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ABSTRACT 

   Detection of crop water stress is crucial for efficient irrigation water management. Satellite 

monitoring of vegetation water stress is very important for precision agriculture, which relies 

on timing of irrigation to ensure crops will not suffer from water stress and produce maximum 

potential yield under limited water conditions. Potential of Satellite data to provide spatial and 

temporal dynamics of crop growth conditions under water stress and its impact over 

productivity of wheat. This study was conducted in western Uttar Pradesh and some parts of 

Haryana. Multi-temporal Landsat data was used for detecting water stress using thermal and 

optical based indices. Use of vegetation water stress index (VWSI), land surface wetness index 

(Ws_LSWI),  

 

   Water stress index (WSI) and SEBS for ET was used. For estimating productivity light use 

efficiency model (LUE model) was used. Water stress was validated with flux tower data. For 

yield validation crop cutting experiment was done. The main objective of this study was to 

detect crop water stress using different optical and thermal based indices and observing its 

impact on productivity of wheat. Stress factor was incorporated into LUE model for assessing 

impact over productivity.  

   

   The results indicated that Ws_LSWI was superior over other indices showing RMSE 0.12, 

R
2
 0.65. Whereas, Ws_VWSI showed over estimated values with Mean RD = 4%. SEBS 

derived daily ET values were over estimated for all months.LUE derived using two different 

water scalar. Ws_LSWI based estimated LUE showed better results for February month than 

Ws_VWSI. Productivity derived by using water scalar (Ws_LSWI) had 0.65 R
2
 and 0.46 for 

Ws_VWSI In conclusion, Ws_LSWI was found useful in detecting crop water stress and has 

proved to be a robust index. 
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INTRODUCTION                                                                                 Chapter1 

1.1 BACKGROUND 

   Biosphere’s continued exposure to abiotic stresses viz., extreme temperature, chemical 

toxicity, salinity, drought etc has led to imbalance in natural status of environment. Any kind of 

stress can reduce average yield to more than 50%. Water stress condition arises due to inability 

to meet human and ecological demand of water whereas water scarcity refers to lack of 

available water or lack of water supply. An important point is that water scarcity is one of the 

many aspects that contribute to water stress. Thus, an area can be highly water stressed but not 

necessarily water scarce. 

   Agriculture is the major sector of all economic sectors which has relevance by water scarcity. 

Currently agriculture accounts 70% of global freshwater withdrawals. Water is a crucial 

component for food production. Since the biomass production requires huge amount of water to 

be transpired, it won’t be incorrect, if we say that agriculture is both cause and victim of water 

scarcity. Growing demands with population growth has lead to large environmental cost. There 

is an uncertain impacts of climate change on water resources and water demand and similarly 

impact of bio energy production on agriculture and Climate change alter hydrological regimes 

and the availability of freshwater, with impact on rain fed and irrigated agriculture (UN-

Water,2009,2012; FAO, 2008;FAO,2011a). Increase in precipitation in temperate zones, 

reduction in precipitation in Semi-arid areas, extreme variability in rainfall distribution and 

overall increase in temperature has been seen. All this has a particular impact on tropical and 

sub-tropical agriculture (IPCC, 2008). The availability of water is also affected by changes in 

runoff in rivers and aquifers recharge which will add to human pressure on water resources. 

1.2 PROBLEM STATEMENT 

   Each year, in different parts of the world stress disrupt agriculture production and food supply 

resulting to famine conditions. 80-90% of biomass of non woody plants comprises of water. 

When there is a limited water supply to the roots of a plant it directly influence transpiration 

resulting in water stressed conditions. Availability of less water causes physical limitation in 

plants. Movement of water, oxygen and carbon dioxide in and out of plant is governed by 

Stomata. During water stress, stomata close to conserve water which result into closing the 

pathway for the exchange of oxygen, water and carbon dioxide which result into decrease of 

photosynthesis (Porporato et al., 2001). Hence, growth of leaves is affected by water stress more 

than root growth because roots can compensate more for moisture stress. Water stress causes 

reduction in photosynthesis which ultimately leads to reduction in growth and development 
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crop.Factors influencing crop water stress include soil moisture, canopy 

temperature/evapotranspiration (ET), leaf water content and leaf water potential (LWP). 

   Detection of water stress can help farmers in taking proper measure for reducing negative 

impacts on productivity. Water stress can be detected using Ground based techniques and 

remote sensing based techniques. 

   The traditional ground based techniques of stress measurement are based on measurement of 

predawn leaf water potential (Dixon, 1914), leaf pigment concentration (Lichtenthaler, 1987), 

leaf chlorophyll fluorescence (Muller, 1874) and evapotranspiration (ET) (Priestley and Taylor, 

1972).Predawn leaf water potential technique uses pressure chamber for estimating leaf water 

potential. Since past 4 decades, Scholander et al. used this technique to measure trees and 

shrubs water relations. It requires manual operation and is slow and time consuming.Leaf water 

content technique, measures relative leaf water content which assesses the water status of 

plants. Most of the water resides in mesophyll cells of the plant. Relative leaf water content can 

be determined by taking ratio of three weight determinants i.e. fresh weight, dry weight ,turgid 

weight of leaf sample. It is also a time consuming method, comparative difference between 

stressed and non stressed plant are done during morning as the difference between water 

potential is greatest between plants at that time. Leaf pigment concentration technique, the 

theory behind it is that plant pigment concentration varies with species and phenology; with 

natural as well as anthropogenic stress. Healthy plants have generally high chlorophyll content 

than unhealthy plants; reduced chlorophyll is generally associated with stressed condition of 

plant. Two common approaches for quantifying pigments are: (a) conventional chemical 

method which require destructive sampling and time taking laboratory analyses; (b) chlorophyll 

meters that are simple and portable instrument which carryout rapid measurement. Leaf 

chlorophyll fluorescence technique is used more extensively to provide information on the 

functioning of photosynthetic apparatus. This method uses portable optical system and compact 

fluorescence meter. The functioning of the apparatus depends on photosynthesis, several 

environmental factors viz., light, water, nutrients affect this process and lead to plant stress. 

Therefore, this apparatus is recognized as the good indicator of plant stress also because 

changes occur in Chlorophyll fluorescence before any physical sign of deterioration in tissue is 

detected in the plants so stress can be detected before any physical damage done to plants. The 

disadvantage of this technique is that instruments are not made for commercial use. Lysimeter is 

a device which is used to measure actual ET released by plants.  

    All ground based measurement can be used successfully for measuring plant water stress at 

ground level or local regional level, but they are not applicable for large spatial scale like 

remote sensing does. Either ground measurement can be used for ground truthing of remote 

sensing applications. 
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   Remote sensing studies have become widely popular for plant and environmental studies 

during 1980s.Remote sensing helps in providing reliable, quantitative, timely information on 

latest crop condition in a cost-effective manner instead of cost-and-time consuming 

conventional field methods (Bouman, 1995; Le Toan et al., 1997; Shen et al., 2009). Remote 

sensing derived information is used to evaluate spatial and temporal variations in crop growth, 

crop stress and supports for decision making for agricultural development (Shen et al., 2009). 

The spectral characteristic of vegetation is governed by absorption and scattering characteristic 

of leaf internal structure and constituents like water, nitrogen, cellulose and lignin. Cellular 

structure and water content of leaves are detected in near infrared and mid infrared region of 

wavelength, whereas, leaf pigments are detected by visible band. 

   Chlorophyll and water content of vegetation are used as major indicator of plant stress. In 

stressed vegetation, chlorophyll content decreases which results in overall variation in 

absorption of light by leaf pigments. Consequently, it directly affects spectral signature of plant 

by decreasing reflection in green band and increasing in blue and red band resulting in changing 

normal spectral signature of plants (Murtha, 1982; Zarco-Tejada et al., 2000).  Therefore, water 

stress can be detected using Visible, Near Infrared (NIR), shortwave infrared (SWIR) and 

Thermal infrared (TIR) bands. There are different water stress based indices using Visible, NIR, 

SWIR and TIR bands viz., Vegetation water stress index(VWSI), Land Surface Wetness 

Index(LSWI) are SWIR and NIR based indices (Ghulam et al.,2007) while Crop Water Stress 

Index(CWSI),Water Stress Index(WSI) are TIR based indices (Jackson et al., 1977; Jiang and 

Islam, 2001).  

 

   During the past decades, significant efforts have been made in the use of satellite data to 

assess the interactions between land surface and atmospheric processes over a wide range of 

scales(spatial and temporal). Remote sensing based models are an effective way to detect water 

stress for a large area. These models are based on Surface energy balance and turbulent fluxes 

theory through processes associated with surface radiation and energy balance which estimate 

physical properties of land surface like ET and Evaporative fraction (EF) (Su et al., 2001). It 

determines water deficit status of the required area. Examples of such model are SEBI (Surface 

Energy Balance Index), SEBAL (Surface Energy Balance Algorithm), and SEBS (Surface 

Energy Balance System). 

   Water stress, being the most significant environmental stress, negatively affects crop growth 

and development, finally limits crop production, more than any other environmental factor 

(Shao et al., 2009).Water stress at flowering stage commonly results in severe reduction in crop 

yield. A major reason of this is a decline in assimilate flux to the developing ear head (Yadav et 

al., 2004). The influence of water stress over productivity of a crop can be assessed by using 

different productivity models, several process based models such as Biome BGC, BEPS and 

LUE based models require input variables derived from remote sensing. The light use efficiency 
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based model elaborated by Monteith has been widely used in estimating productivity based on 

remote sensing. Different factors are used as an input in this model including water stress scalar 

(Ws). This water stress scalar is incorporated into LUE model by water stress indices derived 

through remote sensing to observe impact of water stress on productivity. 

   Satellite monitoring of vegetation water stress is very important for precision agriculture, 

which relies on timing of irrigation to ensure crops will not suffer from water stress and produce 

maximum potential yield under limited water conditions. In this study, water stress for wheat 

crop was detected using optical and thermal data in parts of western UP and Haryana. 

Moreover, water stress impact on wheat crop productivity was also observed using light use 

efficiency model (LUE model). 

 

1.3 RESEARCH OBJECTIVE 

 

 To assess performance of different approaches of water stress detection from satellite 

data and validation with Eddy Covariance measurements. 

 To analyze importance of water stress factor in controlling cropland productivity over 

space and time. 

 To refine and validate LUE based algorithm for estimating cropland productivity.  

1.4 RESEARCH QUESTIONS 

• How well different approaches of stress detection from satellite data (VIS, NIR, SWIR 

& TIR) could capture water stress in cropland ecosystem under sub-tropical 

environment? 

• How much water stress does control estimation of cropland productivity in sub-tropical 

ecosystem? 

• Can refined LUE model improve accuracy of crop yield/productivity estimation? 
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LITERATURE REVIEW                                                                     Chapter2 

Detection of crop water stress and analysis of its impact on crop production is very important 

step to determine quantitative loss in crop yield. To assess the temporal and spatial variations in 

crop water stress and its impact on wheat productivity, stress indices, crop growth and yield has 

to be understood and assessed at regional scale. Satellite remote sensing by virtue of its synoptic 

view coverage, repetivity and multispectral information becomes an important source of spatial 

information and agriculture resource crop acreage, crop condition and crop growth to evaluate 

this abiotic stress of crop during various crop growth stages. Literature pertaining to the 

objectives of the present investigation is reviewed and presented under following sections: 

 

2.1 ATMOSPHERIC CORRECTION OF SATELLITE DATA 

   Satellite images require atmospheric correction before proceeding for any study or undergoing 

further processing to derive different earth surface parameters with space borne imagery it is 

necessary to convert digital numbers into radiance and reflectance, since the data which 

provided to the user is in the digital numbers (DN). Studies that intend to use remote sensing 

data to determine ground surface characteristics such as biomass, phonological changes, leaf 

area index and yield estimation requires the conversion of digital numbers into target 

reflectance. To make multi-temporal and multi-sensor images comparable, digital numbers(DN) 

should be converted into physical units (Price, 1987). 

   There are several atmospheric correction techniques available (i.e. SMAC algorithm,6S code, 

FLAASH etc.) but the major disadvantages with them is that they require information other than 

satellite data product like path radiance, atmospheric transmittance at several locations collected 

within the image area during the satellite overpass. Under such conditions, a new but efficient 

tool ATCOR (atmospheric correction technique) is better option, it even consider topographic 

effect and has the capability to process thermal data. It also has an advantage of supporting all 

major commercial sensors with a sensor specific database of look up table (LUTs) which 

contains results of pre-calculated radiative transfer calculations. Integral part of ATCOR is its 

large database which contains results of radiative transfer calculations based on Modtran5 code. 

   The atmosphere influences the amount of electromagnetic energy that is sensed by detectors 

of an imaging system and these effects are wavelength dependent (Sabins Jr, n.d.);(Slater, 

1980). The radiance received at the satellite is affected by the atmosphere by refraction, 

scattering and absorbing of light. Hence for correction of such effects and sensor gain and  
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offset solar zenith angle and solar irradiance must be included in radiometric corrections 

procedure that convert DN values to ground reflectance (Chavez, 1996). Liang et al., 2001 

showed that atmospheric correction is a necessary step to extract quantitative information from 

Landsat Thematic Mapper-Plus imagery .ATCOR has also been used for atmospheric correction 

of airborne hyper spectral data of Antarctic region (Black et al., 2014). 

2.2 CROP INVENTORY MAPPING FOR CROP STRESS DETECTION 

   In Agriculture Sector inventory of crop acreage and production at regional environment 

condition is the basic need for studying spatial and temporal characteristic of sustainable 

agriculture productivity. The conventional techniques for crop production estimation are timely 

reporting scheme and yield estimation from crop cutting experiment (CCE). Such reports are 

costly ,contains large errors, subjective and time consuming  due to incomplete ground 

observation .which leads to poor area  and crop yield estimation(Reynolds et al., 2000). Remote 

sensing data has great potential in mapping and doing inventory of different crops and Land use 

Land cover classes because satellite sensors has advantage of synoptic view and temporal 

repetivity. 

   DeFries et al., 1995 described the utility of multi temporal AVHRR dataset for land cover 

classification. Use of coarse resolution satellite data for distinguishing irrigated and rainfed 

agriculture in ecological modeling, water resource management and primary productivity 

assessment in a regional scale (Hooda and DYE, 1995). Patel et al., 2001 carried out study using 

LISS-III in Solani Watershed to derive agriculture land use for both Kharif and Rabi season 

along with other land cover categories. Both Kharif and Rabi season crop were identified using 

visual interpretation of LISS-III images acquired for Kharif and Rabi season and the statistics of 

that area was derived by integrating the two season maps on pixel by pixel basis in GIS 

environment. Further, Patel and Pande (2002) revealed that NDVI derived from multispectral 

AVHRR data was a good indicator of vegetation vigor and non-parametric classifier such as the 

rule based or hierarchical classification procedure could be easily employed with temporal 

NDVI for generating broad land use/land cover characteristic. Field based crop classification 

was also done using temporal profile of NDVI from Landsat data by rule based 

classifier(ŞENCAN, 2004). 

2.3 REMOTE SENSING DERIVED WATER STRESS INDICES 

   There are several remote sensing based indices which consist of NIR, SWIR and TIR bands 

and can be used for detecting water stress for different crops. Water stress indices are often 

used in assisting farmer to maximize the crop yield when optimizing the irrigation system 

(López López et al., 2009). With thermal infra-red remote sensing surface temperature can be  
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monitored and can be related with crop water stress (Idso et al., 1977); (Jackson et al., 1981); 

(Idso, 1982); (Clawson and Blad, 1982). Transpiration makes leaf surface cooler because net 

radiation is consumed to evaporate plant water, this fact is used in detecting vegetation stress 

with canopy temperature (Usman et al., 2009). There are various successful examples of use of 

water stress indices viz., Critical Temperature Variability(CTV),(Clawson and Blad, 1982),Crop 

Water Stress Index(CWSI),(Jackson,1982) and Water Deficit Index(WDI),(Moran et al., 

1994)for crop water stress detection. 

 

2.3.1 WATER STRESS INDEX FROM THERMAL REMOTE SENSING 

 

   This index was introduced by Jiang–Islam (2013) by interpretation of relationship of 

normalized difference vegetation index and land surface temperature. (NDVI-Ts)which provide 

the basis to estimate Evapotranspiration (ET) by modifying Priestley and Taylor’s equation 

(Priestley and Taylor, 1972).This was modified Water Deficit Index(WDI) which was proposed 

by Moran et al., 1994 where instead of potential evapotranspiration concept wet environment 

transpiration was used. This method is based on the NDVI-Ts scatter plot. Price, 1990 was the 

first to introduce the idea of deriving spatially explicit maps of latent heat fluxes via 

mathematical description of how remotely sensed measurement points fell within NDVI-Ts 

scatter plot. Knowledge of sensible (H) heat fluxes , Latent (LE) heat fluxes and soil water 

content are of great importance to many environment application including the monitoring of 

crop growth , productivity and crop water requirement and also for the  procedures such as 

irrigation and cultivation management (Kustas et al., 2004) ; (Dodds et al., 2005)(Consoli et al., 

2006). Such data are also very important for  numerical modeling and for predicting 

atmospheric and hydrological cycles(Jacob et al., 2002).  

   The ability of satellite remote sensing to provide synoptic views in a spatially contiguous 

fashion without disturbing the area to be surveyed make it attractive for retrieval of such 

parameters (De Troch et al., 1996). The combined use of satellite data in from optical and 

thermal radiometers has been promising for retrieval of LE and H and soil surface water 

deviations.(Sandholt et al., 2002);(Stisen et al., 2008).There are some residual methods which 

are based on information derived from scatter plot relation between vegetation indices(VI) and 

surface temperature (Ts). Ts /VI group of methods require relatively few parameters measurable 

over larger areas. They have a great ability to deal with surface heterogeneity and contain 

potential to provide easy transformation between instantaneous and averaged daytime flux. 

Taking measures from heterogeneous areas and plotting a feature space between remote sensing 

derived Ts /VI to form a scatterplot in triangular or trapezoidal shape for analysis of biophysical 

properties closed in the Ts /VI envelope and also for the estimation of land surface energy 

fluxes. Goward et al., 2002 suggested the potential of using scatter plot derived rate of change 

of Ts with vegetation amount to diagnose the surface resistance to moisture fluxes. Hope et al., 



 

8 
 

1986 used simulations from canopy reflectance model to conform that increase in vegetation 

amount as indicated by satellite derived vegetation indices measured, resulted in decrease in 

area averaged minimum  canopy resistance and to increase in latent heat flux. Nemani and 

Running, 1989 used AVHRR data to relate slope of Ts/VI relationship over a coniferous forest 

in USA to the regional surface resistance. Carlson and Buffum, 1989 studied Ts/VI feature 

space properties using one dimensional boundary layer model of Goward et al., (1985). Carlson 

et al., 1990 showed that the sensitivity of Ts to soil moisture variations differs for the leaf and 

surface soil around the plants, and tends to be much greater between areas of bare soil rather 

than across the leaves.  

   Ridd, 1995, Carlson et al., 1995a and Gillies and Carlson, 1995 further illustrated how different 

parts of the Ts/VI triangle/ trapezoidal space correspond to different biophysical properties. 

Moran et al., 1994 ,Carlson et al., 1995b and Gillies and Carlson, 1995 used different spatial 

data sets to demonstrate that the boundaries of the triangular shape might be used to infer the 

physical constraints for the  solution of the surface energy fluxes and surface soil moisture 

availability. Figure.2.1demonstrates Ts/VI feature space. 

 

 

 
 

Figure 2.1: .Summary of the key descriptors and physical interpretation of Ts/VI feature space or scatterplot. 

(Source: synthesized from previous work of (Lambin and Ehrlich, 1996), (Sandholt et al., 2002) and (Nishida 

et al., 2003). 
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2.3.2 WATER STRESS INDEX FROM OPTICAL REMOTE SENSING 

    

   As an alternative to thermal measurement, various water stress indices have been introduced 

using Short wave infrared band (SWIR) and near infrared index (NIR), SWIR band is sensitive 

to equivalent water thickness while NIR band is sensitive to variations in dry matter 

content.NIR and SWIR bands are used to detect effects of drought on vegetation water content 

and water stress (Ghulam et al., 2008a);(Claudio et al., 2006);(Cohen, 1991);(Hardisky et al., 

1983);(Hunt Jr et al., 1987);(Ripple, 1986);(Tucker, 1980). The water indices using SWIR band 

is appeared more useful in extracting information about vegetation water status, water 

sustainability studies and in draught detection (Kim, 2006). SWIR region is least affected by 

ozone and Rayleigh scattering moreover, it is also less affected by water vapor and aerosol 

content.(Vermote et al., 2002) 

   Vegetation water stress index(VWSI) uses NIR and SWIR reflectance band  to form trapezoid 

to create minimal and maximal waterlines for slope and intercept which is crop specific. 

Ghulam et al., 2008a created a statistical method which was based on Scatter plot of NIR and 

SWIR in trapezoidal shape which surrounds the data to determine the amount of water stress for 

one pixel which is compared with other pixel in scatter plot. 

   Land surface wetness index (LSWI) is a measure of interaction of liquid molecules in a plant 

canopy (Gao, 1996) ,that is why it is sensitive to the total liquid in crop. The index derived from 

SWIR and NIR has different nomenclature for different author (Gao,1996) and (Chen et al., 

2005) called it as NDWI(Normalized Difference Water Index). Xiao et al., 2004 called it LSWI 

(Land Surface Water Index). 

 

2.4 USE OF WATER BALANCE AND ENERGY BALANCE CONCEPT FOR 

EVAPOTRANSPIRATION ESTIMATION 

 

   The water availability at root zone is very important for supporting growth and productivity of 

crop. When rain water or irrigation reaches soil surface it undergo many processes some of it 

infiltrate into soil, some of it moves out as surface runoff. Water which infiltrate may also 

directly evaporate from soil surface to the atmosphere. Most of it is consumed by plant roots for 

growth and transpiration, water also accumulate within root zone and can also moves downward 

beyond rootzone.When rainfall and irrigation water content is not sufficient, the soil water 

content gets reduced to such levels which cannot tolerate crop water requirement. This led to 

less actual evapotranspiration than crop water requirement and hence plants experience water 

stress. 
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   Actual evapotranspiration is a fraction of crop water requirement which depends on soil 

moisture availability. Mostly actual evapotranspiration approaches to crop water requirement 

during active growth stages of crop when sufficient moisture is present in soil.  

However, it also falls below crop water requirement in earlier stages of growth before full 

canopy coverage and at the end of crop growing stage. As a result, rainfed crops covering more 

than 80 % of global cropped area and 60-70 % of global crop production is frequently limited 

by moisture stress (Biggs et al., 2008). 

  Evapotranspiration is a process which governs hydrological cycle and energy transport 

between soil-water-vegetation system and atmosphere(Senay et al., 2008). The process 

combines two separate and simultaneous process evaporation and transpiration. Evaporation 

occurs on open water bodies surfaces, bare ground and vegetation whereas transpiration 

transpires water from soil through  plant roots and leaf (Senay et al., 2011). The two processes 

occur simultaneously and require a source of water ,energy and slope of vapor (Kalma et al., 

2008). Natural hazards, global warming and species extinction are the main cause of global 

environment change which is the matter of today’s concern. Evapotranspiration governs these 

processes and play important role in agriculture and hydrology for prediction and estimation of 

global climate change. For determining crop water stress the spatial distribution and accurate 

quantification of evapotranspiration is important. Understanding the rate and amount of 

evapotranspiration is important for monitoring hydrological and agricultural systems (Elhag et 

al., 2011). Due to its important role in agriculture, meteorology and hydrology it can be used as 

an important in determining water stress. 

 

   Crop characteristics, radiation, air temperature are weather parameters affecting ET. Although 

ET can’t be measured directly, there are some conventional Evapotranspiration estimation 

techniques i.e. pan measurement, eddy correlation system, Bowen ratio, weighing Lysimeter. 

Conventional techniques are field based and provide better ET estimation for homogenous 

area(Li and Singh, 2009). Most of these techniques require surface and land parameters which 

are difficult to obtain for larger area and thus restrict its applicability to large area. However, 

remote sensing based estimation of ET provide consistent and economic feasibility on regional 

scales (Irmak, 2008), Beside this it also provide continuous spatial information within shorter 

time period and practically useful for inaccessible areas. Work has been done to derive 

evapotranspiration from remote sensing without site specific relationship by using Priestly-

Taylor equation and Grangers complementary relationship. Such relationship incorporates 

atmospheric conditions in relative evaporation coefficient without getting dependent on in-situ 

conditions. But this approach does not distinguish between soil and vegetation temperature 

profile (Venturini et al., 2008). ET can also be estimated by using surface temperature- 

vegetation index (Ts-VI) triangle approach. This approach determines quantitatively the dry and 

wet edges of triangle space using MODIS dataset. However, determining these edges require 

high rate of uncertainty especially in arid and semi-arid areas also in cloudy conditions it 
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become difficult to determine dry pixels and wet pixels moreover it was difficult to determine 

dry pixels in short duration after rainfall which will give maximum evapotranspiration (Tang et 

al., 2010). 

   MODIS global terrestrial ET was developed by Mu et al., (2007) however its algorithm was 

modified in 2011 by simplifying the calculation of vegetation cover fraction. ET was calculated  

as the sum of day and night time components by adding calculations of soil heat flux and by 

improving estimates of stomatal conductance, boundary layer resistance, aerodynamic 

resistance and also by separating dry canopy surface from wet canopy surface, it also divided 

soil surface into moisture surface and saturated wet surface. This modification provided very 

critical information on global terrestrial water and energy cycles and environment change. 

However this modification hasn’t been validated yet (Mu et al., 2011). 

 

   Zhang et al., 2008 have estimated evapotranspiration by using three different models namely 

Pennmen-Monteith, Clumping model and Shuttle-Wallace. Shuttle worth-Wallace model 

assumes that there is blending of heat fluxes from leaves and soil whereas clumping model use 

Shuttle worth Wallace model by separating soil surface into fractional area inside and outside 

the influence of canopy. Out of these three, clumping model derived best ET correlated with in-

situ observation but overestimates after rainfall duration. However, these results were site-

specific. MODIS NDVI data and Global Land Data Assimilation System(GLDAS) 

meteorological data was used to calculate ET in ungauged basins making it completely 

independent of field data.Ts-NDVI method has the limitation in range of NDVI, so this can be 

only applied for wide range of NDVI to make expected trapezoid from Ts-NDVI space 

moreover it is unable to consider ET during night time and cloudy daytime (Du and Sun, 2012). 

 

   Kalma et al., 2008 pointed out that solutions of surface energy budget are surface energy 

models. There are several other models which are remote sensing and field measurement based 

such as surface energy balance algorithm (SEBAL) which was developed by (Bastiaanssen et 

al., 1998), ET derived from SEBAL was spatially distributed and calculated sensible heat flux 

by using wind speed from single weather station it also used hot and cold points of satellite 

image to provide empirical temperature difference equation. Zhang et al., 2011 modified 

SEBAL approach. Almhab and Busu, n.d derived ET by using SEBAL approach from 

Advanced Very High Resolution Radiometer (AVHRR) onboard NOAA-14 satellite and 

Landsat TM in Mountainous terrain of Sana’s basin in Yemen. Results showed that AVHRR 

derived ET are reasonable however ET derived from Landsat shows better results because of 

high resolution. Similarly other models are-The Surface energy balance index (SEBI) (Menenti 

and Choudhury, 1993),The Simplified surface energy balance index (S-SEBI) (Roerink et al., 

2000), Mapping Evapotranspiration with internalized calibration (METRIC) (Allen et al., 

2007). 
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   The SEBS (Su, 1999) was introduced to estimate atmospheric turbulent fluxes, actual 

evapotranspiration (ET) and evaporative fraction using satellite image and meteorological 

information at proper scale. SEBS includes a set of tool for deriving physical parameter of land 

surface such as albedo, land surface emissivity and land surface temperature from spectral 

radiance and reflectance of satellite earth observation data. Ma et al., 2012 derived actual ET 

from Landsat 5 TM by using SEBS on irrigated area. They used multi-temporal satellite image 

for obtaining daily ET and then compared the results with ground measurement data in which 

they found SEBS results to be very similar to ground measurements. 

 

2.5 CROP YEILD ESTIMATION USING REMOTE SENSING 

 

   The two important criteria for sustainable land management are crop yield and crop variability 

(Smyth and Dumanski, 1993). The average crop yields are often used to assess yield 

performance, but are not used for evaluating sustainable farming system. The reason behind it is 

that average yield signifies long term normal yield without providing information on 

performance over space and time. Hence crop yield modeling is challenge for many researchers. 

Agriculture is a major user of satellite remote sensing data. Projects like Crop acreage and 

Production estimation (CAPE) was in process for more than a decade to estimate crop 

production using satellite observations in India for crops like wheat,sorghum,groundnut,cotton 

and mustard in their major growing areas (Navalgund et al., 1991a). Other project is FASAL 

(Forecasting Agricultural Outputs Using Space Agrometeorology and Land based observation) 

which strengthened the current capability from econometric and weather based techniques with 

remote sensing applications (Parihar, 1999). Emergence of yield forecasting came into existence 

due to (i) the ability of satellite to supply observations over large areas which led to provide 

crop monitoring techniques with possible spatial extent and (ii) strong correlation between 

satellite derived vegetation indices and different crop parameters. 

 

   Using remote sensing data yield modeling can be done by two approaches firstly, satellite 

based derived parameters are directly related to yield (Dubey et al., 1991). Maximum linear 

relation has been seen for NDVI with yield for various crops in Punjab and Haryana. Secondly, 

remotely sensed data derived biophysical parameter like LAI are used in yield model (Saha and 

Bairagi, 1998). Moreover temporal profiles of remote sensing data used in estimating spectral 

growth parameters are highly correlated to crop yield (Dubey et al., 1991). There are number of 

crop yield prediction models using remote sensing developed for wheat and used in crop 

forecast (Parihar, 1999). 
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2.6 CROP YIELD ESTIMATION USING REMOTE SENSING AND LIGHT USE 

EFFICIENCY MODEL 

 

   The light use efficiency of a plant canopy is defined as ratio of net primary productivity to 

absorbed photosynthetically active radiation. Net primary productivity is approximately 

constant with respect to changes in Absorbed photosynthetically active radiation (APAR) which 

means that Net primary productivity can be modeled by making linear relationship with 

(APAR). Common Light use efficiency model was originated with (Monteith, 1972),(Monteith 

and Moss, 1977) who found linear relationship between net primary productivity and APAR for 

different range of crops in Britain which led him to conclude that photosynthetic radiation use 

efficiency was a conservative parameter. Such linear relationship was observed by (Gallagher 

and Biscoe, 1978) for several field crops.  

   The effects of environmental factors like water stress, temperature and nitrogen availability is 

focus of theoretical (Hunt and Running, 1992)(Runyon et al., 1994),(Sands, 1996) and 

experimental work (Gallagher and Biscoe, 1978)(Legg et al., 1979),(Wright et al., 1993). LUE 

models have been used to estimate regional and global patterns of GPP and NPP at various  

spatial and temporal (Potter et al., 1993)(Prince and Goward, 1995),(Landsberg and Waring, 

1997). 

   The major parameter of a LUE model is fraction of absorbed PAR (FAPAR). In  general, 

FAPAR can be derived from remote sensing data due to the link between absorbed solar energy 

and satellite derived vegetation indices (Myneni and Williams, 1994). Linear relationship 

between  FAPAR and NDVI has been shown in different studies for different biomes(Ruimy et 

al., 1994);(Saugier,1994);(Myneni and Williams, 1994);(Law and Waring, 1994). This linear 

relationship between FAPAR and NDVI can be applied in LUE model for addressing temporal 

and spatial variation in gross primary productivity (GPP). 

   There are different models used for assessment of GPP- the Global Production Efficiency 

Model (GLO-PEM) (Prince and Goward, 1995) which simulates global GPP and NPP by 

directly retrieving APAR from Satellite data, the 3-PG model(Physiological Principles in 

Predicting Growth) (Landsberg and Waring, 1997) which was used to calculate forest GPP 

using APAR and LUE, the Vegetation Production Model(VPM) (Xiao et al., 2004) in which 

potential Light Use Efficiency is affected by leaf phenology, temperature and land surface 

moisture conditions. The C-Fix model (Veroustraete et al., 2002),CASA model (Potter et al., 

1993) for deriving Net Primary Productivity. The input parameters of LUE model derived from 

remote sensing are discussed below:  

 

2.6.1 FRACTION OF ABSORBED PAR (FAPAR) 

 

   Spatial and temporal scales information on PAR is needed for applications dealing with 

productivity (Running et al., 2004). The proper observation of FAPAR is suitable to monitor the 
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seasonal cycle and inter-annual variability of activities of vegetation related to photosynthesis. 

FAPAR varies in space and time due to difference between species and ecosystem, human 

activities and weather and climate processes(Myneni and Williams, 1994) defined FAPAR as 

fraction of incident PAR absorbed by photosynthesizing tissue in a canopy fraction of PAR 

absorbed by vegetation (Chen, 1996);(Gower et al., 1999);(Tian et al., 2000). It is difficult to 

measure FAPAR directly, but it can be derived from models which describe the transfer of solar 

radiation in plant canopies, using remote sensing observation as component. 

   Absorption of radiation by leaves is of greater concern than any other part of plants in 

environmental application. Ground based estimation of FAPAR requires simultaneous 

measurement of PAR above and below canopy as well as architecture information to account 

for the no leaves absorption. FAPAR is also retrieved from space remote sensing platforms by 

numerically inverting physically based models. Most of the derived products represent only the 

fraction absorbed by green part of leaf canopy. Since it is a ratio of two radiation quantities 

FAPAR is a dimensionless variable. 

 

2.6.2 VEGETATION INDICES TO DERIVE FAPAR 

 

    A single spectral band contains insufficient information for characterization of vegetation 

structure and status (i.e. health, canopy geometry) so combination of two or more spectral bands 

by band ratios and development of  vegetation indices took place to incorporate more 

information on vegetation (Qi et al., 1994). Most of the vegetation indices use red and near 

infrared band (NIR) (Baret and Guyot, 1991). Vegetation indices are quantitative measurements 

indicating vigour of vegetation (Campbell, 1987), they show better sensitivity than individual 

spectral bands for detection of  biomass (Asrar et al., 1984). Most common used indices to 

derive FAPAR, LAI and other surface parameters from space-borne and air-borne remote 

sensing data are Simple ratio(SR) and normalized difference vegetation index (NDVI) (Rouse Jr 

et al., 1974). These vegetation indices have been found very well correlated with various 

vegetation variables like green leaf area(Asrar et al., 1984), standing biomass(Tucker, 

1979),FAPAR(Sellers, 1985) and productivity(Asrar et al., 1985). 

 

2.6.3 LIGHT USE EFFICIENCY 

 

   LUE can be expressed as dry mass formed per unit of absorbed photosynthetically active 

radiation (APAR). All crops don’t have similar efficiency for utilizing intercepted sunlight. 

Crop geometry, structure, spatial distribution of leaves and their angle are factors that affect 

LUE. NPP studies at regional and global scale require accurate estimation of APAR and LUE. 

LUE is known to exhibit both spatial variation across vegetation types(Gower et al., 

1999);Turner et al.,2002) and temporal variations at individual sites(Campbell et al.,2001; 

(Nouvellon et al., 2000), Consequently generating valid representations of LUE is specially 
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difficult in regions with substantial cropping because native vegetation and crops often have 

different LUE value which create spatial heterogeneity which can’t be captured by remotely 

sensed reflected observations (Gower et al., 1999). Hence a common approach  is to incorporate 

information about vegetation type , temperature and water availability conditions for LUE 

calculations (Ruimy et al., 1994). LUE values are generally highest for C4 crops ,lower for C3 

crops and lowest in grassland (Gower et al., 1999);(Ruimy et al., 1994). 

 

   Individual studies have shown that LUE varies with factors such as species composition, stand 

age, foliar nutrients and soil fertility (Gower et al., 1999). Moreover the relationship between 

optical remote sensing based NDVI and FAPAR is generally considered to be near 

linear(Sellers, 1985);(Ruimy et al., 1994) and consequently NDVI is frequently used with an 

estimate of maximum light use efficiency (LUEmax) in  models to calculate productivity 

(Ruimy et al., 1999). To assess the impact of water stress over productivity, water stress scalar 

is used as one of the important factor in LUE model(Monteith, 1972). Variations in water 

situation can cause reduction in LUE and thus finally affect productivity. Satellite based derived 

water stress index can be used as a proxy for water stress (Ws = 1-ET/ETm) which is defined as 

the function of ratio of actual ET to potential ET rates on the earth surface in LUE model for 

estimating productivity affected by water stress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

16 
 

STUDY AREA                                                                           Chapter-3 

 

3.1 STUDY AREA 

 

   Study area comprises of Western Uttarpradesh and some parts of Haryana. Western U.P 

contributes to 34 percent of total food grain production at state level and 6 percent at national 

level. Sugarcane is the dominant crop of this region and Wheat is the dominant crop of Haryana. 

Major population of this area depends upon agriculture Wheat, Rice, oilseeds, pulses and 

potatoes are major agriculture product. It also supports 15% of India’s total livestock 

population. 

 

3.2 LOCATION 

 

   The study area is located between 26.4 deg and 30.21deg latitude and 77.3 deg and 80.4 deg 

longitude. The holy river Ganga provides the boundary to the north region separating it from 

hilly areas and Tarai regions of U.P, western area is separated by river Yamuna which separates 

it from Haryana and Delhi. The study was conducted in five districts of western UP 

(Meerut,Ghaziabad,Baghpat, Gautambudhnagar and Muzzafarnagar) and small area of Haryana 

(i.e. Sonipat and Panipat). Haryana state is bounded on Northwest by the state of Punjab and 

union territory of Chandigarh from North and Northeast by Himachal Pradesh and Uttarakhand 

and on south and south west by Rajasthan. 

 

3.3 SOILS 

 

   Soil of Western UP is alluvium, coarse to medium in texture and moderately alkaline. They 

appear dark grey which indicate high organic matter composition. Region is spread with loam 

and silty to silty clay loam in most part of the region.Whereas in Haryana soils are generally 

deep and fertile exception occurs in Northeast and south west area where eroded and sandy land 

occur. 

 

 

 

 

 

 



 

17 
 

 

 

 

                                            

3.4 CLIMATE 

 

   In Western UP rainfall is highly irregular, uncertain and unevenly distributed. About 80% of 

total rainfall is received in June to September. Long dry spells are usually experienced during 

Rabi season. A small amount of precipitation is received during dry spells of Rabi season 

provide boost to Rabi season crops. The maximum and minimum temperature increase from 

January to April in both weather station of western Uttarpradesh, January month is the coolest 

month with minimum temperature of 5.0 and 5.6 degree in Meerut and Muzzafarnagar 

respectively. In Haryana in summers maximum temperature raise to 45 degree Celsius in May 

and June and January is the coldest month where temperature may fall below freezing point. 

Precipitation averages around 450 mm annually between July and September. 

 

 

3.5 FARMING SYSTEM 

 

   Crop production is the major enterprise of farming community. Dairying forms another 

farming enterprise in this region. Agro-horticulture and agro-forestry are also emerging 

enterprises of farming system in this region. Sugarcane is the pre dominant commercial crop 

cultivation of this region. Field preparation for wheat cultivation generally starts in the month of 

November and continues till second fortnight of December because of delayed harvesting of 

Figure 3.1: Location Map of the study area 
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sugarcane. More than 90% of area is covered with irrigated wheat with average of 4 to 5 

irrigation is provided to the crop. Haryana contributes a good production of Wheat and Rice .In 

addition cotton, pearl millet, mustard and rapeseed, Chickpeas, Sugarcane, Sorghum and corn. 

Dairy cattle, Buffaloes and bullock are used in field work. Haryana is well known for its 

contribution in Green Revolution. 

 

3.6 CROPPING SYSTEM 

 

    Double cropping is the most popular practice. Dominant cropping system is Sugarcane-

Ratoon-Wheat. Other cropping systems practiced in west UP are sorghum-wheat, rice-wheat, 

and pearl millet-wheat. Wheat and Sugarcane both cover more than 57% of cropped area. Other 

important crops are Rice, Rapeseed and Mustard. In Haryana region, major cropping system is 

Rice-Wheat. Other cropping systems are Cotton-Wheat, Rice-other crops, Bajra/Jowar/Gwar-

Wheat, Bajra-Mustard, Bajra-Pulses. 

 

3.7 CROP ROTATION 

 

Crop Rotation followed in Western Uttarpradesh is: 

 Sugarcane-Ratoon—Wheat + Mustard 

 Sugarcane-Ratoon-Oat 

 Fodder Sorghum-Sugarcane-Wheat 

 Rice-Berseem+Mustard 

 Fodder Sorghum – Rapeseed and Mustard 

 Fodder Sorghum –Potato –Moong 

 

Crop Rotation followed in Haryana is: 

 Pearl millet – Wheat 

 Pearl millet – Chickpea 

 Pearl millet – Sorghum 

 Wheat - Rice 
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MATERIALS AND METHODOLOGY          Chapter-4                                          

 

Many studies were carried out in India and abroad to demonstrate usefulness of remote sensing 

data to quantify different biophysical parameters and agricultural studies. Looking at potential 

of remote sensing various methods and techniques are developed in relating remotely sensed 

signatures from satellite sensors to crop parameters, crop water stress and final yield of wheat is 

discussed in following sections. 

 

4.1 DATA USED 

 

   To achieve the objective in present study the following satellite products, ancillary data and 

software have been used. 

 

4.1.1 REMOTE SENSING DATA 

 

   Satellite dataset used for this study was Landsat 5-TM, Awifs, Landsat 8. Details are given in 

following table 4.1 

 

Table 4.1: Details of satellite data products used in this Study 

S.no. Data Type Date of acquisition Path/Row Resolution 

1. Landsat 5 TM 11
th
 November 2009 

14
th
 February 2010 

4
th
 April 2010 

146/40 30m 

2. Awifs 24
th
 December 2009 

31
st
 January 2010 

20
th
 March 2010 

95/52 

93/52 

93/49 

56m 

3. Landsat 8 21
st
 November 2013 

7
th
 December 2013 

8
th
 January 2014 

9
th
 February2014 

13
th
 March 2014 

14
th
 April 2014 

 

146/40 30m 
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4.1.2 ANCILLARY DATA 

 

   Survey of India topographic sheets of numbers 53G, 53K, 53H and 53L at 1:250,000 scales 

have been used for this study. Weather data for 2009-10 and for 2013-14 was obtained from 

Department of agriculture, Sardar Vallabhai Patel University of Agriculture and Technology 

(SVPUAT). 

 

4.1.3 INSTRUMENT USED 

 PAR/LAI Ceptometer (AccuPAR model LP-80) - It is a portable linear 

photosynthetically active radiation (PAR) sensor used to calculate canopy PAR 

interception and LAI of vegetation canopy non-destructively in real time.  It consists 

of an integrated microprocessor driven data logger with a probe in which 80 sensors 

are placed at 1 cm of distance. Instrument is capable of taking hand-held or 

unattended measurements  
 Garmin GPS – It is used for tracking coordinates for sample site and data collection.  

 

4.1.4 SOFTWARE USED 

 Erdas Imagine 9.2, 2013 for image processing 

 ENVI 4.5 for image processing 

 ArcGIS 10 for database creation and analysis 

 ILWIS 3.8.3 for SEBS 

 Microsoft Office 2007 

 MATLAB for statistical and graphical analysis 
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    The Methodology adopted for this study can be understood by the following flowchart 

 

 
                                                      Figure  4.1: Methodology (Part-1) 

 

                                                      Figure 4.2: Methodology (Part-2) 
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4.2 GROUND MEASUREMENTS 

 

     Leaf area index and Fraction of photosynthetically active radiation are important ground 

measurement property. Leaf area index can be defined as one sided leaf area per unit ground 

area. It is an important structural property of a plant canopy. FAPAR measures the proportion of 

available radiation in the photosynthetically active wavelength (400-700nm). In ground, LAI 

and FAPAR were measured in randomly selected samples sites which have homogeneity and 

sufficient aerial extent. GPS coordinates were also recorded for the sample sites for accurate 

identification of particular locations and for further analysis. Ground measurement site map is 

shown in figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                      Figure 4.2: Ground measurement site map 
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            Figure.4.4: Ground data measurement 



 

24 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Vegetative growth of wheat during different months in Western UP 

and Haryana 
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4.2.1 FRACTIONOFABSORBED PHOTOSYNTHETICALLY ACTIVE RADIATION       

(FAPAR) MEASUREMENTS 

 

   FAPAR was measured by using AccuPAR instrument, this instrument record the amount of 

PAR intercepted above canopy and below canopy in an open field. Hence the radiation falling  

Above the canopy can be absorbed and reflected even at the soil surface. For estimation of 

FAPAR above phenomenon was used: 

I is the incoming PAR reading above canopy, 

B is the incoming PAR below canopy, 

With these readings we can derive absorbed photosynthetically active radiation (APAR) 

                APAR= I – B ………………… (4.2.1.1) 

Further, The Fraction of absorbed PAR can be derived by: 

              FAPAR = APAR / I ……………. (4.2.1.2) 

 

4.2.2 LEAF AREA INDEX (LAI) GROUND MEASUREMENT 

 

   LAI was measured by placing instrument once above canopy and three times below canopy. 

From every sample site two three readings of LAI was measured. The estimated LAI was then 

averaged out to represent field LAI. 

 

4.3 PRE-PROCESSING OF SATELLITE DATA 

 

   Satellite data need to be converted to reflectance values from raw digital numbers and also 

needs haze removal if haze exists, for better visuality of the image. 

 

4.3.1 HAZE REMOVAL 

 

   In many of the satellite imagery the scenes contain haze and their removal can be performed 

in ATCOR before atmospheric correction. In radiance signal, haze is an additive component. 

Since the algorithm for haze removal runs fully automatic in ATCOR. It is a combination of 

Richter (1996 b) and Zhang et al (2002). Haze removal consists of five major steps: 

 Clear and hazy areas are masked with the tasseled cap haze transformation (Crist and 

Cicone1984) 

                TC= x1*BLUE + x2*RED …………. (4.3.1.1) 
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Where BLUE and RED are blue, red bands and x1 and x2 are weighing coefficients. 

Clear area pixels are taken as those pixels where tasseled cap (TC) is less than mean 

value of TC. 

 

Calculation of regression between blue and red band for clear areas, if no blue band exist than 

green band is used as a substitute. 

 Haze areas are orthogonal to ―clear line‖,i.e haze optimized transform which is called 

HOT and can be defined as (Zhang et al.,2002) 

                         HOT=BLUE *sinα – RED*cosα ……………. (4.3.1.2) 

 Then histogram of HOT is calculated for haze areas 

 Histograms are calculated for each HOT level j below 800nm band. The haze signal ∆ 

which has to be  subtracted is computed as digital number corresponding to HOT (level 

j) minus digital number corresponding to 2% lower histogram threshold of HOT(haze 

areas).Finally the dehaze new numbers will be 

                                  DN (new) = DN - ∆ …………………. (4.3.1.3) 

 

4.3.2 ATMOSPHERIC CORRECTION OF SATELLITE DATA (IN ATCOR) 

 

   In ATCOR, atmospheric correction function database have been compiled, which enables the 

conversion if raw data (DN values) into ground reflectance images. The atmospheric correction 

functions are saved as a look up tables (LUT) in the database and consist of the following 

parameters: 

 Standard atmosphere –where air temperature, altitude profiles of pressure, water 

vapor content and ozone concentration is taken from model MODTRAN-2, presently 

the following atmospheres are available: 

1. Midlatitude summer atmosphere 

2. Tropical atmosphere 

3. US standard atmosphere 1976 

4. Fall atmosphere 

5. Midlatitude winter 

 Aerosol type-Rural, Urban and other(maritime and desert) 

 Range of aerosol concentration- we need to define aerosol optical depth in the form of 

visibility range which is 5-120 km. 

 Solar zenith angles- solar zenith angle is also required which ranges between 0 -70. 

 Range of ground elevations- calculations are performed for elevation above sea level 

corresponding to pressure levels. In this way, the Rayleigh optical depth for places of 

different elevations is considered. 

 The atmospheric correction functions also depend on spectral response of sensor, thus 

there are different function for each sensor and each band. 
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 The atmospheric correction here also depends upon sensor view angle. 

 

4.4 CROP DISCRIMINATION 

 

   Discrimination of crops in remote sensing images can be done by adopting any classification 

technique which can generate a classified map. The theory is based upon the fact that each crop 

has unique spectral signatures. Spatial, spectral and radiometric characteristic of the sensor, date 

of image acquisition and classification technique influences crop identification using remote 

sensing data. In this study Rule based classification technique was adopted using high resolution 

data i.e. Landsat. Since study was focused on wheat crop various land use and land cover 

classes was prepared and crop inventory was carried out. Rule based classification was 

performed using temporal NDVI images prepared from Landsat data. 

   Accuracy assessment of classified map was also done using independent reference sites of 

study area. Overall accuracy was defined as percentage of total independent referenced pixels 

that were correctly classified by rule based classifier. Producer’s accuracy was also calculated 

by dividing the number of pixels correctly classified for each crop by the total number of 

independent referenced pixels for that crop. While the user accuracy is the fraction of number of 

classified pixels with respect to total number of classified pixels for the crop. Kappa coefficient 

was also calculated to measure the importance of classification result relative to chance 

agreement. A kappa value of one indicates perfect agreement between training pixels and their 

prescribed classes (Lillesand et al., 2004) and kappa value of zero indicate bad classification. 

 

4.5 DERIVING PARAMETERS 

 

   Different parameters were derived in the study for further use in SEBS model and stress 

indices. Like land surface temperature, surface albedo. 

 

4.5.1 LAND SURFACE TEMPERATURE RETRIEVAL 

 

   For Land surface temperature retrieval from Landsat TM thermal data, Quin et al.Mono 

window algorithm was adopted. Following steps were used in this algorithm to derive LST: 

 First step involves digital number to radiance conversion- 

                   L6 = 0.1238 + 0.005632156 *DN …………… (4.5.1.1) 

Where, L6 denote radiance of thermal band which is 6
th
 in number. 

 Second step involves conversion of radiance into brightness temperature, which is an 

important component for retrieval of land surface temperature- 

                    BT=1260.56/ln (1+60.776/L6) ………………. (4.5.1.2) 

 

 Finally Mono-window algorithm is applied for land surface temperature retrieval- 
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Ts=𝟏/𝑪𝟔{𝒂𝟔 ∗  𝟏 − 𝑪𝟔 − 𝑫𝟔 +  𝒃𝟔 ∗  𝟏 − 𝑪𝟔 − 𝑫𝟔 + 𝑪𝟔 + 𝑫𝟔 ∗ 𝑻𝟔 − 𝑫𝟔 ∗ 𝑻𝒂  

                                                                                                …………… (4.5.1.3) 

 

             Where, 𝑪𝟔 = 𝜺𝟔 ∗ 𝝉𝟔                                                  

                         𝑫𝟔 =  𝟏 − 𝝉𝟔 ∗  𝟏 +  𝟏 − 𝜺𝟔 ∗ 𝝉𝟔  

                         𝒂𝟔 = −𝟔𝟕. 𝟑𝟓𝟓𝟑𝟓𝟑        

                         𝒃𝟔 = 𝟎. 𝟒𝟓𝟖𝟔𝟎𝟔 

𝜺𝟔 𝒂𝒏𝒅 𝝉𝟔 𝒂𝒓𝒆 𝒆𝒎𝒎𝒊𝒔𝒊𝒗𝒊𝒕𝒚 𝒂𝒏𝒅 𝒕𝒐𝒕𝒂𝒍 𝒂𝒕𝒎𝒐𝒔𝒑𝒉𝒆𝒓𝒊𝒄 𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒗𝒊𝒕𝒚 

 

 

4.5.2 ALBEDO RETRIEVAL 

 

   Albedo is an important component of radiation budget. Sun’s energy falling over earth is not 

fully absorbed instead only partial quantity is absorbed by earth rest reflects back into the space 

that reflected energy is albedo. In other words albedo is the fraction of incoming radiation that 

is reflected by the earth surface. In this study, albedo is an important component which is used 

as one of the SEBS input. Using Landsat data albedo can be retrieved using this equation: 

 

Albedo= [(0.160*band1+0.291*band2+0.243*band3+0.116*band4+0.112*band5+0.081*ba

nd7)-0.0015] 

 

4.5.3 EMISSIVITY RETRIEVAL 

 

   The ability of a surface to emit energy through radiation is called emissivity of a material. It is 

an important factor to measure Land surface temperature. Emissivity calculations have various 

methods but for this study equation proposed by Vande Griend, Owe, 1993 was used. Given as 

follows: 

                                 Emissivity = 1.0094+0.047*lnNDVI 

 

4.6 DERIVINGWATER STRESS INDICES 

 

   For detection of water stress in this study,NIR,SWIR and TIR  bands were used  in the form 

of three major indices were used Vegetation water stress index(VWSI) , Land surface wetness 

index (LSWI)  and Water stress index(WSI). 
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4.6.1 VEGETATION WATER STRESS INDEX (VWSI) 

 

   Vegetation water stress index was introduced by(Ghulam et al., 2008a). This index made use 

of Near Infrared and  Short wave infrared wavelength for fuel moisture content modeling(FMC) 

because FMC depends upon leaf dry matter content and leaf water content which is expressed in 

equivalent water thickness (EWT,g/m2). It has been proved by sensitivity analysis from 

radiative transfer modeling that variation in dry matter of leaf and canopy is mostly expressed in 

NIR domain while variation of equivalent water thickness exhibits in SWIR range. Hence, 

reflectance bands of NIR and SWIR were used as new index in the form of VWSI. 2-D 

trapezoidal scatter plot was formed using NIR and SWIR reflectance. A baseline (CD) which is 

also named as soil line in the plot is an indication of water status of bare surfaces. Since FMC is 

only relational with fully and partially vegetated areas. So pure pixels corresponding to water 

were removed and a hypothetical trapezoidal plot was formed (fig.4.3) where all four vertices 

i.e. A corresponded to full  cover with high canopy water content, B corresponds to full cover 

with low canopy water content, C corresponds to saturated bare soil and D corresponded to dry 

bare soil. The line which is orthogonal to baseline represents changes in surface vegetation 

fraction from bare soil to partial and full canopy cover. The direction of vegetation water stress 

can be expressed and understood by line EF in the plot, at  E and F vegetation fraction is similar 

but at E canopy water content is higher than  F. Thus these two vectors which are orthogonal 

and parallel to NIR-SWIR baseline determine the vegetation water stress. 

 

 

 

 

 

 

 

 

 

 

 

 

        

 

 

Vegetation water stress index can be calculated by using the following equations: 

                                VWSI = EG/EF = 1-GF/EF ………. (4.6.1.1) 

 

   Figure 4.6: Sketch map of VWSI (source: (Ghulam et al., 2008b)) 
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Now, if we assume that NIR and SWIR baseline exist, then it can be mathematically expressed 

as- 

                                        RNIR = MRSWIR ± 1 ………….. (4.6.1.2) 

 

Where, RNIR and RSWIR are reflectance of NIR and SWIR bands 

              M refers to slope of NIR and SWIR baseline 

               I is the interception on vertical axis 

 

Hence, according to the relationship between NIR-SWIR baseline and maximal and minimal 

waterlines, VWSI is expressed as: 

                       VWSI=𝟏 −
 𝑴𝟏−𝑴 ∗(𝑵𝑰𝑹−𝑴𝟐∗𝑺𝑾𝑰𝑹−𝑰𝟐)

 𝑴𝟏−𝑴𝟐 ∗ 𝑵𝑰𝑹−𝑴∗𝑺𝑾𝑰𝑹 − 𝑴𝟏−𝑴 ∗𝑰𝟐+ 𝑴𝟐−𝑴 ∗𝑰𝟏
 ……. (4.6.1.3) 

 

Where, M1, M2, I1 and I2 refers to slope and intercept of maximal and minimal waterlines (i.e 

according to figure 4.3 is AC and BD) 

 

4.6.2 WATER STRESS INDEX (WSI) 

 

   WSI is the modified form of water deficit index (WDI) which was proposed by(Moran et al., 

1994). The index is based on NDVI-Ts scatter plot. NDVI and surface temperature is widely 

used to derive water stress and evapotranspiration. Jiang and Islam, (2001) estimated 

evapotranspiration from NDVI-Ts scatter plot by modifying Priestly and Taylor’s Equation. 

Jiang and Islam modified equation by replacing Priestly Taylor coefficient α with ϕ which 

defined unsaturated areas. The resultant equation was- 

                                                     𝑬𝑻𝒋 − 𝒊 =  ∅  
∆

∆+𝜸
  𝑹𝒏 − 𝑮  ………… (4.6.2.1) 

Where, ∅ = jiang Islam parameter  

            𝛾 =Psychrometric constant 

            ∆= slope of the saturation vapor pressure curve 

           Rn=net radiation at surface level 

            G=soil heat flux 

   The jiang and Islam parameter ∅ ranges from 0 to 1.26 for dry bare soil to well vegetated 

surface.This parameter can be calculated by linear interpolation between the limits of NDVI-Ts 

plot (fig.4.7). Jiang and Islam, (2001) interpreted the upper edge with high temperature and low 

values of ∅  as the minimum value of ET for each class of NDVI ,while the cold edge is 

associated with low Ts and maximum values of ∅. Therefore the values of Jiang and Islam 

parameter varies within the limits of NDVI-Ts plot (fig.4.7). NDVI-Ts plot is applied to derive 

∅ by using normalized temperature. 
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                                       ∅𝒊 = 𝟏. 𝟐𝟔
𝑻𝒎𝒂𝒙−𝑻𝒊

𝑻𝒎𝒂𝒙−𝑻𝒎𝒊𝒏
  …………. (4.6.2.2) 

 

Where, 

Tmax = maximum temperature for vegetation class obtained by extrapolating upper edge to 

intersect Ts axis where NDVI=0 

Tmin = minimum temperature for vegetation class obtained by averaging surface          

temperature of pixels identified as water. 

Ti = radiometric temperature for given pixels 

 

   WSI which is being used in this study has taken concept of WDI by Moran et al. who showed 

relation between water stress and actual and potential ET (Ws=1-ET/ETm). Since maximum ET 

is closer to wet environment ETm was changed into Ew. Then according Straschnoy et al., 

(2006) ET/Ew is a good indicator of water deficit. Thus the major equation for WDI became 

 

                                                     WDI = 1-ET/Ew ………… (4.6.2.3) 

So, in this form of WDI ET can be replaced by Jiang and Islam equation given above and Ew 

will be replaced by Priestly-Taylor equation. So WSI can be given as: 

 

                                                      WSI = 1-∅/𝜶 ………….. (4.6.2.4) 

 

Now, by assuming α as 1.26 and replacing ∅ by above given equation the final equation which 

we used for our study will be: 

                                                       

                                                     WSI = 𝟏 −
𝑻𝒊−𝑻𝒎𝒊𝒏

𝑻𝒎𝒂𝒙−𝑻𝒎𝒊𝒏
  …………. (4.6.2.5) 

 

Where, Tmax = maximum temperature for vegetation class obtained by extrapolating upper 

edge to intersect Ts axis where NDVI=0 

             Tmin = minimum temperature for vegetation class obtained by averaging surface          

temperature of pixels identified as water. 

              Ti = radiometric temperature for given pixels. 
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4.6.3 LAND SURFACE WETNESS INDEX (LSWI) 

 

   LSWI uses NIR and SWIR regions of electromagnetic spectrum for stress assessment. This 

index is sensitive for the total amount of vegetation liquid and also for soil background. So, 

LSWI was estimated by following equation: 

  

                                                 𝑳𝑺𝑾𝑰 =  
𝑵𝑰𝑹−𝑺𝑾𝑰𝑹

𝑵𝑰𝑹+𝑺𝑾𝑰𝑹
 ……… (4.6.3.1) 

 

Estimated LSWI was further used in deriving water stress scalar (Ws) (Xiao et al., 2005). 

 

                                                𝑾𝒔 =
𝟏+𝑳𝑺𝑾𝑰

𝟏+𝑳𝑺𝑾𝑰𝒎𝒂𝒙
 ………… (4.6.3.2) 

 

Where, LSWI is value of particular pixel 

              LSWImax is maximum LSWI value of particular pixel 

 

4.7 SURFACE ENERGY BALANCE SYSTEM (SEBS) 

 

   Surface energy balance system is the remote sensing model for estimating daily ET per pixel 

based on the resolution of a thermal band of image data. (Su, 2002). This model can utilize 

satellite dataset like Landsat, MODIS, and ASTER with a combination of ground 

meteorological data which are used as inputs in surface energy balance. Generally, SEBS 

require following input: 

 

 Remote sensing inputs-The first set of input comprises of land surface temperature, 

Surface emissivity, Albedo and normalized difference vegetation index (NDVI). 

 Meteorological data- Second set of inputs includes specific humidity, air pressure at 

reference height (reference height is the measurement height), temperature. 

     Figure 4.7: NDVI-Ts plot (source: (Jiang and Islam, 2001)) 
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 Third set of data include instantaneous downward solar radiation (downwards 

shortwave and downwards long wave). 

 

   In this study, for deriving ET from SEBS, ILWIS 3.8.3 version was used. Above shown inputs 

were derived for Landsat data. However, model has a limitation that all inputs should have same 

projection and coordinate system. Then after, all images were brought to same projection and 

coordinate system after exporting to ILWIS. 

 After placing all inputs SEBS follows following equations to derive ET (Su, 2002) 

 

              Main energy balance equation is represented as: 

                            R = G0 + H + LE   ………………… (4.7.1) 

              Where, 

               R = Net radiation in W/m2, 

               G0= Soil heat flux in W/m2, 

               H = Turbulent sensible heat flux in W/m2, and 

               LE= Turbulent latent heat flux where L is latent heat of vaporization and E is AET 

 

             Net radiation is derived by the formula: 

                          Rn = (1 - α) * Rswd+ 𝜺*Rlwd– 𝜺*𝝈* To^4………. (4.7.2) 
          Where, 

             Rn = Net radiation in W/m2, 

             α= Albedo which is unit less, 

             Rswd = Downward solar radiation in W/m^2 

             𝜀 = Emissivity which is unit less 

             Rlwd = Downward long wave radiation in W/m^2 

             𝜎= Stefan-Boltzmann constant 

            T0 = Land surface temperature in Kelvin 

 

 Soil heat is obtained by: 

              𝑮𝒐 = 𝑹𝒏 ∗ [𝑻𝒄 +  𝟏 − 𝒇𝒄 ∗  𝑻𝒔 − 𝑻𝒄 ]…….. (4.7.3) 

Where,  

 Go = soil heat flux 

 Rn = net radiation 

              Tc = ratio of soil heat flux to net radiation 

 𝑓𝑐 = fractional canopy coverage 

 𝑇𝑠 = 0.3115 for bare soil. 

 

 Latent heat flux can be written as: 

                            λ*E= Ʌ (Rn-Go)…………………… (4.7.4) 

Where, 

Ʌ= evaporative fraction 
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Rn= net radiation 

Go = Soil heat flux 

 Finally, Actual Evapotranspiration is derived by this equation: 

                   ETdaily = 𝟖. 𝟔𝟒 ∗ 𝟏𝟎𝟕 ∗ Ʌ𝒐𝟐𝟒 ∗
𝑹𝒏𝒂𝒗𝒈−𝑮𝒐𝒂𝒗𝒈

𝝀∗𝝆𝒘
 …………. (4.7.5) 

 

Where, 

ETdaily = daily evapotranspiration (mm/day) 

𝑅𝑛𝑎𝑣𝑔 = daily average of net radiation (MJ m
-2

d
-1

) 

𝐺𝑜𝑎𝑣𝑔 = soil heat flux assumed for 24 hours (MJ m
-2

d
-1

) 

𝛬 = latent heat of vaporization (MJ m
-2

d
-1

) 

      𝜌𝑤 = density of water 

 

        4.8 VALIDATION OF ESTIMATED WATER STRESS 

 

4.8.1 FLUX TOWER DATA 

 

   The energy balance method and eddy covariance technique provide alternative 

measurement of Latent heat flux equivalent to ET and moreover it provide promising 

estimates for closing the water balance of ecosystem. Eddy covariance technique 

provides measurement regarding vertical turbulent fluxes within atmospheric boundary 

layer. Full surface energy balance profile viz., Air temperature, relative humidity, wind 

speed, net radiation estimated Latent and Sensible heat flux data which was obtained 

from flux tower situated at Meerut. The obtained Latent energy and sensible energy was 

processed through Edi-pro software to obtain actual evapotranspiration (ET actual).  

 

        4.8.2 ETref ESTIMATE FROM PENNMEN MONTEITH METHOD 
 

        ETref was computed by Pennmen Monteith Program. The program used 

standardized equation from ASCE Pennmen Monteith (ASCE-PM) method of ASCE 

Manual 70 (Jensen et al., 1990). The standardized reference ET equation is simplify and 

clarified presentation of the method. It is a reduced form of ASCE-PM equation which 

is similar to the form used in FAO irrigation and Drainage Paper No.56. As used in 

EWRI (2001) equation is presented as- 

                                 

                               𝑬𝑻𝒓𝒆𝒇 =  
𝟎.𝟒.𝟖∆ 𝑹𝒏−𝑮 + 𝜸 

𝑪𝒏

𝑻+𝟐𝟕𝟑
 𝒖𝟐 (𝒆𝒔−𝒆𝒂)

∆+ 𝜸 (𝟏+𝑪𝒅𝒖𝟐)
 

 

        Where, ETref = Standardized reference crop evapotranspiration (mm day
-1

) 

             Rn = net radiation at crop surface (MJ m
-2

d
-1

) 
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             G = Soil heat flux density at soil surface (MJ m
-2

d
-1

) 

             T = Mean daily air temperature (
o 
c) 

             U2 = Mean daily or hourly wind speed (ms
-1

) 

             𝑒𝑠 = Saturation vapor pressure (kPa) 

                     𝑒𝑎 =  Mean actual vapor pressure (kPa) 

                     ∆ = Slope of saturation vapor pressure temperature curve (kPa
o
C

-1
) 

                    Cn = Numerator constant that change with reference type and calculation time step. 

                   Cd = Denominator constant that changes with reference type and calculation time step              

 

4.8.3 WATER STRESS FACTOR 

 

            Meteorological data viz., latent heat flux (LE), sensible heat flux (H) obtained 

from flux-tower were used for deriving actual evapotranspiration (ETactual) whereas 

reference evapotranspiration (ETref) obtained using Pennmen Monteith program. Derived 

ETactual and ET ref were used for calculating water stress factor (Ws) which was further 

used for validation. Equation for calculating water stress factor (Ws) is given as- 
                    

                    

                                                         𝐖𝐬 = 𝟏 −
𝐄𝐓𝐚𝐜𝐭𝐮𝐚𝐥

𝐄𝐓𝐫𝐞𝐟
            

 

4.9 PREPARING INPUTS FOR LUE MODEL 

 

 LUE MODEL: light use efficiency model estimate productivity and predict that APAR 

and maximum light use efficiency is directly proportional. To observe the affects of 

water stress over wheat growing regions LUE model was used for this study. Equation 

for LUE model is given below: 

                 PRODUCTIVITY=[( 𝑷𝑨𝑹 ∗ 𝑭𝑨𝑷𝑨𝑹 ∗ 𝑳𝑼𝑬) ∗ 𝑯𝑰] 

For productivity estimation, Light use efficiency model is used in this study. Inputs required for 

LUE model are as follows: 

 Photosynthetically active radiation (PAR): Radiation data was downloaded from this 

link http://rredc.nrel.gov/solar/new_data/india/nearest cell.cgi at block level at half 

hourly basis. The radiation data was then processed and converted into PAR images by 

doing interpolation. 

 Fraction of absorbed PAR(FAPAR): FAPAR for one year (i.e. 2009-10) was derived 

by the above given equation (Mohamed,2005). 

                                     FAPAR=0.014*exp^5.005*NDVI 

 

http://rredc.nrel.gov/solar/new_data/india/nearest%20cell.cgi
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For present year i.e. 2013-14 FAPAR was estimated by establishment of logarithmic 

relationship between NDVI and Ground measured FAPAR. The equation so obtained 

was used for calculating FAPAR – 

                                   FAPAR = 0.285*ln (NDVI) +0.929 

 

 Light use efficiency  

   LUE is a function of maximum light use efficiency (Emax), Temperature scalar (Ts) 

and Water scalar (Ws). Since this study focus on wheat, so E.max value used for wheat 

was 2.8 g /MJ PAR .Temperature scalar was estimated by using the equation developed 

for terrestrial ecosystem model, In Water scalar different water stress indices which was 

derived in this study were used one by one (Ws_LSWI,Ws_VWSI, Ws_WSI).Ts 

equation is as follows: 

 

                                         Ts = 
 𝑻−𝑻𝒎𝒊𝒏 ∗ 𝑻−𝑻𝒎𝒂𝒙 

  𝑻−𝑻𝒎𝒊𝒏 ∗ 𝑻−𝑻𝒎𝒂𝒙  − 𝑻−𝑻𝒐𝒑𝒕 𝟐
 

Where,  

T = interpolated surface of mean monthly temperature from stations 

Tmin = minimum temperature of photosynthetic activities 

Tmax = maximum temperature of photosynthetic activities 

Topt = optimum temperature of photosynthetic activities 

 

 

 

 Harvest Index 

   Harvest index is the ratio of grain yield and above ground biomass at maturity. For 

calculating productivity, harvest index was used in LUE model. In this study Harvest 

index values were estimated from field by Crop cutting experiment. Crop cutting 

experiment was carried out at selected sample sites. From every selected field wheat 

was harvested in 1m *1m range. Biomass and grain were removed separately and 

individual weights were taken for each sample. Then with the calculated weight harvest 

index was calculated for all plots. All values were then averaged and a mean value was 

taken to be used in LUE model. Equation for Harvest index is given below - 

   

                        Harvest index=Grain yield / Total plant wt 
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   4.10 STATISTICAL PARAMETERS USED FOR EVALUATION 

 

   The performance of indices and models used for detecting water stress and 

productivity were evaluated based on various statistical measures viz., root mean square 

error (RMSE),   agreement index (AI) and mean relative deviation (RD). 

  

 The RMSE serves to aggregate the magnitudes of the errors in predictions for various 

times into a single measure of predictive power. RMSE is a good measure of accuracy, 

but only to compare errors of different models for a particular variable and not between 

variables, as it is scale-dependent. (same units as the quantities measured). The equation 

for calculating RMSE is given as – 

  

                                                RMSE = 
𝟏

𝑵
 (𝒑𝒊 

𝑵
𝒊=𝟏 − 𝑶𝒊)

𝟐 

          Where, 𝑝𝑖 is the predicted data, 𝑂𝑖 is the observed data, N is the number of observations 

 The Agreement index describes that how much the forecast agrees with the actual data. 

( in scale of 0 to 1). The equation for calculating AI is given as-  

                                            

                                                AI = 𝟏 −
 (𝒑𝒊

𝑵
𝒊=𝟏 −𝑶𝒊)

𝟐

   𝒑𝒊−𝒙  +|𝑶𝒊−𝒙 | 𝟐𝒏
𝒊

 

          Where, 𝑝𝑖 is the predicted data, 𝑂𝑖 is the observed data, 𝑥  is the mean observed values. 

 The mean relative deviation error (mean RD) is useful for comparing the precision of 

different measurements. It also makes error propagation calculations much simpler. 

                                                            Mean RD =  
𝒇𝒊−𝑶𝒊

𝑶𝒊
 ∗ 𝟏 
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RESULTS AND DISCUSSION                                          chapter-5 

 

The present study attempts to evaluate performance of different water stress indices for 

estimating crop water stress and to assess the impact on productivity of wheat. The inputs from 

remote sensing has been effectively used and integrated with GIS databases for estimating water 

stress and productivity for wheat keeping in view the usefulness of remotely sensed signatures 

to quantify crop water stress and estimating yield in wheat crop to assess its impact over it. The 

present study was undertaken in wheat region of western Uttarpradesh and some adjacent 

regions of Haryana. To manifold objectives mention in Chapter-1.The results obtained in this 

research are described in this Chapter. 

 

5.1 CROP DISCRIMINATION 

   Crop discrimination using remotely sensed data is based upon the fact that each crop has 

unique spectral signature. Typical spectral reflectance of crop shows absorption due to pigments 

in visible region (0.62-0.68𝜇m) and high reflectance in the near infrared regions because of 

internal cellular structure of leaves. Vigor of crop is manifest in the absorption in the red and 

reflectance in near infrared region (Navalgund et al., 1991b). 

 

   A study was carried out to identify and discriminate wheat crop from others land use / land 

cover classes using Rule based classification approach. A rule based approach provides an 

effective way to take decisions for feature selection by applying simple mathematical logics. 

Temporal NDVI obtained from Landsat- 5 TM of three months (November, February and April) 

were used for crop discrimination where separate rules were formed based on NDVI values of 

different months and different classes were assigned. Classification criteria developed for this 

classification is described below: 

 If (nd1 <=0.4),( nd1 >=0), (nd2>=0.5), (nd3>=0.2) & (nd3 <=0.6) –Wheat 

 If (nd1>0.3), 9nd2 <=0.6), (nd2>=0), (nd3 <=0.7) & (nd3>=0) – Sugarcane 

 If (nd1>=0.1),(nd2<=0.6), (nd3<=0.4),(nd3>=0),(nd1<=0.4) & (nd2>=0.2) – Vegetable 

 If (nd> -0.05) ,(nd2>-0.05),(nd3>-0.05) ,(nd1<0.3), (nd2<0.3) &(nd3<0.3) – 

Settlement 

 If (nd1<=0) , (nd2<=0) & (nd3<=0) - Water body 

Where, nd1 = NDVI (November), nd2=NDVI (February) and nd3=NDVI (April). 

(Figure 5.1) shows the crop inventory map of respective study area. 

   Accuracy assessment of classified map was carried out. The accuracy assessment matrix is 

presented in the table 5.1. The overall accuracy and kappa coefficient was found 90.12 percent 

and 0.87 respectively. The performance of this classifier was good for wheat discrimination, 
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Producer’s accuracy for wheat was found to be 85% which mean that 15% is mixed with 

vegetable since they are grown in same time period. Similarly, mixing is also observed in 

orchard and sugarcane classes. With rule based classification we were able to discriminate 

wheat from other classes for further use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                    

 

 

 

 

                                  Figure 5.1: Crop inventory map 
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Table 5.1: Classification Accuracy assessment table 

Classes Refer. total Classified 

total 

Correctly 

classified 

Producer’s 

accuracy 

User’s 

accuracy 

Wheat 80 77 68 85% 88.3% 

Sugarcane 62 63 56 90.3% 88.89% 

Vegetable 10 8 7 70% 87.50% 

Non 

vegetation 

23 23 21 91.30% 91.30% 

Orchard 13 16 12 92.31% 75% 

Overall 

accuracy 

90.12% 

Overall 

kappa 

statistics 

0.87 

 

5.2 METEOROLOGICAL AND BIOPHYSICAL PARAMETERS OBTAINED 

FROM GROUND 

   Meteorological parameters were obtained from agriculture university (S.V.P.U.A.T) for 2009-

10 and 2013-14, which included minimum and maximum daily temperature and Relative 

humidity for two years (Figure 5.2), (Figure 5.3). Radiation data was downloaded on half hourly 

basis for 9 blocks which was processed and converted to PAR data (figure 5.4).These 

parameters were used for water stress derivation and also in productivity calculation. 

Biophysical parameters (PAR, FAPAR, and LAI) were also obtained from ground 

measurements for three months (January 2014, March 2014, and April 2014); details are given 

in table 5.2. 

 

 

Table 5.2: Details about ground measured parameters 

PARAMETERS JANUARY_2014 MARCH_2014 APRIL_2014 

PAR 498.9±2.19 829.9±3.34 1298.27±4.08 

FAPAR 0.46±0.06 0.74±0.05 0.64±0.05 

LAI 0.91±0.10 2.11±0.12 1.78±0.11 
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                                Figure 5.2: Meteorological data obtained for 2009-10 
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                        Figure 5.3: Meteorological data obtained for 2013-14 
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5.3 DETECTION OF WATER STRESS FROM SATELLITE BASED INDICES 

 

    Different water stress indices were used for quantitative estimation of water stress in crops.  

Near infrared (NIR), Short wave infrared (SWIR) and Thermal infrared (TIR) bands were used 

for this study. Study was carried for two year i.e. for 2009-10 and 2013-14 Rabi season. 

 

 

 

 

Figure 5.4: Distribution of PAR data obtained for different blocks for 2009-10 
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5.3.1 VEGETATION WATER STRESS INDEX (Ws_VWSI) 

 

   Ws_VWSI is a 2-D scatter plot based water stress index, which is based on reflectance 

between NIR and SWIR bands. Description of VWSI has been given in methodology (Chapter-

4). As per the methodology, the results of derived index ranges between 0 to 1, where higher 

values corresponds to stress and lower values corresponds to no or very less stress. According to 

(Ghulam et al., 2008a) VWSI < 0.3 implies normal growth condition , VWSI > 0.3 and < 0.5 

slight stress conditions and VWSI > 0.5 show severe stress condition.  

   As per the temporal profiles shown below, in 2009-10 November is showing 0.5 and 0.4 value 

for Haryana and Meerut respectively. Haryana in comparison to Meerut has shown more higher 

values in November which is decreasing every month and has reached to very low value (0.15) 

in March indicating normal conditions or no stress condition, this indicate good vegetative 

growth of wheat. In April values are again higher and have reached to 0.51. The variation of 

values in November month is due to late sowing of wheat in Meerut region, since it has some 

other crop (sugarcane) already whereas in Haryana early sowing of wheat is done. VWSI values 

are lower in all months except November and April because of full crop growth conditions. 

Lower values observed in 2009-10 for Haryana and Meerut was 0.15 and 0.02 respectively.  

   In 2013-14 November and April higher values were observed (0.59 to 0.61) and (0.5 to 0.51) 

for Haryana and Meerut whereas lowest values were observed in March for Haryana (0.09) and 

Meerut (0.12) respectively. In April, Meerut is showing lower values than Haryana the reason 

behind is late harvesting of wheat crop in Meerut whereas in Haryana early harvesting takes 

place. The temporal profiles and spatial distribution for variation of  VWSI can be seen in 

Figure 5.5 and Figure 5.4.In December and January 2013-14 images may show some abrupt 

higher VWSI values which is because of cloud cover prevailed in some part. 
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Figure 5.5: Temporal profiles of Ws_VWSI for 2009-10 and 2013-14 for parts of Haryana and 

Meerut 
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                             Figure 5.6: Spatial distribution of Ws_VWSI for 2009 - 10 
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                                   Figure 5.7: Spatial distribution of Ws_VWSI for 2013-14 
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5.3.2 LAND SURFACE WETNESS INDEX (Ws_LSWI) 

 

    Land surface wetness index is a linear combination of NIR and SWIR bands. Water scalar 

was calculated for it  based on  (Xiao et al., 2005) approach. This index has a value range 

between 0 to 1.Where 0 signifies no stress and 1 signifies severe stress. As per results obtained 

for 2009-10 in (Figure 5.8)In November high stress was observed in Haryana with value 0.45 

and in Meerut 0.35 then in respective months i.e. January , February and march a decrease trend 

can be seen in stress values for both Meerut and Haryana reaching 0.05 to 0.1because of 

increasing vegetative growth of wheat. In 2013-14 higher values of water stress were observed 

in Haryana (0.51) for November whereas (0.43) for Meerut. In January value reaches to 0.2 for 

Haryana which constantly decrease till March and then give an abrupt change rising till 0.4 in 

April. Whereas in Meerut values take a dip after December signifying about less water stress as 

crop growth takes place. Values show small change from February to March reaching 0.1 then 

get lower reaching to 0.01. Overall spatial distribution of stress can be observed in figure 5.9. 

 

5.3.3 WATER STRESS INDEX (Ws_WSI) 

 

   Water stress index is the thermal band based index which is formed by NDVI/Ts based scatter 

plot. It is a modified index of WDI proposed by Moran et al. The results obtained from 

Ws_WSI are shown in temporal profile figure 5.10 and spatial distribution is shown in figure 

5.11. Availability of cloud-free Landsat data for a whole growing season (2009-10) was limited 

and hence it has affected interpretation of WSI. Thus, the Ws_WSI has been derived for only 

three months in 2009-10. During early growth stages of wheat coinciding Nov. & Dec. of 2013-

14, the higher values noticed, particularly, in Haryana. Later it has decreased rapidly and 

reached to its lowest in February and finally again increased to 0.51 in the month of April.While 

in case of Meerut, WSI exhibit lowest water stress factor for March (0.2) and reaches finally to 

0.3 for April month. In 2009-10 ,values for  November months ranges between 0.61 for 

Haryana and 0.4 for Meerut showing water stress conditions for Haryana and in February  

decline in water stress is seen ranging between 0.1 to 0.2 for Haryana to Meerut respectively. In 

harvesting month of wheat i.e. April, water stress ranges 0.35 to 0.2 for Haryana and Meerut. 

Thus overall pattern for water stress is observed, in November more stress is seen in Haryana 

than Meerut area whereas in February due to high vegetative growth of wheat stress is 

decreased and value range become less which again rises in April due to harvesting of wheat.  
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Figure 5.8: Ws_LSWI temporal profiles for 2009-10 and 2013-14 
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                                  Figure 5.9: Spatial distribution of Ws_LSWI for 2009-10 
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                           Figure 5.10: Spatial distribution of Ws_LSWI for 2013-14 
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Figure 5.11: Ws_WSI temporal profiles for 2009-10 and 2013-14 
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Figure 5.12: Spatial distribution of WSI for 2009-10 
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                                       Figure 5.13: Spatial distribution of Ws_WSI for 2013-14 
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5.4 SATELLITE DERIVED ET 

 

   Daily Evapotranspiration has been derived by using Surface energy balance tool (SEBS tool) 

in ILWIS for the year 2009 and 2010 three dates of November, February and April month. The 

results of actual evapotranspiration around the area of interest from remote sensing data and 

SEBS has been indicated in figure 5.14.The SEBS calculates actual ET per pixel and the 

resolution of each pixel originates from resolution of LST which was estimated by Landsat 5 

TM thermal infrared band (TIR).It means that resolution of actual ET is equals to 30m per pixel 

with respect to resolution of LST. 

   The retrieved results of actual ET from SEBS indicated that ET has increased in February than 

in November for Haryana because of increased vegetative growth of wheat while if we observe 

in Meerut and other region of West UP somewhere slight high values of ET can be observed 

which decreases in February month this is because of sugarcane growth in November and by 

December most of it get harvested. So due to early vegetative growth of wheat in February 

lower values is being observed. In April, Haryana region is showing decreased values of ET in 

the range (3.1to 4mm/day) and Western Uttarpradesh area is showing higher values (6.5 to 7 

mm/day) this is due to the fact that wheat has been harvested in most of the part of Haryana but 

in western UP its in ripened stage . The overall monthly images show a proper trend in spatial 

distribution of ET monthly wise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: Spatial distribution of Daily ET obtained from SEBS for 2009 and    

2010 
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5.5 COMPARISON OF FIELD WATER STRESS WITH ESTIMATED WATER 

STRESS  

 

   Validation is an important process to test the applicability of applied model to that particular 

area. Validation of water stress was done for 2009-10 data with Tower site water stress factor. 

The estimated water stress from Ws_LSWI and Ws_VWSI were compared with flux-tower site 

water stress factor using 1:1 line plot. The performance of derived index was quantified by 

coefficient of determination (R
2
) which was quite good for Ws_LSWI with value of 𝑅2 0.76 

showing more relation with tower data than Ws_VWSI which shows less relation in comparison 

to Ws_LSWI with value of 𝑅2 0.65.RMSE for Ws_LSWI and Ws_VWSI was 0.12 and 0.13 

respectively. Overall Statistical details are shown in table 5.3.In figure 5.16 comparison of  

Ws_WSI with tower site observations has been shown, high temporal variations has been 

observed. Estimated water stress was highly underestimated from tower site data in November 

whereas in the month of February estimated water stress increases slightly which again 

decreases in April. 

   The estimated ET by SEBS model was compared with flux tower site ET (figure 5.17).The 

model has observed over estimated ET for all months. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              

 

 

 

 

 

Figure 5.15: 1:1 line plot for field vs. estimated water stress 
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Figure 5.16: Field water stress vs. Ws_WSI for tower site 

                  
                                            

Figure 5.17: Field ET vs. SEBS derived ET for tower site 

 

Table 5.3: Statistical details for Ws_LSWI and Ws_VWSI for Line plot 

STRESS INDEX R2 RMSE Agreement index Mean RD (%) 

Ws_LSWI 0.76 0.12 0.91 5.26 

Ws_VWSI 0.65 0.13 0.89 -4.28 
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5.6 FAPAR ESTIMATION 

 

   Attempt to establish fAPAR-NDVI relationship was done for use in LUE model of yield 

estimation in 2013-14. For estimating FAPAR from remotely sensed data, empirical 

relationship between FAPAR and NDVI was constructed. Predictive functions varying in 

mathematical forms (linear, logarithmic, power et.) were used to determine best statistical fit 

between NDVI and corresponding measured FAPAR (n=58) values (2013-14) .Some 

independent measurements were retained for validation purpose. The statistical result revealed 

that NDVI shows a logarithmic relationship with FAPAR showing coefficient of determination 

(𝑅2) equal to 0.63. Figure 5.18 shows the empirical relationship between FAPAR and NDVI. 

 

                   
Figure 5.18: Relationship between FAPAR and NDVI of wheat crop over Western Uttarpradesh 

and Haryana during Rabi season 2013-14 

 

 

5.7 VALIDATION OF ESTIMATED FAPAR  

 

   The estimated empirical relationship between FAPAR and NDVI was validated to test the 

predictive functions. The estimated FAPAR was compared with corresponding measured 

FAPAR values from independent sites of same season. For comparison purpose, estimated 

FAPAR values were plotted against measured FAPAR at independent sites and corresponding 

results are presented in figure 5.19.Statistical parameters show good agreement between both. 
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Showing coefficient of determination (𝑅2=0.54) and (RMSE =0.11).These results show that the 

predictive functions perform well for estimating FAPAR for wheat. 

 

 

 

 

 

 

 

                    

 

 

 

 

 

 

 

 

Figure 5.19: Cross validation of measured vs. estimated FAPAR of wheat (2013-14) 

 

5.8 SPATIO-TEMPORAL OBSERVATION OF ESTIMATED FAPAR 

 

   APAR is an important biophysical parameter which is used for yield calculation in LUE 

model. The absorbed PAR (APAR) is both governed by both PAR and FAPAR .Since the 

temporal variations in APAR plays significant role in primary productivity of vegetation.LUE 

model is totally based on amount of APAR converted through photosynthesis of vegetation. 

Here, APAR was derived by available PAR and derived FAPAR (described in Chapter3). 

Temporal and Spatial distribution of derived FAPAR for 2009-10 and 2013-14 is presented in 

figure 5.20, figure 5.21 and 5.22. FAPAR values were found to be in range of 0.0 to 1.0. In 

2009-10, FAPAR values observed in March were higher ranging between 0.7 to 0.8 both for 

Haryana and Meerut because of peak growth stage of wheat while in November values for 

Haryana was0.3 because of early growth stage which then increased every month showing 

vegetation vigor in that area. In April values again decline (0.40 to 0.45) due to harvested fields.  
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   In Meerut region, FAPAR has shown rise in the curve after December month due to late 

sowing of wheat in that area. In 2013-14 same pattern was observed but value range is higher 

than in 2009-10. FAPAR values reaches to more than 0.8 in February and March and then 

decline reaching around 0.52 to 0.54 in April because of harvesting. 

 

 

 

 

 

                  
                

 

                  
                

Figure 5.20: Temporal profiles for FAPAR generated in 2009-10 and 2013-14 
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                                 Figure 5.21: Spatial distribution of FAPAR in 2009-10 
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                            Figure 5.22: Spatial distribution of FAPAR in 2013-14 
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5.9 ESTIMATING LIGHT USE EFFICIENCY  

 

   Light use efficiency is the main controlling factor in LUE model for predicting productivity. 

The Magnitude of LUE differs across vegetation types spatially and temporally due to variable 

temperature and moisture conditions. Controlling factors of LUE are optimal temperature and 

moisture stress. Variations in temperature and water scalar can led to decline in LUE which can 

affect final yield. In figure 5.23 (a) and (b) February month LUE image is presented to briefly 

describe its concept related with two different water scalars when taken in its calculation. As we 

have discussed above that the moisture status of vegetation can affect LUE predictions. If crop 

is under stress then LUE will decline. So here we are using two different water scalars in 

estimating LUE. Ws_LSWI and Ws_VWSI are used in LUE calculations for all months. The 

difference in the estimated LUE can be seen properly in high vegetative month. So February 

month derived LUE is presented here. We can observe here that LUE with Ws_LSWI has 

shown better results than Ws_VWSI. In 2010 higher value ranges to 2.85 in both images but 

maximum area showing high LUE can be observed in image with Ws_LWSI as water scalar. 

Similarly in 2014 February image (figure 5.24) higher value reached to 1.76 for both images but 

spatial distribution of higher value was large for Ws_LSWI. So, with this understanding we can 

conclude that Ws_LSWI has shown higher LUE than Ws_VWSI. 

                                                                                                             

                                (a)                                                                                       (b) 

 

                    
Figure 5.23: Spatial distribution of LUE for February using different water scalar (a) 

Ws_VWSI (b) Ws_LSWI for 2009-10 
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                             (a)                                                                           (b) 

Figure 5.24 Spatial distribution of LUE for February using different water scalar (a) Ws_VWSI (b) 

Ws_LSWI for 2013-14 

 

5.10 YIELD ESTIMATION 

 

   Yield was predicted by using Light use efficiency model given by Monteith. This model 

uses PAR, FAPAR, LUE and Harvest index for calculating productivity. FAPAR and LUE 

are very important factors which show effect of crop condition over productivity. In this 

study productivity was estimated for two year Rabi season (2009-10) and (2013-14), 

derivation of parameters for LUE model has already been explained for both years. 

The simulated productivity for a particular season was summed up and masked for wheat 

growing areas. Wide range of variations existed across western Uttarpradesh and Haryana. 

In 2009-10 productivity observed with LUE(LSWI) showed maximum values ranging 

between 3.5 -7.5 t/ha for most of the area in Haryana, while a small portion of area near 

Sonipat showed values between 7.5 – 9.5 t/ha. In Meerut maximum area extends to 5.5 t/ha 

whereas very small area near Ghaziabad ranges between 5.5 – 7.5 t/ha. 
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   Same year, if we observe yield with LUE (VWSI), maximum area fall in the range 

between 2.5 to 5.5 t/ha whereas values more than 6.5 and less than 7.5 t/ha were observed 

near Sonipat. Maximum values reached to 3.5 t/ha for western Uttarpradesh while less area 

showed value range between 3.5-4.5 t/ha.  

   In 2013-14 productivity derived with LUE (LSWI) predicted maximum value range 

between 2.5-6 t/ha. In western Uttarpradesh most of the area has been observed in the range 

between 2.5-3.5 t/ha while Haryana covered the range between 5.5 – 9 t/ha. Values between 

4.5-5.5 t/ha was observed in some part of Haryana. In western Uttarpradesh least area has 

been observed with productivity, ranging between 5.5-6.5 t/ha. As seen in figure 5.26(b) 

yield estimated using LUE (VWSI) observed values ranging more than 5.5t/ha and less than 

9 t/ha for major parts of Haryana while some of the area ranges between 4.5-5.5 t/ha. 

Whereas major area of western Uttarpradesh falls in the range between 1.5-3.5 t/ha and 

minor part shows productivity range between 5.5-6.5 t/ha. 

 

                                                                

                               (a)                                                                          (b) 

 

 

 

Figure 5.25: Spatial pattern of wheat yield from different LUE scalar: (a) Ws (LSWI)  (b) 

Ws_(VWSI) during 2009-10 
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                                 (a)                                                                                   (b) 

 

   In figure 5.27 spatial distribution of productivity with histogram has been presented. Spatial 

distribution of productivity from LUE (LSWI) shows mean equal to 355g/m
2
 for 2009-10 and 

510g/m
2
 for 2013-14(figure 5.27) while mean productivity obtained from LUE(VWSI) for 

2009-10 were 298g/m
2
 and for 2013-14 were 352g/m

2
. 

   For 2009-10 and 2013-14 mean values are higher for LUE(LSWI) water scalar in comparison 

with LUE(VWSI).Moreover we can observe two peaks for  LUE(LSWI) of 2013-14.The higher 

peak signifies Haryana region where productivity is more than Western Uttarpradesh which 

signify small peak. So, we can conclude that productivity of wheat simulated using water scalar 

from LSWI remained higher than Ws_VWSI. These differences were explained by variations in 

Figure 5.26: Spatial pattern of wheat yield from different LUE scalar: (a) Ws (LSWI) (b) Ws_ 

(VWSI) during 2013-14 
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light use efficiency resulted from different water scalars (figure 5.23 and 5.24).Higher LUE 

from Ws (LSWI) led to high levels of yield during period of maximum growth accumulation 

 

 

 

                                   (a)                                                                                    (b) 

 

                                     (c)                                                                                   (d) 

 

 

 

 

 

 

 

Figure 5.27: Spatial pattern with histogram frequency of productivity of wheat crop for 

different water stress scalars (a) LUE (VWSI),for 2009_10 (b) LUE (LSWI)for 2009_10 (c) 

LUE (VWSI),for 2013_14 (d) LUE (LSWI)  for 2013_14 
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5.11 VALIDATION OF ESTIMATED YIELD 

 

     Wheat yield estimated from LUE model was validated against ground measured yield data 

obtained at field scale (from CCE). Whereas modeled yield for 2009-10 was compared with 

district-level acreage yield (BES). Water scalar from VWSI and LSWI were used down-

regulating Maximum LUE and finally yield calculation. In 2009-10, yield estimated by LUE 

(LSWI) showed good results in comparison to LUE (VWSI) for all blocks except Sonipat 

(shown in figure 5.28). Predicted yield was found to be lower than observed yield. 

 

    For 2013-14, results were validated by using 1:1 statistical plot between measured and 

observed data. The temporal dynamics of predicted productivity agreed significantly well with 

observed productivity. The Coefficient of determination R
2  

and RMSE observed for 

LUE(LSWI) based productivity was 0.65 and 1.00 showing an accepted agreement whereas 

productivity with  LUE(VWSI) showed an 𝑅2 of 0.46 and RMSE of 1.01.Overall statistical 

details are shown in table 5.4. Moreover predicted productivity was found to be higher than 

observed productivity showing an overestimated value of 14% for productivity with 

LUE(LSWI) whereas 3% for LUE(VWSI). 

    Hence, we can conclude that close relationship was observed between simulated productivity 

obtained from LUE based on LSWI and observed productivity of wheat in parts of Haryana and 

western Uttarpradesh.  

 

 
Figure 5.28: Comparison of estimated yield with different water scalars with observed yield for 

2009-10 
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                   Figure 5.29: Line plot for observed vs. estimated yield for 2013-14 

 

 

                                                    Table 1.4: Statistical relation details 

YIELD AGREEMENT 

INDEX 

RMSE (t/ha) R
2
 Mean RD (%) 

Ws_LSWI 0.82 1.00 0.65 -14.89 

WS_VWSI 0.77 1.01 0.46 -3.67 
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SUMMARY AND CONCLUSION      Chapter 6 

 

   Global water scarcity and unavailability of fresh water including many other biological factors 

has led to affect crop water status influencing its growth. The study was focused on detecting 

crop water stress and observing its impacts over productivity of wheat. The prime objective of 

the study was to assess performance of different approaches of water stress detection from 

satellite data and validating with Eddy Covariance measurements and to analyze the importance 

of water stress factor in controlling cropland productivity over space and time. 

 

  The Study was conducted in parts of Haryana and western Uttarpradesh falling under 26.4 

degree and 30.1 degree latitude and 77.3 degree and 80.44 degree longitude. Wheat and 

Sugarcane are the dominant crop practiced in the study area during Rabi season. Landsat data 

for 2009-10 and 2013-14 Rabi season was used in this study. Since study was specified for 

wheat crop, crop discrimination was done using rule based classification technique. Using rule 

based classifier wheat was properly discriminated from other classes showing individual 

accuracy of wheat as 85% and overall accuracy of 90%. Different satellite based water stress 

indices viz., Ws_LSWI, Ws_VWSI, Ws_WSI were derived individually from optical and 

thermal dataset. SEBS model was also used for deriving daily ET using multi temporal landsat 

data. Predicted water stress for 2009-10 were compared with flux tower based ET.  

    

      To assess the impact of water stress over productivity LUE model was used. Water scalar, 

temperature scalar and maximum light use efficiency were used for deriving productivity. 

APAR and LUE were the two important inputs used in LUE model. Water scalars Ws_LSWI 

and Ws_VWSI were used in LUE model for assessing impact of water stress over productivity 

of wheat. Estimated FAPAR was developed by using ground readings taken during field visit 

and showing a logarithmic relation between FAPAR and NDVI which was validated and used 

for productivity calculation (2013-14) and final productivity was validated with yield estimated 

by crop cutting experiment (CCE) for 2013-14 and by crop statistics (BES) for 2009-10. The 

impact of water stress was observed over productivity of wheat by using two different water 

scalar viz., Ws_LSWI, Ws_VWSI amongst them Ws_LSWI proved to be better indices for 

estimating water stress and showing its impact over productivity. 

      From this study the following conclusions were made: 

 Overall accuracy of classified map was 90.12% whereas kappa coefficient was 0.87. 

Accuracy individually for wheat was 85%.  
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 Different water stress indices were used for quantifying water stress by satellite data. 

Out of all, Ws_LSWI was found superior over other indices. It showed an RMSE of 

0.12, R
2
 of 0.65 whereas observed R

2
 for Ws_VWSI was 0.76. 

 SEBS model derived daily ET values were over estimated for all months when 

compared to Flux Tower ET. 

 Water stress observed was more over Haryana region in November and April when 

compared to Meerut. Water stress observed for February and March was less due to 

good wheat growth. 

 Estimated FAPAR model when validated with ground measured FAPAR showed an 

R
2
= 0.54. 

 LUE was derived using two different water scalar. Ws_LSWI based estimated LUE 

showed better results for February month than Ws_VWSI. 

 Final yield detected was higher for Haryana region than compared to western UP. 

Productivity obtained using Ws_LSWI proved to be superior over Ws_VWSI showing 

R
2 
0.65 but overestimation of yield was observed for both.  
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