 6.14

H=— Z Usj 10g2 (UU) (613)
i=1

But as in the case of PCM, where the membership value does not follow the con-
straint of equation 1.1, the above given entropy theorem can be utilized by rescaling as
in equation 6.15 [41].

Thus, the average entropy (based on Shanon’s Entropy Theorem) of the complete
image can been calculated using the following formula [47, 48, ?]:

C
, il .
Hoyg = _ 2z tiglogty AL (6.14)
Z,’=1 Uiy

Also, [15] have used the above given entropy measure for validating the clusters
formed during unsupervised clustering using FCM. In this research work, entropy has
been taken as a measure to optimize 'm’. Also, it has been used in combination with
other measures to optimize parameters related to MRF and it’s effect has been observed
(discussed in section 7.1).
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6.5 Summary

In this chapter, a complete description of how the objective function was developed
and used in classification has been given. The objective function using both standard
regularizer and DA prior model was developed in section 6.1. The objective function
was then mapped to the MAP-MRF framework described in section 4.4 and was min-
imized using Simulated Annealing algorithm discussed in section 6.3. It also, talks
about the cooling schedule used and the steps followed in finding the global minima us-
ing Simulated Annealing. To assess the performance of classifier in terms of accuracy,
various accuracy assessment measures and uncertainty measures, found suitable and
thus, used in this thesis (quantitative results are given in chapter 7) were discussed in
section 6.4. It was found that SCM, MIN-PROD and MIN-LEAST weren’t suitable for
assessing the accuracy of PCM based classifier, where the hyper-plane constraint is not
followed.



Chapter 7

Results and Discussion

To understand and illustrate the efficiency (in terms of accuracy) of the PCM-MRF
classification method developed in this thesis, it is imperative to perform the accuracy
assessment and review the results. It is tough to pin-point a single accuracy assess-
ment procedure that can establish the efficacy of a sub-pixel classifier. Therefore, as
stated in section 6.4, chapter 6, various methods have been employed for the assess-
ment of the performance of the developed classifier.

Section 7.1 consists of discussion on how the parameters (section 6.3) have been es-
timated and their estimated values have been given. Section 7.2 is on the performance
of PCM-MRF with standard regularizer. Results of DA based PCM-MRF, with special
emphasis on edges, have been discussed in section 7.3. The effect of untrained classes
on PCM-MRF has been discussed in section 7.4. The results in section 7.2, section 7.3
and section 7.4 have been compared with the results of supervised PCM. Results of
supervised FCM have also been generated and given in Appendix A. And at the end
section 7.5 gives the overview of the chapter 7 in form of summary.

7.1 Estimating the Parameters

The parameters that were listed in section 6.3, chapter 6 were estimated which are
given in following subsections.

7.1.1 Fuzzifier (m)

Fuzzifier or ‘m’ is a weighing exponent, where m € [1,00). If m = 1, then membership
values are crisp i.e. when the point has distance (d*(z;,3)) greater than 7, they’ll
have zero membership to that cluster, particularly, in PCM [11]. Entropy has been
used to determine the uncertainty[48, 47] and optimization for FCM and possibilistic
clustering [15] as seen in the literature survey. Thus, in this research estimation of m
was done by calculating entropy of the classified output. The estimated value of m for
PCM-MRF was found to be 3.0, as given in Figure 7.1.
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7.1.2 Intial Temperature (7))

According to [21, 10, 50, 49, 13], T, is should be 3 or 4 for the purpose of image analysis.
It can be justified with the results obtained by the experiments performed during this
research work. As seen in figure 7.2, value of T, above 4 did not show much improve-
ment. Hence, for this research T, = 4 was selected.

7.1.3 Temperature update rate (k)

The temperature update rate i.e. k¥ determines the speed of cooling schedule ( discussed
in section 6.2, chapter 6). A low update rate states faster cooling and a high update rate
implies slower cooling. The range of & is said to lie between 0.85 and 0.99 [21].

The appropriate value of k¥ was determined by estimated by RMSE and entropy for
both AWIFS and LISS III. The optimization is shown in Table 7.1 and Table 7.2. It is
observed from the result obtained that update rate of LISS III (k¥ = 0.92) is higher than
that of AWIF'S (k = 0.9).
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Figure 7.3: Reproducibility of PCM-MRF solution

Number of iterations were checked to observe the time taken by Simulated Anneal-
ing to converge. The convergence time depend on cooling schedule which includes T,
and k. For AWIFS, £ = 0.9 and took 115 iterations on an average for convergence.
Whereas for LISS IIT images, & = 0.92, the cooling process was slow and it took on an
average 456 iterations. For both AWIFS and LISS III, large number of updates were
observed towards the end of cooling schedule at each temperature value.

Also, reproducibility of PCM-MRF solution was observed at various value of & by
keeping other parameters constant (Figure 7.3).
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Table 7.1: Optimizing k for AWIFS a) Using RMSE b) Using Entropy)

RMSE

0.2348

0.2346

0.2544

0.2342

0.234

0.2338

0.2336

0.23354

0.2332
[u]

.8

i
0.82

i i i i i i i
0.84 0.6 0.88 0.9 0.9z 0.94 0.96 0.93
Temperature Update Rate

entropy

2.3068

2.3059
2.3058
2.3087
2.3056
2.3055

23054
a.

56

0.55

i 1 i 1 i
0.9 0.92 0.94 0.95 0.95 1
Temperature Update Rate
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Table 7.2: Estimating & for LISS Ill: a) Using RMSE b) Using Entropy)

RMSE

a)

01075

o107

01065

0. 105

0.1055

0. 105

01045

0. 104

01035 i i i i ; i i
0.5 082 084 086 0.88 0.9 0592 094 095 095

Temperature Update Kate

entropy

b)

2.3238

23236

2.3234

23232

2.323

23228

2.3226

23224 i m i L i
0.586 0.88 o.g 0.92 0.94 0.96 0.98 1

Temperatimwe Update Rate
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7.1.4 Lambda())

As mentioned in section 6.1, )\ is the smoothness parameter that controls the contribu-
tion of spectral vs. spatial information. RMSE and entropy both were calculated for
various values of \. Table 7.3 and 7.4 gives the graph showing estimation of \.

Table 7.3: Estimating A for AWIFS: a) Using RMSE b) Using Entropy

2 3064
23063 -
2.3062
o, 2 3061

2.306

Entrop

2.3059

2.3055

2.3057

2.3056
0.1

b)

It is found that the value of lamnda varies for AWIFS (A = 0.8) and LISS III
images(\ = 0.4).

44



Chapter 7. Results and Discussion

Table 7.4: Estimating A for AWIFS: a) Using RMSE b) Using Entropy

0.109

0.105
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Figure 7.4: Estimating gamma

7.1.5 Gamma (v)

In DA models, v determines the rate at which AIF (refer section 4.2, chapter 4) ap-
proaches zero. It can be considered the threshold value after which interaction between
two pixels should minimize, or in other words |f; — f;/| i.e. the difference between target
pixel value and the neighbouring pixel becomes very large [22].

Estimation of v was done by referring to the fuzzy kappa coefficient(s). The data set
was tested for three different values of v viz. 0.5, 0.25, 0.15 and the results are given
in the Figure 7.3.

7.2 Results of PCM-MRF with standard regularizer:
PCM-MRF 1
This research is aimed at performing level I classification of the land cover classes.

Based on the visual interpretation from the LISS IV, LISS III and AWIFS images fol-
lowing land cover classes were selected:

1. Water

2. Agricultural field with crop

3. Dry agricultural field without crop
4. Moist agricultural field without crop
5. Eucalyptus Plantation

6. Broad leaved Forest

Also, field was visited to cross-check the classes on the ground. Though only north-
eastern part (near Barakoli reservoir) was accessible, rest was quite remote and inac-
cessible. Still, it was manageable to recognize the classes on the image and give them
appropriate label. The photographs taken during the field visit are given in the Figure
7.5.
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e

“f: b ﬁ&
Class 1: Water Class 2 : Agricultural field Class 3: Dry agriculiural
With crop field without crop.

Class 4 : Moist agricultural Class 5: Eucalyptus plantation | Class 6 : Broad leaved forest

field without crop.

Figure 7.5: Photographs from the field showing different classes

Need of sub-pixel classification in the given study area Need of fuzzy
based sub-pixel classification is quite evident on observing the images of AWIFS and
LISS III (figure 7.6). Water body in the bottom right corner of the image is largely
homogenous but except at the top which shows the presence of vegetation. This water
class gradually changes into vegetation class. This was also evident during the field
visit. The pixel size of AWIFS is more (60 m, after resampling) than that of LISS III
(20m, after resampling), and thus, intergrade phenomena within pixel is more dom-
inating in AWIFS than LISS III e.g. in case of water body and vegetation explained
here.

The fields in this area are not very large, i.e. two or three pixels of AWIF'S image (at
maximum) are sufficient to cover an agricultural field. In the process, it also, includes
the neighbouring class such as moist agricultural field without crop. Dry Agricultural
fields without crop can be differentiated in LISS IIT images but in AWIFS, these classes
also seem to merge into the neighbouring classes, especially at the boundary.

As observed from both the images and also, during the field visit the broad leaved
forest and the eucalyptus plantation do not have a clear demarcation on the ground.
Thus, as seen in Figure 7.6, the broad leaved forest (thick red patch at right side of
the image) is not completely homogenous and dull red patches, within the broad leaved
forest class, belonging to eucalyptus plantation are visible.

Thus, from the above discussion need of sub-pixel classification approach can be
emphasised for areas having land cover classes, as taken up in this research.

Following subsections and further sections give the result of accuracy assessment.
The reference images used here have been generated using two different classifiers, as
discussed in section 5.3.4, chapter 5.

Since, there is no commercial tool available to assess the accuracy of sub-pixel clas-
sified output. Thus, JAVA based in house-tool developed by [51] has been used for
assessing the accuracy (see Appendix B). It uses method of random sampling. The to-

47



7.2. Results of PCM-MRF with standard regularizer: PCM-MRF 1

48

AWIFS Image (56 m spatial resolution) LISS 1 Image (23.4m spatial resolution )

Figure 7.6: AWIFS and LISS lll images of the study area

tal number of test pixels were taken based on Congalton’s rule of 75 to 100 pixels, per
class. Using the same software the training data was selected as 40 pixels per class in
LISS IV, 20 pixels per class in LISS III and 8-10 pixels per class in AWIFS.

7.2.1 Performance of PCM-MRF I on coarser resolution dataset

This subsection discusses the results of classifying images from AWIFS. The output
fraction images obtained on classification using PCM-MRF I are given in the Figure
7.7.

Results of FERM and MIN-MIN

Table 7.5 and 7.6 gives the result of the PCM-MRF I AWIF'S classified data against the
reference data set, LISS IV.

For the purpose of comparison, the AWIFS images were also classified using PCM.
The results are given in Table 7.7 and 7.8. Figure 7.7 gives the results of fraction
images generated using PCM.
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HWater Agricultural Dry agricultural fleid
Sields withour without crop

Moist agricultural Eucalyptus Forest

Sield without crop plantation

Figure 7.7: Resultant fraction images after classifying AWIFS with PCM-MRF |

Water Agricultural Dry land
fields with crop without crop

Muoist land Eucalyptus Forest
without Plantation

Figure 7.8: Resultant fraction images after classifying AWIFS with PCM
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Table 7.5: Results of PCM-MRF | AWIFS classified data vs. PCM-MRF | classified reference data

set
Accuracy Assessment methods FERM (%) | MIN-MIN (%) |
Water
User’s Accuracy 96.61 86.74
Producer’s Accuracy 64.39 55.85
Agriculutral fields with crop
User’s Accuracy 95.04 92.02
Producer’s Accuracy 85.92 86.11
Dry agricultural field without crop
User’s Accuracy 85.68 66.92
Producer’s Accuracy 96.27 97.07
Moist agricultural field without crop
User’s Accuracy 89.65 73.05
Producer’s Accuracy 92.93 91.01
Eucalyptus Plantation
User’s Accuracy 95.48 93.14
Producer’s Accuracy 78.66 80.07
Forest
User’s Accuracy 95.75 93.45
Producer’s Accuracy 85.31 84.21
Average User’s Accuracy 93.03
Average Producer’s Accuracy 83.91
Fuzzy Overall Accuracy 84.92 84.46
Fuzzy Kappa Coefficient 0.808
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Table 7.6: Results of PCM-MRF | AWIFS classified data vs. SVM classified reference data set

Accuracy Assessment methods FERM (%) | MIN-MIN (%) |
Water

User’s Accuracy 68.3 72.31
Producer’s Accuracy 88.81 74.45
Agriculutral fields with crop

User’s Accuracy 49.77 67.84
Producer’s Accuracy 90.23 75.53
Dry agricultural field without crop

User’s Accuracy 40.46 52.29
Producer’s Accuracy 98.83 95.55
Moist agricultural field without crop

User’s Accuracy 32.14 42.59
Producer’s Accuracy 95.7 88.28
Eucalyptus Plantation

User’s Accuracy 87.58 95.88
Producer’s Accuracy 70.94 42.96
Broad Leaved Forest

User’s Accuracy 22.02 37.5
Producer’s Accuracy 99.85 99.29
Average User’s Accuracy 50.04

Average Producer’s Accuracy 90.72

Fuzzy Overall Accuracy 84.46 63.15
Fuzzy Kappa Coefficient 0.539
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Table 7.7: Results of PCM classified AWIFS data vs. PCM classified reference data set

Accuracy Assessment Methods FERM (%) | MIN-MIN (%) |
Water

User’s Accuracy 96.884 88.06
Producer’s Accuracy 59.95 52.12
Agriculutral field without crop

User’s Accuracy 95.05 92.07
Producer’s Accuracy 84.13 84.42
Dry agricultural field without crop

User’s Accuracy 85.48 66.82
Producer’s Accuracy 96.37 97.28
Moist agricultural field without crop

User’s Accuracy 89.39 72.90
Producer’s Accuracy 92.78 90.97
Eucalyptus Plantation

User’s Accuracy 93.77 90.33
Producer’s Accuracy 79.65 80.23
Broad Leaved Forest

User’s Accuracy 95.37 92.64
Producer’s Accuracy 85.39 83.94
Average User’s Accuracy 92.66

Average Producer’s Accuracy 83.06

Fuzzy Overall Accuracy 84.35 83.14
Fuzzy Kappa Coefficient 0.795
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Table 7.8: Results of PCM classified AWIFS data vs. SVM classified reference data set

FERM (%) | MIN-MIN (%) |

Water

User’s Accuracy 73.47 77.72
Producer’s Accuracy 79.29 65.28
Agriculutral fields with crop

User’s Accuracy 48.45 66.33
Producer’s Accuracy 90.73 77.34
Dry agricultural field without crop

User’s Accuracy 38.32 50.12
Producer’s Accuracy 97.64 94.01
Moist agricultural field without crop

User’s Accuracy 30.42 40.22
Producer’s Accuracy 93.82 85.09
Eucalyptus Plantation

User’s Accuracy 95.17 85.92
Producer’s Accuracy 71.12 43.88
Broad Leaved Forest

User’s Accuracy 22.66 37.98
Producer’s Accuracy 100 100
Average User’s Accuracy 49.88

Average Producer’s Accuracy 88.77

Fuzzy Overall Accuracy 83.24 62.71
Fuzzy Kappa Coefficient .535
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On comparing the fuzzy overall accuracy, in case of PCM-MRF I for AWIF'S it was
84.46% with fuzzy kappa coefficient as .808 (from Table 7.5) where as in case of PCM it
is 83.14% fuzzy overall accuracy and kappa coefficient of 0.795(Table 7.7). The increase
was found to be 1.58% with increase in kappa coefficient to 1.61%. In case of SVM
classified reference data set, the results of MIN-MIN does not seem to be consistent
with that of FERM (Table 7.5 - 7.8). It may be because of change in classifier for
reference data set. And as discussed in section 5.3.4, chapter 5, the use of different
classifiers for reference and test data may cause inconsistency in the results. Also, on
observing the results carefully, the users accuracy has drastically decreased to as low
as 22.02%(table 7.6, class Broad Leaved Forest) where as same class had the user’s
accuracy of 95.75% when same classifier was used (table 7.5). Similar is the case for
PCM (Table 7.7 and 7.8).

RMSE and r values

The RMSE and (r) values (Table 7.9 - 7.12) are given for the comparison.

Table 7.9: RMSE and r values for PCM-MRF | classified AWIFS data when reference data set
was generated using PCM-MRF |

Class RMSE | r
Water 0.56 0.83
Agricultural fields with crop 0.64 0.64

Dry agricultural field without crop 0.41 0.54
Moist agricultural field without crop | 0.41 0.64

Eucalyptus plantation 0.73 0.59
Broad Leaved Forest 0.59 0.74
Global 0.23 0.76

Table 7.10: RMSE and r values for PCM MRF | classified AWIFS data when reference data set
was generated using SVM

Class RMSE | r
Water 0.57 0.83
Agricultural fields with crop 1.23 0.22

Dry agricultural field without crop 0.99 0.42
Moist agricultural field without crop | 0.99 0.54

Eucalyptus plantation 1.07 0.38
Broad leaved Forest 1.41 0.58
Global 0.44 0.48

It is observed that in case of PCM a high RMSE of more than one is seen in case
of agricultural fields with crops, Eucalyptus plantation and Broad Leaved Forest (table
7.11). Whereas, in PCM-MRF I, all RMSE for all three above mentioned classes have
been considerably reduced (table 7.9).

In case of PCM-MRF I lower RMSE (0.23) and r(0.76) was found as compared to
PCM (RMSE = 0.40, r = 0.69). This is in consistent to the results obtained from FERM
and MIN-MIN.
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Table 7.11: RMSE and r values for PCM classified AWIFS data when reference data set was
generated using PCM

Class RMSE | r
Water 0.71 0.82
Agricultural fields with crop 1.10 0.57

Dry agricultural field without crop 0.87 0.48
Moist agricultural field without crop | 0.92 0.59

Eucalyptus plantation 1.13 0.55
Broad Leaved Forest 1.07 0.70
Global 0.40 0.69

Table 7.12: RMSE and r values for PCM classified AWIFS data when reference data set was
generated using SVM

Class RMSE | r
Water 0.57 0.83
Agricultural fields with crop 1.23 0.22

Dry agricultural field without crop 0.99 0.42
Moist agricultural field without crop | 0.99 0.58

Eucalyptus plantation 141 0.38
Broad Leaved Forest 0.59 0.74
Global 0.44 0.48

Entropy

In this research, entropy was calculated for the experimental purpose to see the ab-
solute uncertainty of the classified output. Lower entropy value implies lesser uncer-
tainty and better classifier [47]. From these experiment entropy for PCM-MRF I found
to be 2.3057, whereas in case of PCM it was 2.3068.

7.2.2 Performance of PCM-MRF I on moderate resolution im-
ages

Figure 7.9 shows the classified output of LISS III images using PCM-MRF 1.

Results of FERM and MIN-MIN

Table 7.13 and 7.14 gives the result of accuracy assessment of PCM-MRF 1 classified
output of PCM-MRF I with reference data generated from LISS IV.

These results have been compared with the results of PCM classified LISS III im-
ages, given in table 7.15 and 7.16. Also, figure 7.10 gives the PCM classified LISS III
output.

Comparing the results of PCM-MRF I (Table 7.13,7.14) of LISS III with results of
PCM (table 7.15, 7.16), it is found that the accuracy of PCM-MRF I classified LISS III
images is slightly less than that of PCM. The results using MIN-MIN operator give
fuzzy kappa coefficient as 0.889 for PCM-MRF I with fuzzy overall accuracy of 90.97%
whereas for PCM the fuzzy kappa coefficient is 0.891 and fuzzy overall accuracy is
91.04%. This trend is visible in all the other results as well in all the four tables (Table
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Figure 7.9: Resultant fraction images after classifying LISS Il image with PCM-MRF |

water

Agriculiural fie fd
with crop
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without crop.

Moist agricultural
Sield without crop.

Eucalyptus plantation

Broad leaved forest

Figure 7.10: Resultant fraction images on classifying LISS Il image using PCM
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Table 7.13: Results of PCM-MRF | classified LISS lll data vs. PCM-MRF | classified reference data
set

Accuracy Assessment methods FERM (%) | MIN-MIN (%) |
Water

User’s Accuracy 97.91 95.53
Producer’s Accuracy 74.02 72.51
Agriculutral fields with crop

User’s Accuracy 88.83 88.83
Producer’s Accuracy 92.63 96.53
Dry agricultural field without crop

User’s Accuracy 99.14 98.17
Producer’s Accuracy 87.01 86.55
Moist agricultural field without crop

User’s Accuracy 94.56 84.98
Producer’s Accuracy 92.63 92.40
Eucalyptus Plantation

User’s Accuracy 93.23 89.69
Producer’s Accuracy 87.46 92.88
Broad Leaved Forest

User’s Accuracy 96.08 93.06
Producer’s Accuracy 89.49 93.93
Average User’s Accuracy 95.60

Average Producer’s Accuracy 87.21

Fuzzy Overall Accuracy 88.48 90.97
Fuzzy Kappa Coefficient 0.889

7.13 to 7.16). This slight difference may be attributed to random sampling. Ignoring
this small difference, it is observed that results have not improved by including spatial
context with PCM using standard regularizer. As discussed in section 4.3.4, chapter 4,
standard regularizer performs over smoothing and hence, inspite of adding contextual
information in PCM-MREF I, the results did not improved.
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Table 7.14: Results of PCM-MRF | classified LISSIII data vs. SVM classified reference data set

Accuracy Assessment methods FERM (%) | MIN-MIN (%) |
Water

User’s Accuracy 70.91 76.81
Producer’s Accuracy 78.99 64.66
Agriculutral fields with crop

User’s Accuracy 42.29 61.87
Producer’s Accuracy 89.97 76.55
Dry agricultural field without crop

User’s Accuracy 46.26 58.35
Producer’s Accuracy 97.64 94.01
Moist agricultural field without crop

User’s Accuracy 31.63 43.11
Producer’s Accuracy 93.13 85.17
Eucalyptus Plantation

User’s Accuracy 73.57 47.19
Producer’s Accuracy 81.53 93.07
Broad Leaved Forest

User’s Accuracy 21.85 38.81
Producer’s Accuracy 99.7 98.6
Average User’s Accuracy 49.68

Average Producer’s Accuracy 88.25

Fuzzy Overall Accuracy 83.96 63.98
Fuzzy Kappa Coefficient 0.548
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Table 7.15: Results of PCM classified LISS lll data vs. PCM classified reference data set

Accuracy Assessment methods

FERM (%) | MIN-MIN (%) |

Water

User’s Accuracy 98.26 94.31
Producer’s Accuracy 74.27 73.49
Agriculutral fields with crop

User’s Accuracy 92.34 88.04
Producer’s Accuracy 92.97 97.28
Dry agricultural field without crop

User’s Accuracy 86.69 98.38
Producer’s Accuracy 99.20 85.70
Moist agricultural field without crop

User’s Accuracy 95.49 87.56
Producer’s Accuracy 92.28 90.7
Eucalyptus Plantation

User’s Accuracy 93.42 90.04
Producer’s Accuracy 88.06 93.05
Broad Leaved Forest

User’s Accuracy 95.32 91.92
Producer’s Accuracy 90.19 95.03
Average User’s Accuracy 95.67

Average Producer’s Accuracy 87.41

Fuzzy Overall Accuracy 88.58 91.04
Fuzzy Kappa Coefficient 0.891
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Table 7.16: Results of PCM classified LISS Il data vs. SVM classified reference data set

Accuracy Assessment methods FERM (%) | MIN-MIN (%) |
Water

User’s Accuracy 65.72 71.49
Producer’s Accuracy 80.36 65.57
Agriculutral fields with crop

User’s Accuracy 43.93 62.34
Producer’s Accuracy 90.42 78.04
Dry agricultural field without crop

User’s Accuracy 48.89 60.71
Producer’s Accuracy 92.83 85.13
Moist agricultural field without crop

User’s Accuracy 33.64 45.25
Producer’s Accuracy 92.15 84.38
Eucalyptus Plantation

User’s Accuracy 83.16 93.39
Producer’s Accuracy 73.95 46.89
Broad Leaved Forest

User’s Accuracy 19.49 35.35
Producer’s Accuracy 99.74 98,81
Average User’s Accuracy 49.14

Average Producer’s Accuracy 88.41

Fuzzy Overall Accuracy 84 64.14
Fuzzy Kappa Coefficient 0.553
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RMSE and r values

The Table 7.17 and 7.18 gives the RMSE and r values of PCM-MRF I LISS III classified
output with respect to reference data sets. For comparison RMSE and r value of PCM
has also been given with the same reference data set (Table 7.19 and 7.20).

Table 7.17: RMSE and r values for PCM-MRF | classified LISS lll data w.r.t PCM-MRF | classified
reference data set

Class RMSE | r
Water 0.27 0.47
Agricultural fields with crop 0.29 0.31

Dry agricultural field without crop 0.15 0.19
Moist agricultural field without crop | 0.19 0.28

Eucalyptus plantation 0.30 0.34
Broad Leaved Forest 0.28 0.41
Global 0.10 0.55

Table 7.18: RMSE and r values for PCM-MRF | classified LISS Il data w.r.t reference data from
SVM

Class RMSE | r
Water 0.31 0.48
Agricultural fields with crop 0.50 0.06

Dry agricultural field without crop 0.28 0.13
Moist agricultural field without crop | 0.35 0.22

Eucalyptus plantation 0.43 0.20
Broad Leaved Forest 0.55 0.26
Global 0.17 0.31

Table 7.19: RMSE and r values for PCM classified LISS Il data w.r.t PCM classified reference
data

Class RMSE | r
Water 0.28 0.47
Agricultural fields with crop 0.28 0.31

Dry agricultural field without crop 0.15 0.19
Moist agricultural field without crop | 0.19 0.28

Eucalyptus plantation 0.30 0.34
Broad Leaved Forest 0.28 0.41
Global 0.10 0.55
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Table 7.20: RMSE and r values for PCM classified LISS Il data w.r.t SVM classified reference
data

Class RMSE | r
Water 0.31 0.48
Agricultural fields with crop 0.50 0.07

Dry agricultural field without crop 0.27 0.13
Moist agricultural field without crop | 0.35 0.23

Eucalyptus plantation 0.43 0.21
Broad Leaved Forest 0.55 0.26
Global 0.17 0.55

The result of RMSE and r of PCM-MRF I, 0.10 and 0.55 (from table 7.17) was
same for PCM (table 7.19). Similarly, results from table 7.18 and table 7.20 (reference
data was SVM) follow a same trend, qualitatively. Thus, it substantiates the results
obtained from FERM and MIN-MIN operators.

entropy

The resultant entropy for PCM was found to 2.3224 of PCM-MRF I with entropy being
2.3220.

From the results observed, it can be said there is no significant improvement on
using standard regularizer for including contextual information in PCM. It can be at-
tributed to the functioning of standard regularizer, which performs over smoothening
as discussed in section 4.3.1, chapter 3.

Also, results of LISS III are different from that of AWIFS. In other words, PCM-
MRF I has shown improvement in case of AWIFS but in case of LISS III there is not
significant difference between PCM and PCM-MRF I. The effect of over smoothening
by standard regularization method is more in LISS III, as compared to AWIFS.

7.3 Performance of DA based PCM-MRF : PCM-MRF
11

The aim behind using DA model for including prior information was to preserve the
edges.

7.3.1 Performance of PCM-MRF II on coarse resolution images

Method to verify edge preservation

To verify the preservation of edges, a homogenous area of a class was selected by
verifying that it should have high mean and low variance.

After identifying homogenous area, two set of pixels were selected with each set
corresponding to either side of the edge. Mean and variance of these two were calcu-
lated using ENVI 4.3. Comparative (PCM-MRF II vs. PCM-MRF 1) difference of the
mean between these two set of pixel should be high when edge is preserved. Compara-
tive (PCM-MRF II vs. PCM-MRF I) variance within each pixel set should be low, as it
describes low variability within the set.

Table 7.21 gives the result of mean and variance calculated of various classes, as
stated above.

Results in Table 7.21, shows that edge are better preserved in case of PCM-MRF II
as compared to PCM-MRF 1. As per [32], the error usually occurs around the edges, and
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Table 7.21: Verifying preservation of edges using Mean and variance for AWIFS image

Class PCM-MRF 1 PCM-MRF II

Diff. in mean | Variance Diff. in mean | Variance
Water 171.80 1604.66, 388.54 | 222.45 1001.82, 375.8
Agriculutral fields | 98.63 117.29,292.41 | 107.23 83.33, 228.01
with crop
Dry agricultural 105.18 256.32, 75.34 110.91 272.25, 56.25
without crop

thus, on preserving the edges, an increase in overall accuracy should also be observed.
This can be verified from the results of accuracy assessment of PCM-MRF II given in
Table 7.22.

Table 7.22 and 7.23 gives the accuracy assessment of PCM-MRF II classified with
reference data set generated using SVM and PCM-MREF II, respectively. It is seen the
fuzzy kappa coefficient is greater in case of PCM-MRF II (x = 0.819) as compared to
that of PCM-MRF I (x = 0.808) (from table 7.18 and 7.1, respectively), where the incre-
ment is 1.4%. The resultant increase in value of kappa coefficient is 3% as compared to
that of PCM (0.795). Also, the overall accuracy from MIN-MIN operator is 85% where
as for PCM-MRF 1 it is 84.46% and PCM is 83.14 %.

Thus, it is observed that the accuracy of PCM-MREF II is higher than that of PCM
and also, has preserved the edges.

7.3.2 RMSE andr

Table 7.24 gives the RMSE and r values for PCM-MRF II. RMSE of PCM-MRF II was
0.21 which is the least in all the three case 0.23 PCM-MRF I and 0.40 for PCM. Simi-
larly, results of r was highest in case of PCM-MRF II.

Entropy value

The Average entropy was found to be 2.3050 which is less than PCM-MRF 1(2.3057)
and PCM(2.3068). The entropy was also found to be less in case of PCM-MRF II as
compared to other two classifiers.
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Table 7.22: Results of PCM-MRF Il AWIFS classified data vs. PCM-MRF |l classified reference

data set
Accuracy Assessment methods FERM (%) | MIN-MIN (%) |
Water
User’s Accuracy 97.35 88.67
Producer’s Accuracy 64.96 59.77
Agriculutral fields with crop
User’s Accuracy 95.14 91.57
Producer’s Accuracy 86.37 86.93
Dry agricultural field without crop
User’s Accuracy 86.57 68.13
Producer’s Accuracy 96.77 97.84
Moist agricultural field without crop
User’s Accuracy 90.44 75.24
Producer’s Accuracy 92.14 90.91
Eucalyptus Plantation
User’s Accuracy 96.7 93.55
Producer’s Accuracy 79.31 80.99
Broad Leaved Forest
User’s Accuracy 95.17 92.89
Producer’s Accuracy 84.84 83.23
Average User’s Accuracy 94.19
Average Producer’s Accuracy 84.98
Fuzzy Overall Accuracy 85.54 85
Fuzzy Kappa Coefficient 0.81
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Table 7.23: Results of PCM-MRF Il classified AWIFS data vs. SVM classified reference data set

Accuracy Assessment methods FERM (%) | MIN-MIN (%) |
Water

User’s Accuracy 75.69 68.75
Producer’s Accuracy 84.32 80.08
Agriculutral fields with crop

User’s Accuracy 49.36 69.1
Producer’s Accuracy 90.03 75.6
Dry agricultural field without crop

User’s Accuracy 40.35 53.18
Producer’s Accuracy 98.21 94.97
Moist agricultural field without crop

User’s Accuracy 31.93 42.88
Producer’s Accuracy 94.2 84.74
Eucalyptus Plantation

User’s Accuracy 72.98 45.38
Producer’s Accuracy 85.43 95.74
Broad Leaved Forest

User’s Accuracy 23.53 30.55
Producer’s Accuracy 99.8 99.03
Average User’s Accuracy 51.05

Average Producer’s Accuracy 89.92

Fuzzy Overall Accuracy 85.02 64.66
Fuzzy Kappa Coefficient .562

Table 7.24: RMSE and r values for PCM-MRF Il classified AWIFS image w.r.t PCM-MRF Il classified
reference data

Class RMSE | r
Water 0.46 0.83
Agricultural fields with crop 0.46 0.71

Dry agricultural field without crop 0.33 0.59
Moist agricultural field without crop | 0.36 0.74

Eucalyptus plantation 0.63 0.65
Broad Leaved Forest 0.42 0.78
Global 0.21 0.79
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7.3.3 Performance of PCM-MRF II on moderate resolution im-

ages

Mean and variance was also calculated in case of LISS III images for verifying edge
preservation. The results are given in table 7.25.

Table 7.25: Verifying preservation of edges using Mean and variance for LISS Ill image

Class

PCM-MRF 1 PCM-MRF 11

Diff. in mean | Variance Diff. in mean | Variance
Water 152.05 129.96, 214.92 | 162.7 97.81, 177.69
Agriculutral field | 171.84 142.25,179.56 | 177.86 112.04, 158.76
with crop
Dry agricultural | 139.7 256.32, 75.34 | 144.8 175.29, 11.42
field without crop

Also, the overall accuracy of PCM-MRF II was calculated to assess the performance
of PCM-MREF II. The results are given in Table 7.26 and 7.27.
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Table 7.26: Results of PCM-MRF |l classified LISS lll data vs. PCM-MRF Il classified reference
data

Accuracy Assessment methods FERM (%) | MIN-MIN (%) |
Water

User’s Accuracy 98.93 95.26
Producer’s Accuracy 77.02 74.57
Agriculutral fields with crop

User’s Accuracy 93.23 88.73
Producer’s Accuracy 93.78 97.01
Dry agricultural field without crop

User’s Accuracy 88.14 98.66
Producer’s Accuracy 98.64 86.73
Moist agricultural field without crop

User’s Accuracy 96.11 87.85
Producer’s Accuracy 93.05 91.72
Eucalyptus Plantation

User’s Accuracy 93.81 90.77
Producer’s Accuracy 87.04 93.03
Broad Leaved Forest

User’s Accuracy 95.17 92.44
Producer’s Accuracy 91.12 96.03
Average User’s Accuracy 96.71

Average Producer’s Accuracy 88.11

Fuzzy Overall Accuracy 89.45 92.01
Fuzzy Kappa Coefficient 0.904
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Table 7.27: Results of PCM-MRF Il classified LISS Il data vs. SVM classified reference data

Accuracy Assessment methods FERM (%) | MIN-MIN (%) |
Water

User’s Accuracy 81.99 65.66
Producer’s Accuracy 70.91 76.81
Agriculutral fields with crop

User’s Accuracy 43.46 62.58
Producer’s Accuracy 89.25 79.08
Dry agricultural field without crop

User’s Accuracy 47.14 60.69
Producer’s Accuracy 93.81 86.9
Moist agricultural field without crop

User’s Accuracy 31.44 45.43
Producer’s Accuracy 94.64 87.01
Eucalyptus Plantation

User’s Accuracy 76.57 50.71
Producer’s Accuracy 80.42 92.29
Broad Leaved Forest

User’s Accuracy 22.66 37.98
Producer’s Accuracy 100 100
Average User’s Accuracy 50.69

Average Producer’s Accuracy 89.04

Fuzzy Overall Accuracy 84.98 66.27
Fuzzy Kappa Coefficient B77

As observed from table 7.20, the edges are preserved in case of PCM-MRF II as
well when compared with PCM-MRF 1. The overall accuracy of PCM-MRF 11(92.01%)
is also higher than PCM-MRF 1(91.04%) and PCM (90.97%). Also, RMSE and r values
are provided in table 7.23 and 7.24.

RMSE and r values

Entropy

The entropy of PCM-MRF II was 2.3210, which was minimum as compared 2.3220 of
PCM-MRF I and 2.3224 of PCM.

7.4 What if there are untrained classes?

Foody [5], showed that supervised PCM works better in case of untrained classes than
supervised FCM. In this research work, the performance of supervised PCM-MRF was
assessed in case of untrained classes and compared with that of PCM. To obtain the
untrained class, the mean value of one of the classes was not provided to the classifier
and the classification was done for remaining five classes as done by [56]. RMSE and
r values were calculated to check the performance of PCM-MRF in case of untrained
classes.
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Table 7.28: RMSE and r values for PCM-MRF Il classified LISS Il data when reference data set
was generated using PCM-MRF |l

Class RMSE | r
Water 0.25 0.52
Agricultural fields with crop 0.24 0.38

Dry agricultural field without crop 0.11 0.25
Moist agricultural field without crop | 0.13 0.34

Eucalyptus plantation 0.24 0.38
Broad Leaved Forest 0.23 0.44
Global 0.08 0.61

7.4.1 Discussion on results

The results of assessment of AWIFS and LISS IIT images with untrained classes are
shown in Table 7.29 - Table 7.32, respectively. The results consists of one case from
AWIFS when class 5 i.e. eucalyptus plantation was missing. For LISS III, two cases
were taken as when class 4 i.e. moist agricultural land without crop was missing and
second was class 5 i.e. eucalyptus plantation was left untrained.

Table 7.29: RMSE and r values of AWIFS, when class 5 (Eucalyptus plantation) was missing

] \ PCM \ \ PCM-MRF I \ \ PCM-MRF II \ \
RMSE | r RMSE r RMSE r

Water 0.3077 | 0.4627 | 0.3072 0.463 | 0.3073 0.4628
Agricultural field
with crop 0.4431 | 0.0834 | 0.4433 0.0833 | 0.4432 0.0836
Dry agricultural
field without crop | 0.3536 | 0.2382 | 0.3538 0.2375 | 0.3536 0.2381
Moist agricultural
field without crop | 0.4571 | 0.4073 | 0.4572 0.4068 | 0.4572 0.4066
Broad leaved
forest 0.29 0.135 | 0.2900 0.1344 | 0.29 0.135
Global 0.1684 | 0.41 0.1684 0.4098 | 0.1684 0.4099

The resultant values of RMSE and r, in case of untrained classes, observed in table
7.29 to 7.31, are either same or similar(when observed uptil 4th decimal point). PCM
performs better than FCM in case of untrained classes because it is independent of the
number of classes present in the image, unlike FCM [6, 5]. The results obtained here
show that using MRF doesn’t degrade the performance of the PCM in case of untrained
classifier, as the results obtained are same.

7.5 Summary

The results obtained from the accuracy assessment of the classified output implies that
including contextual information improves the result of PCM based classifier especially,
in case of coarser resolution data such as AWIFS. But accuracy results differ for the
two different prior models used and on preserving the edges the accuracy assessment
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results of the classifier improves as seen in case of PCM-MREF II for both AWIFS and
LISS III images.

But as discussed in section 5.3.1, the resampling induces errors in the images which
are inevitable. Thus, error in classified output cannot be completely attributed to the
performance of the classifier. Also, due to the limitation of the accuracy assessment
tool used, that it used random sampling, the performance of PCM-MREF II at the edges
in particular, cannot be measured fully.

The next chapter i.e. chapter 8 gives the conclusion based on the results and dis-
cussion given in this chapter.



Chapter 7. Results and Discussion

Table 7.30: RMSE and r values of LISS lll, when class 4 (moist agricultural field without crop)
was left untrained

] \ PCM \ \ PCM-MRF I \ \ PCM-MRF II \ \
RMSE | r RMSE r RMSE r

Water 0.32 0.4793 | 0.3193 0.4798 | 0.3189 0.4794
Agricultural field
with crop 0.5277 | 0.046 | 0.528 0.0458 | 0.5283 0.046
Dry agricultural
field without crop | 0.613 | 0.2574 | 0.6132 0.256 | 0.6128 0.2565
Eucalyptus
plantation 0.4572 | 0.1579 | 0.4577 0.1569 | 0.4579 0.1567
Broad leaved
forest 0.4572 | 0.1579 | 0.4577 0.1569 | 0.4579 0.1567
Global 0.2077 | 0.3204 | 0.2078 0.32 0.2077 0.32

Table 7.31: RMSE and r values of LISS Ill, when class 5 (Eucalyptus plantation) was missing

] \ PCM \ \ PCM-MRF I \ \ PCM-MRF II \
RMSE | r RMSE r RMSE r

Water 0.3077 | 0.4627 | 0.3072 0.463 | 0.3073 0.4628
Agricultural field
with crop 0.4431 | 0.0834 | 0.4433 0.0833 | 0.4432 0.0836
Dry agricultural
field without crop | 0.3536 | 0.2382 | 0.3538 0.2375 | 0.3536 0.2381
Moist agricultural
field without crop | 0.4571 | 0.4073 | 0.4572 0.4068 | 0.4572 0.4066
Broad leaved
forest 0.29 0.135 | 0.2900 0.1344 | 0.29 0.135
Global 0.1684 | 0.41 0.1684 0.4098 | 0.1684 0.4099
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Chapter 8

Conclusion and
Recommendations

The chapter has been bifurcated into conclusion (section 8.1) and recommendations
(section 8.2). Section 8.1 has been further divided into :

1. Answers to the research questions posed in the beginning of this research. (sec-
tion 8.1.1)

2. Points of conclusion (section 8.1.2)

Section 8.2, discusses the recommendations that can and must be carried forward as
further research.

8.1 Conclusion

The main objective of this research was to develop a sub-pixel classifier for classifying
moderate and coarse spatial resolution multi-spectral data set using PCM and MRF.
Also, to gauge the performance of the classifier that uses spatial contextual informa-
tion against PCM based classifier, which uses only spectral information and no spatial
context is included.

Another objective was to use edge-preserving priors i.e DA models, to preserve the
edges. The efficacy of the same has been discussed in section 7.3, chapter 7 in terms of
the results.

A method was developed which incorporated spatial context using both standard
regularization model and DA model and performed sub-pixel classification in super-
vised mode. And it was also observed that PCM-MRF with DA model preserved the
edges.

8.1.1 Answers to the research questions.

Research Q1. How to modify the PCM objective function so as to include
the spatial contextual information using MRF?

Answer : The answer to this research question is the objective functions de-
veloped and discussed in section 6.1, chapter 6. In section 6.1.1, equation 6.4
gives the PCM-MRF which includes standard regularization model and in sec-
tion 6.1.2, equation 6.5, includes DA model for edge preservation. These equa-
tions were applied and tested on the data set used in this research. Also, the
resultant images as well as their accuracy assessment results were discussed in
section 7.
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From the results and discussion (chapter 7) it can be concluded that :

e The proposed method is one of the means by which contextual information
can be added with PCM for performing sub-pixel classification.

e Adding the spatial contextual information (using MRF) in PCM does im-
proves the accuracy of the classifier (by 1.5% — 3%).

e DA priors in PCM-MRF preserves the edges which improves the overall
accuracy of the classifier which is consistent with the literature surveyed
[32, 17].

Research @2. Which smoothness prior model will be suitable for PCM-
MRF?

Answer: In this research work two smoothness models were used, as discussed
in section 4.2, chapter 4.

1. Standard Regularizer (equation 4.7)
2. Discontinuity Adaptive Model (equation 4.14))

As discussed in section 4.3, chapter 4, standard regularizers assume constant in-
teraction among the pixels in image space, which may lead to over-smoothening.
On observing the results of mean and variance (section 7.3) calculated at the
edges and the accuracy assessment (section 7.2 and 7.3), it can be concluded that
standard regularizers (PCM-MRF 1) are not able to preserve the edges as effi-
ciently as DA models used in PCM-MRF II.

As well, on preserving the edges, accuracy of the classifier increases by 2%.

Research Q3. Which sampler will be suitable for PCM-MRF?

Answer: To draw random samples from a distribution, Markov Chain Monte
Carlo methods (MCMC) are employed. The Metropolis-Hastings Sampler and
the Gibbs Sampler are two most fundamental MCMC techniques. In both the
cases, at a time ‘t’ the next statei.e f(t+1), is generated as per Markov transition
probability given by P(f(t + 1)|f(t)).

The difference between the Metropolis-Hastings and Gibbs Sampler lies in the
method adopted to generate f(¢+1). In Metropolis-Hastings sampler (in general),
and Metropolis sampler (in particular), the next configuration is a random choice
from N(f), N(f) being the discreet set of sample space. It is not suitable to be
used when the sample space is infinite and the data is of high dimensionality.
Also, seen in the work of Dutta [13].

Where as, in case of Gibbs Sampler it is chosen from the conditional distribution
(when upto pairwise cliques are used) given by equation 8.1 [21, 52] :-

6—[v1(f7:>+2i,wi Ve (fi,fD1/T
(8.1
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Hence, Gibbs Sampler generate the values from a pdf obtained from equation
8.1 and therefore, can work when sample space have infinite size and with high
dimensionality data as in case of sub-pixel classifier where the membership value
lies between 0 to 1. Also, seen in previous work by [13].

Hence, it is concluded that for a sub-pixel classifier Gibbs Sampler is the suitable
sample over Metropolis sampler.
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Research Q4. Which classifier to use for generation of reference data set
from LISS IV images?

Answer: As stated in section 5.3.4, chapter 5, the generation of reference data
is more preferable using sub-pixel classifier instead of using the method of mul-
tiple resolution, when the classifier to be tested generates the fuzzy membership
values.

Also, there was an issue of selecting a suitable classifier for generating reference
data set. In section 5.3.4 it was discussed, that using the different classifier may
induce error due to difference in spatial resolution and lack of knowledge on the
performance of the classifier for reference data set with respect to the classifier
used for the test images. Also, as observed in the results of chapter 7 (Table
7.2,7.4,7.10, 7.12 ) the user and producer accuracy were quite inconsistent with
respect to results obtained from other classifier for reference data set (Table 7.1,
7.3, 7.9, 7.11). As well there was inconsistency between the FERM results and
MIN-MIN operator results when different was used for generating reference data
set.

Due to these inconsistency observed, the results obtained when reference data set
was generated using different classifier cannot be used. Hence, it is appropriate
to use same classifier for generating reference data set as well as test data set.

Research @5. Which accuracy assessment technique is suitable to assess
the accuracy of PCM-MRF sub-pixel classifier?

Answer: Out of the available techniques discussed in section 6.4.1, chapter 6 and
substantiated by the results obtained (see Appendix B), only FERM and MIN-
MIN were found suitable for assessing the accuracy of PCM based classifier such
as PCM-MRF.

Thus, it can be concluded that, methods which are not constrained by the hy-
perline constraint (equation 1.1), are suitable for assessing the accuracy of PCM
based sub-pixel classifiers. And other classifiers such as SCM are not suitable as
PCM do not follow the hyperline constraint.

Research Q6. Which accuracy assessment technique will be suitable to
assess the accuracy of PCM-MRF at the edges?

Answer : As seen in section 7.3.1, chapter 7, to see whether the edge was pre-
served i.e. the edge information was not degraded, difference in mean of the
pixels along the edges was measured. To further confirm the results, it is im-
portant to consider the overall performance (in terms of overall accuracykappa
coefficient) of the classifiers as well [32].

Research Q7. How does PCM-MRF perfoms in case of noise/ outliers/
untrained classes?

Answer : case 1: Untrained classes PCM-MRF I and PCM-MRF II was tested
for untrained classes. RMSE and r values were calculated for PCM,PCM-MRF
I and PCM-MRF II and from the results obtained (section 7.4), it can be seen
that these values were same for PCM-MRF I, PCM-MRF II and PCM . It can
be concluded that performance of PCM in presence of untrained classes is not
reduced when contextual information is used.

case 2 : Presence of noise and/or outliers To assess the performance of PCM-
MREF in case of noise and outliers, unsupervised classification method is required.
In unsupervised classification, the mean values/training set is calculated using
the iterative methods, with minimum intervention from the analyst. Noise and
outliers causes problem in calculating the correct cluster mean values [6, 11].
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But in this research work, the supervised mode is being used i.e. the analysts
provides the training data. Thus, performance of PCM-MRF classifier cannot be
measured in case of noise and outliers, in this research work.

Thus, it can be concluded that performance of classifier in presence of noise and
outliers can be efficiently tested in unsupervised mode.

8.1.2 Further Conclusions and potential user/users

1. It has been found that & is different for AWIFS and LISS III. It was observed that
it increase with decrease in spatial resolution of the image and with the increase
in the number of pixels in the image. It was also seen that, by decreasing the size
of the image and number of classes in the image (keeping the spatial resolution
constant) the update rate decreased. Hence, it can be concluded that update rate
(for image classification) may depend on factors such as spatial resolution, image
size and number of classes.

Note: It requires rigrous testing and further studies to be done to assess the effect
of these parameteres on update rate.

2. The value of A\ for LISS IIT was A = 0.4 and for AWIFS was A = 0.8. It helps in
concluding that role of spatial context is more in case of coarser resolution and
as the resolution of the image becomes finer the role of spatial context decreases.

3. Referring back to the results of PCM-MRF I and PCM-MRF II in case of AWIFS
and LISS III, it was found that PCM-MRF I and II shows better performance
as compared to that of PCM for coarser resolution data. But in case of moderate
resolution i.e. LISS III the accuracy of PCM-MRF I did not showed improvement,
that can be attributed to the increase in the discontinuities, as the image is more
fine as compared to AWIFS. Where as, when DA priors were used for LISS III
classification, there was rise in the accuracy.

It shows, as the spatial resolution becomes finer the need of preserving the edges
becomes essential.

4. As per the entropy calculated, the uncertainty of the results decreased in case of
PCM-MRF I and further, in PCM-MREF II. These uncertainty results were inde-
pendent of the reference data set and hence, can be said are absolute results. Fur-
ther, rigorous experiments are recommended to be performed to see the amount
of difference obtained in entropy values.

The conclusion is incomplete without defining the potential users of the sub-pixel
classification method.

PCM-MREF gives better accuracy than popular fuzzy based classifiers, by including
spatial contextual information and overcoming hyperline constraint. Thus, it can be
used to generate spatially and spectrally consistent thematic maps. These thematic
maps are important for resource management, which fulfils the purpose of launching
satellites such as IRS-P6. A user if interested in single class, that can also be ex-
tracted from PCM based methods. Using PCM-MREF II a single class of interest can be
extracted while preserving the edges.

8.2 Recommendations

The thesis is incomplete without further recommendations. It is my observation that
this research is just the tip of the ice-berg and lot more can and should be done to
completely exploit the potential of PCM-MRF . Figure 8.2 broadly defines the steps
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followed in this thesis. The points of recommendation have been given in a sequence,
corresponding to the steps in figure 8.2.

Step 1: Acquisition and pre-processing of
the images.

{

Step 2: Formulate objective function

{

Step 3: Parameter estimation

{

Step 4: Supervised Image classification

{

Step S: Accuracy Assessment

Figure 8.1: Flow chart showing the steps of methodology broadly

1. Beginning from step 2.

e Instead of using objective function itself, the formula for calculating mem-
bership value from the objective function can be derived. The classification
results obtained using the membership values should be compared with the
present method of using objective function. And the assess the difference, if
any.

e In the PCM-MRF II, other three DA models by Li, can also be included.
2. Step 3 : parameter estimation.

e More rigrous estimation of parameters with various methods (such as cross
validation)is needed. Currently, there is no method which can be termed
as standard, for estimating these parameters. A comparative study can be
done for all the methods available and possible .

3. In step 4 supervised classification approach was adopted.

e This method should be tested with unsupervised classification approach as
well.

e Simulated Annealing is a lengthy process. The DA based PCM-MRF can be
tested with ‘gradient descent’ method. Also, MPM method has been said to
be computationally fast [17], thus, it can also be used.

4. Accuracy Assessment is an important step but in case of sub-pixel classification
it is itself a open area of research.

e The assessment of PCM based method could not be performed directly by
using SCM and other composite operator. It is recommended to rescale the
output of PCM based methods, as done in case of entropy and then, apply
these methods.
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5. Other than above points of recommendation, there are more issues that should
be looked into.

e The use of MRF for including spatial contextual information was done in
this research work. As one goes towards finer spatial resolution images, the
effect of other factors such as texture becomes prominent. Also, contextual
information is not limited to spatial domain only. Methods should be ex-
ploited to include other contextual information with sub-pixel classification
based methods, using MRF

e If the method to estimate area using the results of the sub-pixel classifier
is derived, then this technique can be used to estimate the area occupied by
class of interest. E.g. agriculture fields, water body etc.

e This also gives an eye-opener to study other classification techniques like
Linear Mixture Modelling (LMM), SVM etc. with contextual information.
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Appendix A

A.1 Accuracy Assessment results of AWIFS and LISS
III images classified using FCM

Table A.1: Results of AWIFS images clasified using FCM vs. Reference data set generated
using LISS IV

Accuracy Assessment methods -, FERM (%) | MIN-MIN (%) |
Water

User’s Accuracy 94.52 93.38
Producer’s Accuracy 74.315 63.56
Agriculutral fields with crop

User’s Accuracy 77.52 75.21
Producer’s Accuracy 59.58 54.01
Dry agricultural field without crop

User’s Accuracy 53.99 34.13
Producer’s Accuracy 89.62 87.74
Moist agricultural field without crop

User’s Accuracy 72.96 61.69
Producer’s Accuracy 76.97 73.24
Eucalyptus Plantation

User’s Accuracy 69.42 66.55
Producer’s Accuracy 89.23 87.55
Broad Leaved Forest

User’s Accuracy 90.57 87.98
Producer’s Accuracy 69.33 62.69
Average User’s Accuracy 76.50

Average Producer’s Accuracy 76.51

Fuzzy Overall Accuracy 76.02 70.67
Fuzzy Kappa Coefficient 0.621




A.2. Results of fuzzy kappa coefficients obtained using SCM, MIN-PROD and MIN-LEAST
on PCM classified data

Table A.2: Results of LISS lll images clasified using FCM vs. Reference data set generated

using LISS IV
Accuracy Assessment methods FERM (%) | MIN-MIN (%) |
Water
User’s Accuracy 96.16 95.82
Producer’s Accuracy 88.53 82.58
Agriculutral fields with crop
User’s Accuracy 84.44 80.68
Producer’s Accuracy 88.89 86.73
Dry agricultural field without crop
User’s Accuracy 87.60 80.39
Producer’s Accuracy 82.51 73.63
Moist agricultural field without crop
User’s Accuracy 77.71 73.24
Producer’s Accuracy 87.24 82.84
Eucalyptus Plantation
User’s Accuracy 91.78 90.63
Producer’s Accuracy 71.77 75.213
Broad Leaved Forest
User’s Accuracy 76.12 71.69
Producer’s Accuracy 93.25 92.89
Average User’s Accuracy 84.63
Average Producer’s Accuracy 85.36
Fuzzy Overall Accuracy 84.64 82.59
Fuzzy Kappa Coefficient 0.7804

A.2 Results of fuzzy kappa coefficients obtained us-
ing SCM, MIN-PROD and MIN-LEAST on PCM
classified data

Table A.3: The table shows absurd results obtained using SCM, MIN-PROD & MIN-LEAST

| Accuracy Assessment methods | SCM (%) | MIN-PROD (%) | MIN-LEAST |
| Fuzzy Kappa Coefficient  0.330 | 1.034 -0.131 |

A.3 Output fraction images after classifying AWIFS
and LISS III with PCM-MRF II
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Figure A.1: Resultant fraction images on classifying AWIFS with PCM-MRF ||

water

Agricultural field
with crop

Dy agricultural field
without crop.
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Broad leaved forest

Figure A.2: Resultant fraction images on classifying LISS Il with PCM-MRF I
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A.4. Snapshots of SMIC : In-house Tool developed by Kumar et al

A.4 Snapshots of SMIC : In-house Tool developed by
Kumar et al

source : Kumar et al, ISRS 2008 symposium

B sub-Pisel Multi-Spectral Imaoe Elossifier - SMIC =lolx|
File Utilities Signature Files Classifiers A_ccuracynssessmem| ALCM | Zoom In | Zoom Out |uelp

ot x
E Enter the number of Classes

0K | Cancel |

Figure A.3: Snapshot | of the in-house tool
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Figure A.4: Spatial Resolution ratio between classified and reference sub-pixel
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Figure A.5: Fuzzy error matrices using various assessment methods
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Appendix B

Publication

The methods developed during this research have been accepted/submitted in the fol-
lowing symposiums :-

1. Paper accepted for Oral Presentation at ISRS Symposium -2009, held at Nag-
pur (Sept 17-19, 2009) "Parameter Estimation for Possibilistic c-Means spatial
contextual information based sub-pixel classification for multispectral images”,
Sivee Chawla, Anil Kumar, Valentyn Tolpekin, Nicholas H Hamm.

2. Paper submitted at IGARSS 2010 "Markov Random Field and Standard Regu-
larization model based Possibilistic - ¢ -Means soft classification approach.” Sivee
Chawla, Anil Kumar, Valentyn Tolpekin, Nicholas H Hamm.
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