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ABSTRACT 

 

Availability of time-series data from satellite has enabled scientists to do trend analysis and 

prediction modelling for satellite imagery derived land surface parameters. The spatial and temporal 

resolution inconsistency of these datasets have given rise to problems such as modifiable areal unit 

problem (MAUP) and modifiable temporal unit problem (MTUP). Also, spatial and temporal scale 

for the study of environmental processes are important because models established for any variable 

at one scale may be unimportant or inoperative at another. This study attempts to understand the 

effects of granularity in space-time domain in the context of time-series analysis. 

 

Six major parameters, namely, normalized difference vegetation index (NDVI), albedo, 

temperature (minimum and maximum), rainfall and gravity anomaly have been used in this study. 

All except climatic parameters have been derived from satellite-based platforms, whereas the 

climatic data are ground observed values. The datasets belong to various spatial resolutions (from 

1 km to 1 degree) and temporal resolutions (15 day to monthly). Various popular (such as ordinary 

least squares, Mann-Kendall) and advanced (such as seasonal decomposition of time-series using 

locally weighted regression (STL/LOESS) and empirical orthogonal functions (EOF)) statistical 

techniques have been applied. A number of open source packages and computer programming 

techniques have also been implemented. 

 

The study was able to inter-calibrate two large time-series vegetation indices with a goodness-of-

fit of 0.72. The seasonal decomposition of all parameters revealed that the datasets were mostly 

dominated by seasonal components, followed by residual (irregular) components (sometimes as 

high as 10%). The NDVI time-series data trends showed positive trends in most cropping belts in 

the country, at annual as well as seasonal time scales. Albedo and NDVI correlation analysis 

showed positive correlation only in lower Himalayas and Deccan plateau. The study also re-

confirmed the findings of IPCC reports that the frequency of extreme events such as anomalies, 

spells and quantitative measures of temperature and rainfall are increasing in parts of the country, 

including Northern J&K, Rajasthan, Eastern & Western Ghats and North Eastern states. Both 

parametric and non-parametric tests gave identical results for all the experimental setups.  

 

The correlation of different parameters and the model built to predict gravity anomalies also gave 

satisfactory results. The model achieved a stability and maturity of 92% and 84% respectively. 

Minimum temperature was seen to be the most sensitive parameter in the model, however, the 

maximum likelihood is that the increase of Rainfall and NDVI values will lead to increase in the 

gravity anomaly values. The single and joint EOF analysis on the six fields revealed that the 

assumptions made by the correlation model were correct.  

 

The study is able to show spatial & temporal patterns, correlation and variability in several datasets 

which have different resolutions and time scales. The models & aggregation techniques used, 

however, may not hold true at other scales. Hence more detailed investigation is required at various 

spatio-temporal scales and using other auxiliary datasets such as soil moisture and humidity. 

 

Key words: Temporal granularity, Land surface parameters, Gravity anomaly, Climatic forcing, 

Trend analysis, Spatio-temporal aggregation, Python  
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CHAPTER 1 - INTRODUCTION 
 

 

1.1 Background 

 

Time-series satellite observations are now available in chronological order with worldwide 

coverage. This dataset enables monitoring of ecological conditions a matter of detecting and 

decoding changes within these datasets.  Time series data with high sampling interval often show 

statistical properties which hinder change detection. Extensive literature is available citing most 

frequently used approaches for detecting temporal trends, i.e. fitting linear regressions against time, 

but care is needed in order to avoid spurious trends. The detected slope (or gain) coefficient can be 

used to calculate the amount of change, but it is not always tested for significant deviation from 

zero, nor are standard statistical assumptions always respected. Phenological cycles are an 

important cause for the data to violate assumptions like homogeneous variation and absence of 

serial correlation in the residuals (de Jong and de Bruin, 2012). Linear models may be fitted directly 

to seasonal data by remediating for seasonality using temporal aggregation, where the aggregation 

window (or bin size) corresponds to the length of the season. The resulting bins can be considered 

as temporal units, which, like spatial units, are modifiable. In case of spatial units, it has been 

demonstrated that the size may influence the model results, which is known as the Modifiable Area 

Unit Problem (MAUP) (Openshaw and Taylor, 1979)in (de Jong and de Bruin, 2012). This problem 

may affect a myriad of spatial studies in geography and remote sensing. Similarly, there is a 

Modifiable Temporal Unit Problem (MTUP) that is as problematic as the MAUP. This is essentially 

a question of scale in the temporal dimension (Çöltekin,et al., 2011). In examination of time-series 

of satellite vegetation indices this problem is easily overlooked, although it may result in detection 

of incorrect temporal trends in the data. Aspects of the problem include the starting phase of a time-

series, its extent and the level of temporal aggregation. The aim of this study is to demonstrate 

possible MTUP effects in analysis of time-series of satellite data to provide, in this sense, a 

framework for time-series regression. 

 

1.2 Problem Statement & Motivation 

 

Trends of variation and inter-linkages in vegetation indices, gravity anomalies, precipitation, and 

temperature leading to land use / land-cover (LULC) change have to be studied in order to 

understand the Earth’s processes and human impacts. Variations in biomass and terrestrial water 

storage result in variations in the gravitational measures. Similarly, variations in biomass and 

terrestrial water storage may be linked with climate. These variations may ultimately lead to LULC 

change. The temporal variations of these important geo-physical parameters are loosely understood. 

Although these variations can be statistically analysed using various trend analysis techniques, the 

variation of the spatial and temporal resolution affect the results of trend analysis. The MTUP 

problem thus assumes significance while analysing the trends in time-series datasets.  

 

The purpose of the proposed research is to study the factors of MTUP that affect results of the trend 

analysis to pave the way for creation of better trend analytical methods that could reduce the effects 

of such problems. The space-based normalised difference vegetation index (NDVI), albedo, gravity 

anomalies (derived from GRACE - Gravity Recovery and Climate Experiment mission) along with 

precipitation and temperature have been considered in the present analysis.  
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1.3 Research Identification 

 

1.3.1 Research Objective 

 

The main objective of this research is to study the effect of modifiable temporal unit problem 

(MTUP) on statistical trend analysis for large, temporal satellite datasets. 

 

1.3.1.1 Sub-objectives 

1. To study the compatibility between MODIS-NDVI and NOAA-AVHRR-NDVI and to 

inter-calibrate them to generate a combined time-series NDVI.  

2. To study long-term trends in temporal aggregates of NDVI, albedo, precipitation and 

temperature. 

3. To study the correlation in the trends in different datasets including gravity anomaly for the 

past decade. 

 

1.3.2 Research Questions 

 

1. Does MODIS-NDVI and NOAA-AVHRR-NDVI complement each other? Can a combined 

time-series NDVI be generated? 

2. Can temporal granularity help in understanding the trend in NDVI, albedo, precipitation 

and temperature? How do the trends vary in different statistical methods?  

3. Is there a correlation between the trends in climatic forcing, satellite derived NDVI, albedo 

and gravity data?  

 

1.4 Structure of Thesis 

 

The thesis has been structured into following six chapters: 

 

Introduction: The introduction throws light on the study background and explains the basic 

concepts of MAUP and MTUP for land surface parameters and further deals with the problem 

statement, research objectives and research questions. 

 

Review of Literature: This chapter discusses the literature reviewed and referred for 

accomplishing this study. It briefly explains the concepts and techniques which are employed and 

why they are used in this study. 

 

Study Area and Data used: The detailed description of the study area and its significance is 

illustrated in this chapter.  It  provides  a  very  informative  overview  to  the  geography,  climate  

as  well  as biodiversity in a concise manner. The other section of this chapter provides a detailed 

overview of the data sets used and the Open Source packages and Programming used for 

Geoprocessing in this study. 

 

Methodology: This chapter explains the systematic way followed in this research to answer the 

research questions. This includes the various algorithms implemented and the methods involved in 

the study. 
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Results and Discussion: The research outcomes are discussed extensively in this chapter. 

 

Conclusions: Based on the outcomes and the discussions, conclusions and recommendations are 

provided to the scientific community. 
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CHAPTER 2 - LITERATURE REVIEW 
 

The following chapter deals with the literature and related work done to this research. Trend 

analyses have been used in various geophysical sciences and economics for analysing the events 

that had happened and also for future prediction. Various analytic methods are also used in various 

researches for analysing the patterns temporally and also for the understanding the variation of the 

patterns spatially and temporally. Such studies are very useful in understanding the dynamics of 

various geophysical phenomena in space and time.  

 

2.1 Effects of Spatial and Temporal Aggregation: MAUP and MTUP  

 

The major obstacle in doing time-series analysis of spatial data is in combining spatially and 

temporally unmatched data sets (Gotway and Young, 2002). Many statistical issues are also 

associated with combining such data for modelling and inferences (Shellman, 2004). The choice of 

an appropriate spatial and temporal scale for the study of climatic processes has been extremely 

important because mechanisms essential to the spatial and temporal dynamics for any variable at 

one scale may be unimportant or inoperative at another (de Jong et al., 2011). These facts are proven 

true in the study of human, animal, and plant populations and has led many researchers in sociology, 

agriculture, ecology, geography, statistics, and environmental sciences to consider scale issues in 

detail (Kendall and Yule, 1950).  

 

In many cases, spatial aggregation is necessary to create consequential units for analysis. Openshaw 

and Taylor (1979) first coined the term modifiable areal unit problem, referred as the MAUP, which 

is a direct outcome arising out of spatial aggregation. Many studies have illustrated the MAUP as 

two interconnected problems. The first problem referred to as the scale effect or aggregation effect. 

It arises as different inferences are obtained when the same set of data is grouped into increasingly 

larger areal units and vice-versa. The second problem, often termed as the grouping effect or the 

zoning effect. It arises due to unusual formations of the areal units leading to differences in unit and 

shape at the similar scales and hence results in the variations in results (Jelinski and Wu, 1996). 

Both these issues can be, and often are, present in a single analysis. 

 

It has also been proved by many studies that the choice of temporal resolution is critical as it defines 

the time units for observation. Similar to spatial aggregation, there are consequences of temporal 

aggregation in time-series models (Buishand et al., 2004). In general, the data is aggregated over 

fixed number of units may be in years or months or days. Aggregating the data like this will create 

temporal units which are modifiable. These units influence the analysis and also affect the amount 

of change detected. This issue has been termed as Modifiable Temporal unit Problem (Çöltekin et 

al., 2011). MTUP is analogous to MAUP yet it has not been formally developed to address issues 

that can be applied as a standard. The issue of Modifiable Temporal Unit Problem (MTUP) can be 

remediated three important aspects are considered for any time-series analysis - duration (how 

long), temporal resolution (how often), and the point in time (when).   

 

Data aggregation is done to simplify the large data sets by summarizing groups of data elements. 

Meaningful patterns can often achieve by repeated cycles of aggregation process. But, the 

consequences of this process are MAUP and MTUP as already explained. The availability of related 

work which involves issues of MTUP is relatively less because this problem has recently been 
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addressed (Çöltekin et al., 2011). A related study has been done to study linear trends in seasonal 

vegetation time-series and the modifiable temporal unit problem over part of Australia (De Jong 

and De Bruin, 2012). Their results show that linear regression can be used to quantify trends in 

cyclic data using Ordinary least squares (OLS). They have shown how the temporal unit affects the 

estimation of model parameters and how the amount of absolute change that was attributed to 

MTUP has been estimated. 

 

2.2 Inferences from satellite derived NDVI and correlation with land surface 

parameters 

 

NDVI is one of the most important and commonly used vegetation indices, defined as equation 

NDVI = (NIR-RED) / (NIR +RED), where RED is the reflectance in the red channel and NIR is 

the reflectance in the near-infrared channel. The RED and NIR bands contain more than 90% of 

vegetation information. (Baret, et al, 1989). The characteristics of NDVI time-series can be 

disaggregated into a set of quantitative metrics that may be used to derive information about 

vegetation phenology and land cover (Hill and Donald, 2003) 

 

Time-series of NDVI are frequently used to map the spatio-temporal behaviour of vegetation cover. 

NDVI can, for example, be calculated from spectral radiance measurements of Advanced Very 

High Resolution Radiometer (AVHRR). NDVI is a measure of the fractional vegetated ground 

cover. To Use NDVI as a correct representation of spatio-temporal vegetation cover behaviour, 

relations between NDVI and measured vegetation cover have been established by researchers 

(Maignan et al., 2008). Changes in the vegetation cover are often related to variations in seasonal 

weather conditions and the moisture availability in the subsoil. Therefore, relation between 

phenological behaviour, climate and land-use/land-cover is studied by several researchers 

(Anyamba and Tucker, 2005, Herrmann et al., 2008). 

 

NDVI trends have been used for many purposes, including assessment of ecological response to 

global warming, phenological change, crop status, land cover change and desertification. For 

example, systematic greening found in the Sahel is most likely due to climatic variations and 

recovery from severe droughts (Herrmann et al., 2008). The effects of human-induced land 

degradation are highlighted by some studies and disputed by others. At the global-scale, combined 

NDVI trends with rain-use efficiency has been used as a proxy of degradation (Bai et al., 2008). 

Most analyses established trends by linear regression of NDVI, integrated annually or seasonally 

but it is not always clear whether a fitted slope coefficient differs significantly from zero  or what 

may be the effect of integration by calendar year in the southern hemisphere where growing seasons 

straddle the year end (de Jong and de Bruin, 2011). 

 

2.3 Methods for Spatial Aggregation  

Spatial aggregation is widely used in the studies, such as land use/cover monitoring, ecological 

resource management, that is carried out at regional, national and global level. Spatial aggregation 

divides the input grid of fine resolution raster image into blocks and the value for each block is 

determined to generate coarse resolution aggregated grid (Raj et al., 2013). 

Mainly two types of approaches are used for aggregating fine resolution remote sensing data. One 

approach is based on numerical aggregation in which the mathematical method such as mean, 



6 
 

median central pixel resampling (Bian and Butler, 1999) is applied on the input grid DN values and 

the result is assigned to the output aggregated grid. Another approach is based on the categorical 

aggregation that assigns the class label to output grid by logical processing on input grid categories 

such as selection of frequently occurring class, random selection of class from input grid (He et al., 

2002). 

For the purpose of aggregation of continuous images (such as NDVI, Albedo etc.) from finer to 

coarser resolution, the first approach i.e., numerical aggregation does not affect the spatial patterns 

in the data, causes a smoothening effect and provides sufficient explanation when related with other 

variables (Raj et al., 2013).  

2.4 Statistical methods for Trend Analysis 

Many trend analysis methods exist, however the selection of the most appropriate statistical method 

will depend on the following characteristics: 

 Normal Distribution 

 Abrupt Changes  

 Cycles 

 Outliers  

 Missing Values 

 Censored Data 

 Serial Correlation 

There are two main categories for statistical trend analysis methods: (1) parametric approaches - 

statistics for normally distributed data (such as regression etc.), and (2) non-parametric approaches 

- statistics that are not as dependent on assumptions about data distribution (such as Mann-Kendall 

etc.).  

The most common method to detect changes in cyclic time-series is the use of a linear model 

obtained from OLS regression. The slope coefficient α, or gain, is used to calculate the change in 

Y as β times the number of bins. This number is determined by the aggregation level (or by number 

of observations per bin), which is equivalent to the sample interval.  

2.4.1 Linear Regression 

The equation of analyzing the trend using linear regression is given by equation 2.1. 

𝑌𝑡 =  𝛼 + 𝛽 ∙ 𝜔𝑡      Equation 2.1 

where 𝜔𝑡 , the residual, is ideally independent and identically distributed, i.e. white noise. The 

dependent variable Y can be any kind of VI or cyclical environmental parameter in general. The 

most common spectral vegetation indices are based on the rapid change in reflectance of chlorophyll 

between the red and near-infrared (NIR) ranges. In the present study, NDVI, which is a commonly 

used proxy for terrestrial photosynthetic activity, has been used. (de Jong, et al., 2011) 
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2.4.2 Mann Kendall 

The Mann-Kendall test statistic has been extensively used for detecting linear trends in bio-physical 

parameters. This test is less sensitive to the outliers as it is based on the order statistics. Like other 

trend  tests,  the  Mann-Kendall  test  assumes  observations  to  be  independent  and  identically 

distributed. The test statistic in the Mann-Kendall test follows a standard normal distribution. In 

Mann-Kendall test, the null hypothesis is that the data are independent and randomly ordered. 

Therefore, the significance of trends at a desired significance level can be evaluated by comparing 

its value with standard normal variate. The impact of serial correlation on the Mann-Kendall test 

has been observed to results in increase or decrease in the rejection rate of the null hypothesis. It 

has been observed that this factor considerably reduces the power of the test.  

The Mann Kendall statistic S is given as  

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘)𝑛
𝑗=𝑘+1

𝑛−1
𝑘=1      Equation 2.2 

where, 

𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘) =  {

+1, > (𝑥𝑗 − 𝑥𝑘)

0, = (𝑥𝑗 − 𝑥𝑘)

−1, < (𝑥𝑗 − 𝑥𝑘)

    Equation 2.3 

This test has been used in number of studies and helped in trend detection for various regions across 

the globe (Sonali and Kumar, 2012). 

2.4.3 Sen Slope Estimator 

If a linear trend is present in a time-series, then the true slope (change per unit time) can be estimated 

by using a simple non-parametric procedure developed by Sen (1968). The slope estimates of N 

pairs of data are first computed by 

𝑄𝑖 =
𝑥𝑗−𝑥𝑘

𝑗−𝑘
 for i=1,…,N      Equation 2.4 

where 𝑥𝑗  and 𝑥𝑘 are data values at times j and k (j > k), respectively. The median of these N values 

of 𝑄𝑖 is Sen’s estimator of slope. If N is odd, then Sen’s estimator is computed by  

𝑄𝑚𝑒𝑑 =  𝑄(𝑁+1)
2⁄
      Equation 2.5 

and if N is even, then Sen’s estimator is computed by  

𝑄𝑚𝑒𝑑 =  [(𝑄𝑁
2⁄ + 𝑄(𝑁+2)

2⁄
) /2]    Equation 2.5 

 

Finally, 𝑄𝑚𝑒𝑑 is tested by a two-sided test at the 100(1 - 𝛼)% confidence interval and the true slope 

may be obtained by the non-parametric test (Partal and Kahya, 2006). 
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2.4.4 Eureqa  

The detection of free-form natural laws from various physical systems is a nontrivial problem which 

has haunted scientists for a long time. A robust approach developed by the software “Eureqa” 

attempts to find correlation among datasets which may be as complex as Hamiltonians and 

Lagrangians (Schmidt and Lipson, 2009). The approach is to first remove outliers, smoothen the 

data and then perform symbolical regression on chosen algebraic/ trigonometric/ exponential etc. 

operators to find the optimum solution by minimizing various error metrics.  

2.4.5 EOF 

EOF or Empirical Orthogonal Functions is also known as Principal Component Analysis (PCA). 

When choosing a statistical model, one of the big challenges is to pick as few predictors as possible 

which are good in explaining much of the past data (lowest mean squared error). EOF analysis 

provides a rational method for doing this. Also, EOF is one of the most popular methods for 

analyzing the variability of a single field, i.e., a field of only one scalar variable. The method finds 

the spatial patterns of variability, their time variation, and gives a measure of the “importance” of 

each pattern (Bretherton et al., 1992). The “modes of variability” provided by EOF analysis are 

primarily data modes, and not necessarily physical modes; and represent standing oscillations in 

real valued fields, and not propagating patterns.  

2.5 Inferences from trend analysis of Gravity Anomaly 

Various researches have been done on the trend in the gravity anomalies in the Indian subcontinent. 

Since the launch of the GRACE mission, global scale gravity anomaly data has been available 

which allowed researchers to study the variation in the gravitational potential due to the changes in 

the surface of Earth. Many researchers have concluded that there exists a positive trend in the 

gravity anomaly in the southern Indian region (Rodell et al., 2009). The Indo-Gangetic plain has 

been witnessing a negative trend in the gravity anomaly (Rodell et al., 2009). The trends in the 

gravitational anomaly have been result of the increased ground water depletion in the region (Tiwari 

et al., 2009). The ground water depletion has been acute in the north Indian agricultural region. 

Ground water has been increasingly used for irrigation in the region. Increasing amount of tube 

wells, bore wells in the region have been observed. Indian states of Rajasthan, Haryana, Punjab, 

and Uttar Pradesh along with the union territory of Delhi have been witnessing significant drop in 

the water table because of irrigational practice.  

Gravity anomalies have therefore been studied for changes in total water storage in form of 

groundwater, surface water and glaciers. There are recent studies in which vegetation is also being 

considered as a factor influencing gravity anomaly (Yang et al., 2014). 
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CHAPTER 3 - STUDY AREA AND DATA USED 
 

 

3.1 Study Area 

3.1.1 General Introduction  

The study area, India, is a South Asian country located within 8° 8' N to 37° 4' N and 68° 9' E to 

97° 23' E (Figure 3.1). It occupies a geographical area of about 3,287,263 km2 (1,269,219 sq. mi) 

of which 90.44% is covered by land and 9.56 % is covered by water. 

It is the seventh-largest country by geographical area. The Indian Ocean, the Arabian Sea and the 

Bay of  Bengal bounds it on the south, south-west and the south-east. India shares land borders with 

Pakistan, China, Nepal, Bhutan, Burma and Bangladesh. In the Indian Ocean, India is in the 

proximity of Sri Lanka and the Maldives; in addition, India's Andaman and Nicobar Islands share 

a maritime border with Thailand and Indonesia. The current study does not take into account the 

area covered by the Andaman and Nicobar Islands and the Laccadive islands. 

 
Figure 3.1 Study Area - India (Source: Roy, P. S. et al., 2012) 

3.1.2 Geography 

India lies on top of the minor Indian tectonic plate, which in turn belongs to the Indo-Australian 

Plate. India's defining geological processes started 75 million years ago when the Indian 

subcontinent, then part of the southern supercontinent Gondwana, began a north-eastward drift 



10 
 

across the then-unformed Indian Ocean that lasted 50 million years. The subcontinent's subsequent 

collision with, and subduction under, the Eurasian Plate pushed up the planet's highest mountains, 

the Himalaya. They border India in the north and the north-east. In the former seabed immediately 

south of the emerging Himalaya, plate movement created a vast trough that has gradually filled in 

with river-borne sediments; it now forms the Indo-Gangetic Plain. To the west lies the Thar Desert, 

this is cut off by the Aravalli Range in the east.   

3.1.3 Climate 

The Indian climate is strongly influenced by the Himalaya and the Thar Desert, both of which 

influence the economically and culturally pivotal summer and winter monsoons. The Himalaya 

prevent cold Central Asian katabatic winds from blowing in, keeping the bulk of the Indian 

subcontinent warmer than most locations at similar latitudes. . The Thar Desert plays a crucial role 

in exerting a pull on the moisture-laden south-west summer monsoon winds that, between June and 

October, provide the major chuck of India's rainfall. The summer and winter seasons are depended 

on the axial tilt of Earth as it oscillated from summer solstice to winter solstice in June and 

December every year, for the Northern Hemisphere. India can be sub-divided into four major 

climatic groups: tropical wet, tropical dry, subtropical humid, and montane. 

3.1.4 Biodiversity 

India lies within the Indomalaya eco-zone and contains three biodiversity hotspots. One of the 17 

megadiverse countries, it hosts 7.6% of all mammalian, 12.6% of all avian, 6.2% of all reptilian, 

4.4% of all amphibian, 11.7% of all piscine, and 6.0% of all flowering plant species. Endemism is 

high among plants in eco-regions such as the Shola forests. Habitat ranges from the tropical 

rainforest of the Andaman Islands, Western Ghats, and North-East India to the coniferous forest of 

the Himalaya. Between these extremes lie the moist deciduous Sal forest of Eastern India; the dry 

deciduous Teak forest of central and southern India; and the babul-dominated thorn forest of the 

central Deccan and western Gangetic plain. Less than 12% of India's landmass bears thick jungle.  

3.1.5 Agriculture and Agro-Ecological Zones  

The major seasonal aspects in case of agriculture are the crop seasons defined as: 

 Rabi (December- February),  

 Kharif (July-September), and  

 Zaid (March-June) 

Figure 3.2 shows different Agro-ecological zones in India. Agro-Ecological Zone (AEZ) is 

a systematic assessment of the soil and climatic resources which is a pre-requisite for 

formulating efficient land use plan for various regions in India. Mapping of the various 

agro-ecological regions will help in identifying appropriate cropping patterns for a 

particular region. To assess yield potentialities of different crops, crop combinations in 

different agro-ecological regions/zones are delineated. National bureau of soil survey and 

land use planning- ICAR have differentiated twenty-one such zones on the basis of different 

ecosystems, physiographic, soil type, climate and growth period for vegetation. 
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Figure 3.2 Agro-ecological zone map of India (Source: NBSSLUP, 1990) 

3.1.6 Water Resources 

The normal yearly precipitation India receives is 4,000 km3, out of which 700 km3 is immediately 

lost to the atmosphere, 2,150 km3 and 1,150 km3 flows into the ground and as streams respectively. 

The aggregate water resources in the country have been estimated at 1,953 km3. About 62% or 

1,202 km3 of the total water resources is available in the Ganga-Brahmaputra-Meghna basin. The 

remaining 23 basins account for 751 km3 of the total water resources. 

The yearly water availability as far as utilizable water resources in India is 1,122 km3. Other than 

this, the quantity of 123 km3 to 169 km3 additional return flow will also be available from increased 

use from irrigation, domestic and industrial purposes by the year 2050. The per capita availability 

of utilizable water, which was about 3,000 m3 in the year 1951, has been diminished to 1,100 m3 in 

1998 and is expected to be 687 m3 by the year 2050. 
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3.2 Data Used 

The study is data intensive and large spatio-temporal data sets were handled. Summary of the 

resolutions and availability of the datasets are listed in Table 3.1. However, only select years for 

each product were used for calibration, long term analysis and correlation objectives.  

Data 
Product 

Name 

Spatial 

Resolution 

Temporal 

Resolution 
Availability 

Data Web 

Reference 

NDVI 

(NOAA-AVHRR) 
GIMMS 8 km 15 days 

Jul 1981-

Dec 2006 

[1] 

NDVI 

(MODIS) 
MYD13A2 1 km 16 days 

Jul 2002-

Dec 2013 

[2] 

Albedo - Combined 

(SWIR) 

MCD43B3 

Gap filled 
1 km 16 days 

Jan 2002-

Dec 2013 

[3] 

Temperature  - 

(Tmax, Tmin) 
o
C 

IMD 

3/2008 
1o x 1o Daily 

Jan 1951-

Dec 2013 

[4] 

Rainfall  - 

(per day) mm 

IMD4 

6/2014 
0.25o x 0.25o Daily 

Jan 1901-

Dec 2011 

[5] 

GRACE 

(LWE thickness) cm 

JPL-

RL05.1 
1o x 1o Monthly 

Apr 2002-

Nov 2011 

[6] 

Data Web References (Accessed on June 23, 2015): 

[1] http://glcf.umd.edu/data/ 

[2] http://earthexplorer.usgs.gov/ 

[3] ftp://rsftp.eeos.umb.edu/data02/Gapfilled/2013/ 

[4] http://www.imdpune.gov.in/publication/pub_index.html 

[5] ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/geotiff 

Table 3.1 Data Used 

3.2.1 GIMMS NDVI Dataset 

The Global Inventory Modeling and Mapping Studies (GIMMS) NDVI data product are available 

for a 25 year period from 1981 to 2006. This data set is derived from imagery obtained from the 

AVHRR instrument onboard the (National Oceanic and Atmospheric Administration) NOAA 

satellite series 7, 9, 11, 14, 16 and 17. This is an NDVI dataset that has been corrected for 

calibration, view geometry, volcanic aerosols, and other effects not related to vegetation change 

(http://glcf.umiacs.umd.edu/data/gimms/). 

This dataset has a spatial resolution of 8 km and a temporal resolution of 15 days. There are two 

15-day composites per month, the first for day 1-15, and the second for day 16 to the end of the 

month. 

3.2.2 MODIS NDVI Dataset 

The moderate-resolution imaging and spectrometer (MODIS) NDVI data product was planned to 

maintain continuity with the NOAA AVHRR-NDVI data. It has specific required characteristics 

which reduce noise and uncertainty associated with the instrument and external sources (Justice et 

al., 1998).  

The MODIS instrument was launched aboard the Terra and Aqua satellites by NASA. MODIS 

provides 36 band data at various spatial and temporal resolutions. The MODIS NDVI 16-day 

composite products (MYD13A2) at 1 km spatial resolution generated from the Aqua satellite were 

used for the study. The dataset is available in the MODIS sinusoidal projection and HDF file format.  
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Tiles used - h23v05, h24v05, h24v06, h24v07, h25v05, h25v06, h25v07, h25v08, h26v06 and 

h26v07 (10 tiles, covering the Indian sub-continent). 

3.2.3 Gravity Anomaly 

The Gravity Recovery and Climate Experiment (GRACE), a joint mission of National Aeronautical 

and Space Administration (NASA) and the German Aerospace Center (GFZ), has been making 

detailed measurements of Earth's gravity field since its launch in March 2002 (Tapley et al., 2004).  

The data is in the Liquid Water Equivalent (LWE) thickness anomaly format. The LWE Thickness 

format is technically defined as the gravitational pull exerted by a water column of a particular 

thickness and has the units of centimetres of liquid water equivalent thickness. Studies suggest that 

this data can correlate to total water storage, biomass and other factors influencing mass. 

The data used in this study has a temporal resolution of 1 month and a spatial resolution of 1°x1° 

(a 300 km wide Gaussian filter has also been applied to the data). The latest dataset, reprocessed by 

Jet Propulsion Laboratory (JPL), called RL05.1, have been used in the present study. The data has 

been provided starting from April 2002 till November 2011.  

Due to data being not available for the months of June 2002, July 2002, June 2003, January 2011 

and June 2011, the time duration from January 2004 till December 2010 has been taken for 

correlation analysis as explained in Section 4.3. 

3.2.4 Albedo Dataset 

The MODIS albedo product (MCD43B3) provides 1-kilometer data portraying both directional 

hemispherical reflectance (black-sky albedo) at local solar noon and bihemispherical reflectance 

(white-sky albedo) (Justice et al, 1998). This MCD43B3 albedo magnitude is produced from the16-

day anisotropy models provided in MCD43B1 and represent mean of the underlying 500m values. 

The MCD43B3 albedo quantities are provided as a level-3 gridded product in the Sinusoidal 

projection. 

The study attempts to use the best available representation of time-series albedo available. The term 

“MCD”, meaning “Combined”, product utilizes both Terra and Aqua data, hence providing the 

highest probability for quality input data. Moody et al., 2004 have developed an algorithm to create 

a spatially complete, gap filled dataset through the following major steps: (1) the use of the high 

quality data for that time periods; (2) a phenological temporal curve fitting exercise for pixels 

without high quality retrievals; (3) a spatial fitting exercise; and as a last resort (4) a spatial 

smoothing effort. 

The white sky albedo products in shortwave region of the electromagnetic spectrum have been used 

in this study. 

3.2.5 Climatic Forcing (Rainfall Data) 

From the India Meteorological Department (IMD), a high spatial resolution 0.25o x 0.25o gridded, 

daily rainfall data, called IMD4, for 1901-2010 over the Indian subcontinent region have been used 

in this study (Pai et al., 2014). In comparison with previous gridded datasets, due to its higher 

(better) spatial resolution and  higher density of rainfall stations, the spatial rainfall distribution - 
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like heavy rainfall areas in the orographic regions of the west coast and over northeast, low rainfall 

in the leeward side of the Western Ghats etc.  - are more realistically and better presented. 

This data product is the fourth version of IMD gridded daily rainfall data developed in 2008 based 

on 6995 quality controlled rain-gauge stations over India. The data are arranged in 135 x 129 grid 

points which were created by interpolating the station data. The starting point of the grid is 6.50o 

North and 66.50o East. 

A well tested interpolation method, named Shepard’s method, was used to interpolate the station 

data into regular grids of 0.25 degrees. IMD rainfall data were made available for research work 

after several comparisons and quality control evaluations and the utility of this dataset is already 

proven in many meteorological studies. 

3.2.6 Climatic Forcing (Temperature Data) 

Another data set from IMD, a coarse resolution 1 degree gridded (approximately 110 km), daily 

temperature dataset was used for this study (Srivastava et al., 2009). The daily temperature 

(Minimum, Maximum and Mean) data were collected from 395 quality controlled stations over 

India. IMD has prepared this dataset for the period 1969-2009 for research purposes. This data are 

arranged in 32x35 grid points. The unit of temperature is in degrees Celsius. For the leap year, data 

for 366 days were created. The data are available in binary and text format for every year. 

IMD presently maintains around 550 geographically distributed surface observatories in the entire 

country, where daily surface air temperature observations (maximum and minimum) are recorded. 

These data are compiled, digitized, quality controlled and archived at the National Data Centre 

(NDC) of IMD. They have used a modified version of the Shepard’s angular distance weighting 

Algorithm for the data preparation. Daily temperature data at a coarse resolution are useful for 

analysing extreme climate changes. For environmental modelling applications and validation of 

climate model simulations, the IMD temperature datasets have shown their efficiency in various 

studies. 

3.2.7 Open Source packages and Programming for Geoprocessing  

There is a plethora of packages available in the free and open source software (FOSS) domain for 

all types of applications. This study makes an attempt to utilize some for their agility and user-

friendliness. The packages used in this study include (in alphabetical order): 

EUREQA 

Eureqa is a package (earlier available free to cost) which derives relationships between “natural” 
variables using user-specified arithmetic operators (Schmidt and Lipson, 2013).  

 

GDAL 

Geospatial Data Abstraction Library or GDAL is the de-facto standard for reading and writing 

spatial (raster & vector) data (GDAL, 2014). It was used standalone as well as an extension to the 

Python programming language and R programming language (R-GDAL (Hijmans, 2014)). 

 

IDL 

Interactive Data Language or IDL is a blazing fast array intensive programming language (Fanning, 
2003).  
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MATPLOTLIB 

The plotting and graphing engine for Python programming language (Hunter, 2007). 

 

NUMPY 

The numerical extension to Python programming language which is very useful for matrix 

operations (Dubois et al., 1996).  
 

PYTHON 

A multi-purpose high level language which is the language of choice these days for geoprocessing 
(Downey, 2012). 

 

R 
R-programming language is widely used globally for statistical operations (R Development Core 

Team, 2008).  

 

R-FDA 
The functional data analysis extension to R-programming language was also used (Ramsay et al., 

2014).  

 

SCIPY 

The scientific extension to Python programming language which is like a Swiss knife for all 

statistical & scientific jobs (Jones et al., 2001). 
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CHAPTER 4 - METHODOLOGY 

 

This chapter describes the research methodology followed for pre-processing the land surface 

parameters, climatic forcing and gravity anomalies, conducting exploratory analysis, removing 

seasonality by creating temporal granules, and carrying out trend analysis and correlation studies 

to achieve the objectives of this study. 

The three research sub-objectives require the study to have three distinct workflows. 

4.1 Methodology for Sub-objective 1 

The flowchart shown in Figure 4.1 aims to address the first research sub-objective which studies 

the compatibility between MODIS-NDVI and NOAA-AVHRR-NDVI and to inter-calibrate them 

to generate a combined time-series NDVI.  

 

Figure 4.1 Flowchart for first sub-objective relating to creation of combined NDVI dataset for 

1981-2013. 

4.1.1 Data Preparation 

To achieve the first objective of the proposed research, the MODIS NDVI (MYD13A2) and 

NOAA-AVHRR NDVI (GIMMS) datasets were downloaded and pre-processed. This was achieved 

in the following steps: 

1. Identification of MODIS Tiles 

The facilities REVERB1and GLOVIS2 of NASA and USGS, were made use of to identify 

all MODIS tiles lying within the Indian sub-continent. India shape file from Survey of India 

was generalized to fit within 50 nodes. The tiles identified were h23v05, h24v05, h24v06, 

h24v07, h25v05, h25v06, h25v07, h25v08, h26v06 and h26v07 (10 tiles in all). 

2. Downloading  

                                                             
1http://reverb.echo.nasa.gov/ 
2http://glovis.usgs.gov/ 
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A script in Python language was made to compile the web-address/links for identified files 

to be downloaded. The URL (http://e4ftl01.cr.usgs.gov/) stores all the files separated in 

different folders based on date of acquisition. A code to extract all URLs, match with tiles 

required and store them in a separate file was written and executed. A bulk downloading 

software was later used to read all the links and download those (5500+ files, ~69.6 Gbs). 

The workflow is shown in Figure 4.2. 

3. Extraction to Geotiff file format 

The downloaded Hierarchial Data File (HDF) format files are compressed files having 

multiple layers. The dataset required was at “Layer 0” and of data type “16 bit signed 

integer”. The Arcpy Python library’s function “ExtractSubDataset_management” was used 

in an iterative manner to extract same layer from all the files. 

4. Mosaic  

The 10 Geotiff files for each date needed to be mosaiced to form a single tile. The Arcpy 

Python library’s function “MosaicToNewRaster_management” was used to do this. 

Sequential processing of the data files required large computing time. Hence, a parallel 

computing approach was approached.  The Arcpy library is not “thread-safe”, hence a 

“multiprocessing” based approach was used. The built-in “multiprocessing” Python library 

was used to create a pool and assign tasks were executed asynchronously.  

 

 

Figure 4.2 Flowchart for extracting single dataset from HDF files and mosaic using multi-

processing 

5. Pre-processing of GIMSS NDVI dataset 

GIMMS dataset was downloaded from the University of Maryland Global Land Cover 

Facility Data distribution centre website. The files were available in Geotiff file format for 

global coverage (except Greenland and Antarctica). However, MODIS and NOAA datasets 

had many different data parameters as given in Table 4.1. 

 

 MODIS NOAA 

Projection Sinusoidal Lat-Lon 

Missing data values -3000 -10000 

File format HDF TIF 

Resolution 1km 8km 

Extent Not compatible 

Table 4.1: Difference in MODIS and NOAA NDVI datasets 

The Geospatial Data Abstraction Library (GDAL) utility was extremely functional to 

merge the two datasets into same parameters. The workflow shown in Figure 4.3 was 

adopted to synchronize the datasets. An example syntax of using the “gdalwarp” utility 

from GDAL in command line is given below:  

http://e4ftl01.cr.usgs.gov/
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gdalwarp.exe -t_srs EPSG:4326 -srcnodata -3000 -dstnodata -10000 -ts 403 417 -cutline 
boundary.shp -te 68.0770 6.8229 97.3861 37.1502 -r average -of GTiff input.tif 
resample/output.tif 

 

 

Figure 4.3 Flowchart to synchronize MODIS and NOAA datasets using multi-processing 

4.1.2 Inter-Calibration 

Once the MODIS and NOAA datasets were downloaded and preliminary data scraping was done, 

inter-calibration was carried out to generate a single combined long-term time-series NDVI dataset. 

To perform inter-calibration, the approach suggested by (Steven et al., 2003) was implemented. 

The approach suggested a linear model (linear regression approach), as given in equation 4.1, to 

perform inter-calibration between MODIS and NOAA datasets.  

𝑁𝐷𝑉𝐼𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑎 + 𝑏 ∙ 𝑁𝐷𝑉𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 …………………………………………… Equation 4.1 

 

Steven et al., 2003 have reported the coefficients ‘a’ and ‘b’ for many NDVI datasets. The 

coefficients for MODIS and NOAA inter-calibration reported by them are given in Table 4.2. 

 

 Dependent NDVI 

Independent NDVI  AVHRR  MODIS  

AVHRR   a=0.004, b=1.103  

MODIS  a=0.003, b=0.904   

Table 4.2 Coefficients for inter-calibration of NDVI datasets (as reported by Steven et al., 2003) 

An attempt was made to experimentally derive the coefficients for the Indian sub-continent. The 

MODIS NDVI product used was MYD13A2 which is a 1 km resolution product. This was 

resampled to 8 km i.e., to that of GIMMS NDVI resolution. Since some amount of averaging has 

taken place, the GIMMS NDVI is kept as the reference dataset and MODIS NDVI as the measured 

dataset.  

To derive the coefficients ‘a’ and ‘b’, 100 random point samples were taken each in forested and 

non-forested areas in the Indian region. The forest and non-forest areas were delimited using the 

DOS-DBT project data (Roy et al, 2012). The data from overlapping period for GIMMS NDVI and 

MODIS NDVI i.e., July 2002 - December 2006, was extracted for the 200 points (100 forest + 100 

non-forest) and regressed. As can be seen in the results, shown in Figure 4.4, the spread of the data 

points is large and no consensus can be derived from the coefficient of determination values.  
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Figure 4.4 Regression of time-series NDVI data from MODIS and NOAA satellites over forested 

and non-forested random points in Indian sub-continent (2002-2006) 

Steven et al., 2003 carried out the same experiments in a controlled environment using calibrated 

test sites and has proposed coefficients values as in Table 4.2. Hence, in the current study, equation 

4.2 below is used to make a long term NDVI data set. 

𝑁𝐷𝑉𝐼𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 0.003 + 0.904 ∙ 𝑁𝐷𝑉𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑………………………………Equation 4.2 

 

Another GDAL utility ‘gdal_calc.py’ utility was used to perform the 'raster calculator' operation, 

to bring the measured NDVI (MODIS in this case) up to the reference NDVI (GIMMS in this case). 

Example syntax to run ‘gdal_calc’ on all files in a folder in windows command line is as given 

below: 

Resample_files_folder> for %i in (*.tif) do gdal_calc -A %i --outfile= 
Output_files_folder\%i --calc="0.003+0.904*A" --NoDataValue=-10000 

 

GIMMS NDVI dataset from July 1981 till December 2006 was joined with the modified MODIS 

NDVI from January 2007 till December 2013.  

4.2Methodology for Sub-objective 2 

The flowchart shown in Figure 4.5a and 4.5b aim to address the second research sub-objective 

which attempts to study the long-term trends in temporal aggregates of NDVI, albedo, temperature 

and precipitation. 
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Figure 4.5a Flowchart for second sub-objective relating to NDVI and Albedo trends 

 

 

Figure 4.5b Flowchart for second sub-objective relating to climatic trends 

4.2.1 Data Preparation 

Albedo 

The process for pre-processing MODIS NDVI data (as described in Section 4.1.1) was also used to 

prepare the Albedo dataset. The MODIS product “MCD43B3” was used. The “Layer 17” and 

“Layer 19” were extracted and mosaiced. They are the Visible and Shortwave white sky albedo 

products. GDAL was used to do preliminary data pre-processing, an example for which is shown 

below: 
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Raw_Albedo_files_folder>for /r %i in (*.hdf) do gdalwarp.exe -t_srs EPSG:4326 -
srcnodata 32767 -dstnodata 32767 -cutline boundary.shp -of GTiff -te 68.14156741 
8.03336612 97.32488907 37.14168781 %i "%~ni.tif" 

 

 

Albedo data is prone to quality issues due to presence of clouds and atmospheric interferences at 

the time of acquisition. Hence, to use the best available representation of time-series albedo, the 

dataset developed using Moody et al., 2004 werr used. The algorithm creates a spatially complete, 

gap filled through the following major steps: (1) the use of the high quality data for that time 

periods; (2) a phenological temporal curve fitting exercise for pixels without high quality retrievals; 

(3) a spatial fitting exercise; and as a last resort (4) a spatial smoothing effort. 

Climatic data (Rainfall and Precipitation) 

The climatic forcing data obtained from the India Meteorological Department (IMD) available in 

GRD (binary) file format was used. IDL codes were written to; (1) convert them to spatially 

referenced TIFF file format, (2) find average rainfall & temperature (min and max) (ignoring pixels 

having missing values), and (3) creating anomaly data for entire time-series of daily rainfall and 

temperature (min and max) datasets. The anomaly data were created by subtracting daily climatic 

data from climatic normal generated by averaging daily data for the period.  

 

To better understand the climatic variables, apart from the time-series anomaly data, a few indices 

given by Expert team on Climate Change Detection and Indices (ETCCDI) were also prepared. 

Both types of indices, seasonal and non-seasonal, were chosen for both rainfall and temperature 

data, as given in Table 4.3. The index numbers given are as per (etccdi.pacificclimate.org). 

 

 Seasonal Non-Seasonal 

Tmax 

6.  TXx, Monthly maximum 
value of daily maximum 

temperature 

2.  SU, Number of summer 
days 

13.  TX90p, Percentage of 

days when TX > 90th 

percentile 

Tmin 

9.  TNn, Monthly minimum 

value of daily minimum 

temperature 

4.  TR, Number of tropical 

nights 

10.  TN10p, Percentage of 

days when TN < 10th 
percentile 

Rainfall 

17.  Rx1day, Monthly 

maximum 1-day precipitation 

 

23.  CDD. Maximum length 
of dry spell 

18.  Rx5day, Monthly 

maximum consecutive 5-day 

precipitation 

24.  CWD. Maximum length 
of wet spell 

Table 4.3 List of ETCCDI indices chosen for current study 

 

Python programs were written to derive these indices from IMD dataset. The name and description 

of seasonal indices indicate clearly the data created. Index 2 (SU) is the annual count of days when 

TX (daily maximum temperature) is >25oC. Similarly, Index 4 (TR) is the annual count of days 



22 
 

when TN (daily minimum temperature) is >20oC. Indices 23 and 24 (CDD and CWD) are count of 

consecutive days (maximum length) of dry (< 1mm) and wet (>= 1 mm) daily rainfall.  

 

Derivation of Indices 13 and 10 (TX90p and TN10p) is a two-step process. In first step, the 10th 

and 90th percentile temperature values are derived from minimum and maximum temperature 

datasets respectively, the definition for which is given in Table 4.4. In this study, the base period 

has been selected as the entire duration for which the temperature data are available i.e., 1951-2013. 

 

TX90p, Percentage of days when TX > 90th percentile:  

Let TXij be the daily maximum temperature on day i in period j and let TXin90 be the calendar 

day 90th percentile centred on a 5-day window for a base period1990. The percentage of time for 

the base period is determined where: 

TXij> TXin90  

TN10p, Percentage of days when TN < 10th percentile: 

Let TNij be the daily minimum temperature on day i in period j and let TNin10 be the calendar 

day 10th percentile centred on a 5-day window for a base period. The percentage of time for the 

base period is determined where: 

TNij< TNin10 

Table 4.4 Definition of ETCCDI Indices 13 and 10 

 

The second step is finding the number of days having temperatures greater than or lesser than the 

percentile value. This can be best explained as shown in Figure 4.6 which shows 315 data points in 

the temporal domain for a single pixel (24oN, 81oE) for 5 consecutive dates (January 01 to January 

05) for the years 1951 till 2013, the 10th& 90th percentile lines and the histogram of all the values.  

 

 
Figure 4.6 Graph and histogram of 5 day temperature for 63 years data indicating 10th & 90th 

percentile boundaries 

 

4.1.3 Temporal Aggregation  

Programs in IDL language were written to derive the temporal aggregates of consolidated NDVI 

and Albedo time-series data. As the NDVI data are available fortnightly, two files from each month 

are taken for the time period under consideration, and averaged  - ignoring missing values. The 

following aggregates were prepared: 

1. Annual (24 files per year) 
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2. Cropping season: 

a. Rabi (December - February) (6 files per year) 

b. Kharif (July - September)(6 files per year) 

c. Zaid (March - June) (8 files per year) 

The MODIS acquisition dates were taken into consideration for the temporal aggregation of Albedo 

data. For the Climatic datasets, annual aggregates were prepared for temperature and rainfall. 

Additionally, monsoon period (June, July, August and September or JJAS), rainfall data was also 

aggregated. 

These consolidated NDVI, Albedo, Climatic anomaly, ETCCDI indices time-series datasets and 

their temporal aggregates were used for trend analysis as explained in section 4.1.4. 

4.1.4 Trend Analysis 

One of the primary objectives of MTUP problem is to study the effects of differently sized time 

granules on regression patterns obtained from them. The time domain can be modified suitably such 

as to create time granules which are ‘deseasonalized’, i.e., the effect of repetitive seasonal variations 

are minimized. The consolidated time-series data has seasonal cycles hence not suitable for direct 

regression techniques, but is an ideal candidate for Locally Weighted Regression (LOESS) 

technique described next. The temporal aggregates based on annual and cropping season cycles are 

suitable candidates for direct regression techniques such as OLS and Mann-Kendall test with Sen’s 

slope estimater as explained later in this section.  

LOESS 

Seasonal decomposition of time-series (STL) using LOESS (Cleveland et al., 1990) is used to 

decompose the seasonal time-series (NDVI, Albedo, Climatic anomaly, Seasonal ETCCDI) as 

given in the equation 4.3.  

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡………………………………………………...…………………… Equation 4.3 

Where Yt is the data value at time t, Tt is the trend component, St is the seasonal component and Rt 

is the residual component. 

The LOESS technique was simplified to take 2 main arguments - (1) s.window - the span of the 

LOESS window for seasonal extraction, and (2) t.window - the span of the LOESS window for 

trend extraction. A ballpark cropping season length of 2.5 months gives s.window value as 5 spans 

(at 2 spans in 1 month) and less than 5 years for trend extraction gives t.window as 100. 

Figure 4.7(a) shows the actual NDVI data points for a pixel (row 200, column 150) for the entire 

duration from 1982 till 2013 (32 years * 24 bi-weekly datasets = 768 data points). Using the 

technique described above, the seasonal, residual and long term trends were derived. The mean of 

the seasonal trend was subtracted from itself and plotted in (b). Figure 4.7(c) shows the long-term 

trend component derived using 100 as t.window. Figure 4.7(d) shows the residual derived from 

subtracting smoothed seasonal data from the original data points.  

The histogram (Figure 4.8) of the residuals shows that there is even distribution and hence no bias 

or auto-correlation exists after smoothing. 
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Figure 4.7 Trend decomposition using 

LOESS (a) original data for 768 data points 

(in time domain), (b) seasonal trend 

(anomaly), (c) long term trend, and (d) 

residual component 

 

Figure 4.8 Histogram of residuals obtained 

from LOESS 

The STL/LOESS algorithm is computationally expensive 

and both Python and IDL programs were written and time 

of execution compared for both on the Albedo dataset (552 

files; dimensions 3502 x 3493; 16 bit integer data). STL on 

Albedo when performed using an improvised code in IDL 

programming language gave results in 1 day; however, 

sampling variance for some datasets could not be 

determined. The Python code took 56 days (4,853,203.28 

seconds) to run (update: 26 December, 2014) as shown in 

the screenshot on the left. 

 

  

a 

b  

c 

d  
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OLS  

LINREGRESS routine from SCIPY.STATS module in Python programming language has been 

used to perform trend analysis by fitting the paired data(𝑥𝑖 , 𝑦𝑖) to the linear model, 𝑌 = 𝑚𝑋 + 𝑐. A 

two tailed p-test with 95% confidence interval (p value less than 0.05) was also calculated and 

multiplied with the derived slope to return only significant slope values.  

Mann-Kendall Test and Sen’s Slope Estimator 

First and Second lag auto-correlation tests were done, and then presence of trend was determined 

using the Mann-Kendall Test. A Python program with some optimization and parallelization could 

achieve the desired objectives, including distributed Sen’s Slope estimates for the entire Indian sub-

continent. An image showing only the Sen Slope values at pixels having p-value (derived from 

Mann-Kendall test) less than 0.05 (95% confidence interval) is also shown, as given in the example 

shown in Figure 9. Figure 9a&b shows the spatial variation of Sen Slope estimate and p-value as 

derived from Mann-Kendall test. A mask is created based on p-values less than 0.05 and applied to 

the Sen Slope estimates to generate the significant Sen Slope estimate map, as shown in Figure 4.9. 

 
Figure 4.9 Example of clipping of Sen Slope estimates at 95% confidence interval (α < 0.05) 

4.3 Methodology for Sub-objective 3 

The flowchart shown in Figure 4.10 aims to address the third research sub-objective which studies 

the correlation in the trends in different datasets including gravity anomaly for the past decade. 

 

4.3.1 Data Preparation 

The GRACE gravity anomaly data came as global files in 1 degree resolution. Clipping them to 

India extent and interpolation them (using nearest neighbour) to half a degree resolution was done 

using GDAL, samples of which are shown in Sections 4.1.1, 4.1.2 and 4.2.1.  

Albedo, NDVI and Climatic datasets were resampled to half a degree spatial resolution, averaged 

in temporal domain to create monthly aggregates (to match that of gravity anomaly data) and 

masked using a common mask using GDAL commands, Python and IDL programming.  

‘Normals’ for all datasets were derived and subtracted from the entire time-series to generate the 

anomaly time-series datasets. This anomaly dataset for all six datasets was used further for 

correlation.  
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Figure 4.10 Flowchart for sub-objective 3 

4.3.2 Correlation  

The correlation among six variables was attempted using the EOF technique and the Eureqa 

package. The basic premise behind this part of the study is to understand the dependence of gravity 

anomalies on other physical processes. The terrestrial water component, which comprises of water 

stored as surface water, soil moisture, moisture at the vadose zone and groundwater, have been 

reported to be the major component effecting gravity. Negative impact due to surface irrigation and 

ground water extraction also impacts gravity (Tiwari et al., 2009). Attempts have been made to 

proxy the effect of these factors by using NDVI and Rainfall datasets.  

EOF 

EOF or PCA has generated immense interest in research community for its capability to generate 

statistically derived “data” modes which may represent “standing oscillations” or “propagating 

signals.” This multivariate statistical technique aims to “reduce a dataset containing a large number 

of variables to a dataset containing fewer (hopefully many fewer) new variables.” These new signals 

when applied to many fields (or variables) may help “uncover meaningful joint relationships among 

fields in an exploratory setting, where clues to possibly unknown underlying physical mechanisms 

may be hidden in the complex relationships among several fields” (Wilks, 2011).  

Hence, the primary usefulness of EOF is (1) to identify a small subspace that contains most of the 

dynamics of the observed natural system, and (2) to identify modes of variability. 

The EOFs are found by computing the eigenvalues and eigenvectors of a spatially weighted 

anomaly covariance matrix of a field. Hence to perform EOF for a single field, the following steps 

are carried out: 
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1. The input variables are converted to anomaly data by subtracting the mean of entire dataset 

with each layer. In the current study all 6 datasets were resampled spatially and temporally 

to 0.5o x 0.5o grids and 1 month respectively. They were then averaged for the entire time 

duration 2004-2010 and subtracted from each month layer.  

2. Most commonly, the spatial weights are the cosine of the latitudes or, better for EOF 

analysis, the square root of cosine of latitude values. These are calculated and multiplied 

by each layer.  

3. Covariance matrix of k x k dimensions is calculated where k is the number of grids for 

which the spatial EOF is being run. 

4. The eigenvectors and eigenvalues are calculated. The derived eigenvalues provide a 

measure of the percent variance explained by each mode. The eigenvectors represent the 

pattern of variance in the spatial scale. The units are totally arbitrary. The only importance 

of the values is whether they are positive or negative.  

5. To interpret the patterns, the principal components are calculated, which are the spatially 

weighted anomaly data projected onto the eigenvectors. The principal component attached 

to the corresponding eigenvector spatial pattern provides the sign and overall amplitude of 

the pattern as a function of time. 

The steps above will help explain the spatial variability in single fields. The process is modified to 

explain variability in a set of L fields. The anomaly data is stacked together such that the covariance 

matrix is kL x kL. The modes derived by such modification explains the joint variability in the 

datasets. 

The EOF technique was used with codes written in both R and IDL programming language. 

Multiple libraries from the R programming language were used such as raster, fda, plyr, rgdal, sp, 

zoo, base, cluster, tcltk, stringr.  

Eureqa 

The Eureqa software provides a user friendly interface and is designed to work on noisy data. The 

results of the symbolic regression are presented in an intuitive way. Symbolic regression, as 

implemented in Eureqa, creates an initial subset of functional forms from user-specified building 

blocks, which are stored as the operator and terminal sets. These building blocks can consist of a 

range of operators, including arithmetic, trigonometric, exponential, etc. Using genetic 

programming methods, Eureqa generates a number of solutions, each offering a potential function 

that explains the target data by input data. 

Eureqa automatically splits the input data into training and validation datasets. The training set is 

used to generate and optimize solutions, and the validation set is used to test how well those models 

generalize to new data. Eureqa randomly shuffles the data and splits it into training and validation 

data sets based on the total size of your data. Training data is taken from the start of dataset and 

validation data will be taken from the end (after shuffling). For very large data sets (like in current 

study) it uses a smaller fraction of data for training (<= 10,000 data points) and remaining data are 

used for validation. 

Data from all pixels were reformatted into ASCII and fed into Eureqa for the entire time-series. 

Handling missing data and remove outliers (Threshold: 2.00 multiple of IQR) were the data 

preparation instructions fed into the software. 
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The basic building blocks for the target expression (Equation 4.4 and 4.5) was specified as below:  

 Basic (+, -, *, /), Trignometric (sin, cos), Exponential (exp, log, ^) and History (Simple 

moving average) 

The process was attempted first with 2 independent variables NDVI (n) and Rainfall (r) and 1 

dependent variable Gravity anomaly (g) for the target expression given in Equation 4.4. 

𝑔 = 𝑓(𝑛, 𝑟)…………………………………………...…………………… Equation 4.4 

The model failed to converge beyond 70% even after running for over 6 hours on an Intel® i7-

3.60Ghz 8 core CPU, 64 bit machine. The model achieved was only 6% stable & 55% mature and 

gave low coefficient of correlation and r2 (Goodness of Fit) values.  

The process was attempted next with all 5 independent variables and 1 dependent variable for the 

target expression given in Equation 4.5. 

𝑔 = 𝑓(𝑎, 𝑛, 𝑟, 𝑡𝑥, 𝑡𝑛)…………………………………………...…………………… Equation 4.5 

Where g, a, n, r, tx and tn denote Gravity, Albedo, NDVI, Rainfall, Maximum temperature and 

Minimum temperatures respectively. The process was run for just over 3 hours on an Intel® i7-

3.60Ghz 8 core CPU, 64 bit machine. The model was stopped when it reached 100% convergence 

and model was 90%+ stable, as shown in Figure 4. 11.  

 

Figure 4.11 Performance parameters for Eureqa correlation run 

The results obtained are discussed in next chapter. The coefficients obtained for Equation 4.4 were 

applied to the original independent variables and regressed GRACE anomaly was also compared 

with the original. 
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CHAPTER 5 - RESULTS AND DISCUSSION 

 

The study attempts to understand the effect of temporal granularity i.e., the effect of selecting 

differently sized temporal aggregates to do statistical trend analysis for spatio-temporal datasets 

over Indian sub-continent. The results are categorised to answer the research sub-objectives.  

5.1 Combined Time-Series NDVI 

Section 3.2.1 and 3.2.2 discussed about the two NDVI datasets used (NOAA-GIMMS and MODIS-

MYD13A2). Section 4.1 discussed about the process followed to inter-calibrate the two datasets.  

After spatial aggregation (averaging algorithm), of MODIS NDVI dataset (1 km spatial resolution) 

to GIMMS NDVI dataset (8 km spatial resolution), the calibration model was applied on MODIS 

NDVI and resultant dataset was merged with GIMMS NDVI, to provide the final consolidated time-

series NDVI dataset. Total 780 files were obtained (2 fortnights per month * 12 months per year * 

32 ½ years (July 1981 - December 2013)) in this dataset. 

Plots between GIMMS NDVI, MODIS NDVI before and after calibration, for a forested pixel 

(Figure 5.1) and a non-forested pixel (Figure 5.2), for the overlapping period (i.e., July 2002 - 

December 2006), were drawn. As can be clearly seen, the calibration model attempts to bring the 

NDVI values closer.  

 

Figure 5.1 NDVI plots before and after calibration for a forested pixel 

Random 160 points in forested and non-forested areas were used to test the goodness of fit. The r-

squared was found to be 0.72 with a majority of the points lying on the 45o line as shown in Figure 

5.3.  
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Figure 5.2 NDVI plots before and after calibration for a non-forested pixel 

 

Figure 5.3: Scatter plot of GIMSS NDVI against MODIS NDVI (after calibration) for 160 points 

for time duration July 2002 - December 2006 (fortnightly data) 
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5.2 Trends in time-series datasets 

Section 3.2.1, 3.2.2, 3.2.4, 3.2.5 and 3.2.6 discussed about the NDVI, Albedo, Precipitation and 

Temperature datasets. Section 4.2 discussed about the process followed to find long-term trends in 

temporal aggregates of NDVI, albedo, temperature and precipitation. 

5.2.1 NDVI trends 

STL/LOESS on NDVI 

As discussed in Section 4.1.4, STL/LOESS was applied on the 32.5 years (15 day temporal 

resolution) NDVI data from July 1981 till December 2013. To obtain insight into the NDVI 

dynamics, the magnitudes of the trend, seasonal and residual (irregular) components were 

compared. To do this, the sample variance of each component is calculated as a percentage of the 

variance of the original NDVI time-series data. 

Figure 5.4a maps the variances in the original series. Higher variances in NDVI (>0.04) are 

observed in Punjab, Haryana, Arunachal Pradesh and the Western Ghats, among other sporadic 

occurrences throughout the country. Low variances (<0.01) are observed in the Western Himalaya, 

Western Plain and Kutch Peninsula and parts of Eastern Ghats.  

Figure 5.4b shows the contribution of the STL seasonal components to the overall variance across 

the country. Seasonality primarily governs the decomposition of variances with values ranging from 

60-100%. Lesser impact of seasonality is found in Gangetic plains, parts of Bengal and Odisha 

Plain and Western Ghats.  

Figure 5.4c shows the contribution of the STL trend components to the overall variance. Trend is 

the not a major component of variance. Higher percentages of trend components are seen in the 

Western Himalaya, Kutch and Kathiawar peninsula, Deccan plateau and Assam plains.  

The median percentage of variance due to irregular component in NDVI values is about 7% (Fig. 

5.4d). Higher percentages of irregular components in NDVI values are observed in entire North 

East India (except Assam plains), Eastern and Western coastal plains. 

For the purpose of visualizing the regional structure in STL-derived trends, it is convenient to 

reduce each one to a single number. Here, for each pixel an index of overall annual change has been 

defined as (Tn−T1)/n, where n = 32.5 is the number of years of record in the analysis period 1981-

2013 and T1 & Tn is the value of the STL trend component in the 1st & last year of the record as 

defined above. 

Figure 5.5 shows a map of the long-term trends calculated in this way. Positive trends dominate the 

Indian land mass however negative trends are observed in Northern Himalayas, upper reaches of 

North Eastern Hills, Rajasthan, Western Ghats and parts of Central plateau. Positive trends in NDVI 

could be because of increase in agriculture propelled by irrigation development. This is in 

agreement with the increase in net irrigated area reported in Lee et al., 2009.  

Overall, the pattern is very similar to that derived in Figure 5.6a using linear regression. The STL 

trends are, however, more realistic than trends estimated by linear regression. 
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Figure 5.4 Results of STL/LOESS on NDVI. Variance of NDVI time-series (a); relative 

proportions of NDVI variance contributed by seasonal, trend and residual (irregular) components 

are shown in (b–d) respectively; and STL components for representative pixel are shown in (e). 

(July 1981-December 2013) 
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Figure 5.5 Trends in NDVI derived from STL/LOESS results (July 1981-December 2013) 

OLS & M-K on Annual Temporal Aggregates of NDVI  

Annual temporal aggregates were prepared as discussed in Section 4.1.3 and OLS & M-K test were 

applied as discussed in Section 4.1.4. Figure 5.6 shows the results of OLS and M-K techniques on 

annual temporal aggregates of combined NDVI dataset (1982-2013). The results have been masked 

at 95% confidence interval (p-value less than 0.05). 

Figure 5.6a represents the slope values of the OLS technique in 3 main categories, i.e., Negative 

trend (values less than 0.0), Zero or No trend (values equal to 0.0) and Positive trend (values greater 

than 0.0). The majority of the area in the India sub-continent shows positive trend which also 

resembles the area under cropping, such as Gangetic plains, Central highlands & Kathiawar 

peninsula, Deccan plateau and Assam & Bengal plains. Portions of the Eastern plateau and Eastern 

Ghats and large tracts of Western Himalaya show negative trends. 

Figure 5.6b represents the slope values the slope from the Sen’s slope estimator. The results are 

similar to that obtained from OLS technique. It is observed that the area under negative trend has 

reduced and has been replaced by no significant trend.  

 
Figure 5.6 Significant slopes derived from OLS & M-K / Sen’s estimator on Annual Temporal 

Aggregates of NDVI (1982-2013) 



34 
 

OLS & M-K on Cropping Cycle Temporal Aggregates of NDVI  

The temporal aggregates for cropping cycles (prepared as described in Section 4.1.3) were subjected 

to the OLS and Sen’s slope estimators for derivation of trends in the datasets. The trends, as shown 

in Figure 5.7, were masked for significant values (at 95% confidence interval). The cropping 

seasons used, namely Kharif, Rabi and Zaid are described in 3.1.5. 

The Kharif or monsoon crop aggregated data shows positive trends in majority land mass area of 

the country and mimics the annual temporal aggregate trends (Figure 5.7a&b). The slope values or 

trends in OLS and Sen’s estimator are similar to each other; except that the negative trends in OLS 

were replaced by no significant trend in Sen’s estimator plus M-K test outputs. The negative trends 

are more pronounced in upper reaches of Northern Himalayas. 

Figure 5.7b-e shows the slope trends in NDVI aggregated for Rabi (December-February) and Zaid 

(March-June) cropping cycle. NDVI trends for Rabi or winter season crop reflects the areas under 

Rabi wheat (Punjab, Haryana, parts of Uttar Pradesh, Madhya Pradesh and Rajasthan) and rice 

(parts of Gangetic Assam and Bihar plains) crops. Areas in J&K, Eastern plateau (Chhattisgarh and 

Odisha) and parts of Mizoram and Tripura show negative NDVI trends. Zaid cropping cycle trends 

show positive values in Gangetic plains, North Eastern hills and Deccan plateau & negative trends 

in Punjab & Haryana. 

5.2.2 Albedo trends 

STL/LOESS on Albedo 

As discussed in Section 4.1.4, STL/LOESS was applied on the 12 years (8 day temporal resolution) 

albedo data from January 2002 till December 2013. To obtain insight into the albedo dynamics, the 

magnitudes of the trend, seasonal and residual (irregular) components were compared. To do this, 

the sample variance of each component is calculated as a percentage of the variance of the original 

albedo time-series data. 

Figure 5.8a maps the variances in the original series. Higher variances in albedo (90-100%) are 

observed in the Western and Eastern Himalaya and in parts of Kutch peninsula. Medium variances 

(50-89%) are observed in Northern plains, Central Highlands, some parts of Deccan plateau and in 

parts of North Eastern hills. Low variances are observed in rest of India.  

Figure 5.8b shows the contribution of the STL seasonal components to the overall variance across 

the country. Generally, seasonality is the primary component of variance in albedo except in 

Western and Southern regions of the country. Albedo values that are dominated by the seasonal 

component (>80% of variance) occur mainly in the Gangetic plains, Western Ghats and North 

Eastern hills. Seasonality is the least important component in the Western India (Rajasthan, Punjab, 

and Haryana), Southern Karnataka and extreme reaches of Jammu and Kashmir.  
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Figure 5.7 Significant slopes derived from OLS & M-K / Sen’s estimator on Cropping cycle 

Temporal Aggregates of NDVI (1982-2013)  
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Figure 5.8 Results of STL/LOESS on Albedo (January 2002-December 2013). Variance of albedo 

time-series (a); relative proportions of albedo variance contributed by seasonal, trend and residual 

(irregular) components are shown in (b–d), respectively. Relative proportion of variance in albedo 

explained by all time-series components along two profiles lines (N-S and W-E) on Fig. 5.8a are 

shown in Fig. 5.9. 

Figure 5.8c shows the contribution of the STL trend components to the overall variance. Trend is 

the major component of variance in few locations. Higher percentages of trend components are 

concentrated in the Western Plain, Kutch Peninsula and Deccan Plateau. Although trends are 

detected in a large area of Western India (Rajasthan), total variances of albedo are rather small (10-

30%) here. In contrast, areas with elevated trend variances are also observed in the Kutch peninsula 

where mean albedo fluctuations are high (>80%).The median percentage of variance due to residual 

(irregular) component in albedo values is about 10% (Fig. 5.4d). Higher percentages of irregular 

components in albedo values are observed in Punjab, Haryana and parts of Jammu and Kashmir. 

Spatial variations in albedo values variance and its decomposition into various time-series 

components are represented in two regional transects (Figs. 5.8a, and 5.9). The first transect (N-S) 

shows variations in seasonality, trend and irregular components from Western Himalaya down to 

the Deccan plateau, through Northern plains & Central highlands; and the second transect (W-E) 

shows the variations from the Western plain & Kutch peninsula to Eastern plateau & Eastern Ghats.  



37 
 

 

Figure 5.9 Sample variances and proportions of variances explained by various components of the 

albedo time-series data along two transects as shown in Fig. 5.8a (January 2002-December 2013) 

Figure 5.9 shows that along both transects, seasonality is the major component of albedo variance; 

however, trends dominate in the Western plain & Kutch Peninsula and around Deccan plateau with 

black soils. The irregular component explains approximately 10% of the variance in albedo 

throughout the country. Irregular components are higher in the high productive irrigated agricultural 

areas of Punjab and Haryana. 

The regional structure in STL-derived trends has been defined and visualized in Figure 5.10 using 

the formulation similar to Section 5.2.1; however for albedo dataset, ‘n’ is the number of years of 

record in the analysis period 2002-2013, has been kept at 12. The albedo trends show a mixed 

distribution of negative and positive values in the country. The lower and middle Himalayas, parts 

of Gangetic plains in Bihar, Bengal & Assam and the Central highlands show positive trends. 

Higher reaches of Northern Himalayas, Rajasthan, Kutch peninsula, Deccan and Eastern plateau 

show negative trends. 

The spatial pattern emerging from the albedo trend derived from STL/LOESS is very similar to that 

derived from OLS & Sen’s slope / M-K test as shown in Figure 5.11, however, they are more 

realistic than trends estimated by linear regression. 
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Figure 5.10 Trends in Albedo (derived from STL/LOESS results) (January 2002-December 2013) 

OLS & M-K on Albedo Temporal Aggregates 

Temporal aggregates was done for Annual and cropping cycle (Section 4.1.3) and OLS & Sen’s 

slope estimator / M-K test techniques were applied (Section 4.1.4). Figure 5.11 shows the areas 

under positive and negative trend as derived from application of OLS & M-K algorithm on the 

temporal aggregates.  

Figure 5.11a maps the trend of slopes derived using OLS method for albedo in annual temporal 

aggregates for 12 years data (January 2002 till December 2013). Large tracts of Rajasthan, Eastern 

plateau, Eastern Ghats and Deccan plateau show negative trends. Very few areas (small patches in 

North Karnataka and Assam plains) show positive trends.  

The same is replicated in the results from Sen’s slope estimates masked by significance at 95% 

confidence interval, as shown in Figure 5.11b. 

 
Figure 5.11 Significant slopes derived from OLS & M-K / Sen’s estimator on Annual Temporal 

Aggregates of Albedo (2002-2013) 

Figures 5.12a-e shows trends in albedo aggregated over different cropping seasons. As seen for 

NDVI data trends in Figures 5.7a-e, the significant slopes derived from OLS and Sen’s slope / M-

K test are nearly identical for albedo data trends.  
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Kharif season data shows negative trends in Rajasthan and in scattered locations in South and 

Central India. Positive trends are observed in very few places in North Bengal, Madhya Pradesh 

and Maharashtra.  

Rabi season trends indicate negative trends in Rajasthan, Odisha, Mizoram, entire Western Ghats 

and South India. Positive trends are observed in lower and middle Himalayas, Gangetic plains and 

Assam plains. 

Negative trends in Rajasthan, Western Uttar Pradesh, Western Madhya Pradesh, Karnataka, 

Southern Andhra Pradesh and Odisha is observed in Zaid season trends. Positive trends are scattered 

over Northern Himalayas, Bihar & Assam plains and parts of Maharashtra.  

Albedo and NDVI Correlation Analysis 

The second objective of this study focusses on the long term trends in different datasets. An attempt 

has been made prepare and use the datasets for the highest resolution and longest time duration 

available at the time of data processing. The time periods or length of dataset (in number of years) 

used in NDVI and Albedo trend analysis are different. However, the study by de Jong and de Bruin, 

2012 suggests that the “slope coefficient is inversely related to the extent of the time series”.  

To interpret the long term trends in albedo and NDVI, an interpretation key has been shown in 

Table 5.1. For different land use and land cover classes, NDVI and albedo are either positively or 

negatively correlated. To compare the trends or slopes (derived from STL/LOESS) for NDVI 

(Figure 5.5) and albedo (Figure 5.10), the keys given in Table 5.1 can be used. 

  NDVI Albedo Correlation 

Vegetation    

Negative 

   

Negative 

Urban areas /  

Bare land 
   

Negative 

   

Negative 

Water body / 

Soil moisture / 

Irrigated area 

   

Positive 

   Positive 

Snow    

Negative 

   

Negative 

Table 5.1 Correlation between albedo and NDVI - interpretation key 

Areas receiving snowfall, such as Himalayas and higher reaches of North Eastern Hills, show 

positive trends in albedo and negative trends in NDVI (negative correlation). The cropping belts 

show increasing trends in NDVI and decreasing trends in albedo (negative correlation). Some areas 

under irrigation / higher soil moisture, show positive correlation, i.e., negative NDVI and negative 

albedo trends.  

Quantitative correlation was performed by selecting MODIS albdeo and NDVI data for the time 

period (June 2002 - December 2013) and statistically significant (at 95% confidence interval) 

Pearson’s correlation coefficient (r) and coefficient of determination (r2) was calculated, pixel-wise, 

as shown in Figure5.13a-b. The two datasets were resampled spatially and temporally to 8 km and 

16 day resolutions.  
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Figure 5.12 Significant slopes derived from OLS & M-K / Sen’s estimator on Cropping cycle 

Temporal Aggregates of Albedo (2002-2013) 
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The results are similar to as discussed above, negative ‘r’ values were observed in Himalayan and 

cropping belts and positive ‘r’ values in irrigated areas and areas with high soil moisture. R2 values 

or goodness-of-fit statistic, mostly, shows higher values in areas with negative correlation.  

 

 

Figure 5.13 Correlation statistics between albedo and NDVI datasets (2002-2013) 

The results of this analysis can be further improved by studying spatial variability of soil moisture 

and ground water extraction patterns.  

5.2.3 Temperature trends 

STL/LOESS on Temperature Time-Series Anomaly 

As discussed in Section 4.1.4, STL/LOESS was applied on the 63 years (1 day temporal resolution) 

maximum and minimum temperature anomaly data from January 1951 till December 2013. This 

anomaly dataset was prepared by subtracting the temperature ‘normals’ derived by averaging all 

the datasets and then subtracting from the original series.  

Figure 5.14a & 5.15a maps the variances in the original series. Higher variances in temperatures 

(>40o) are observed in J&K, Punjab and Haryana. Lower variances are observed while going South 

of India, towards the equator. Least variances (<10o) were observed in Kerala and Tamil Nadu. 

A ‘banding’ effect is seen in the results derived from STL/LOESS components (Figure 5.14b-d & 

5.15b-d). Northern India is found to have higher contribution from seasonal components as 

compared to Southern India. Similarly lower contribution from trend components are found from 

Northern India as compared to Southern India. 
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Figure 5.14 Results of STL/LOESS on maximum temperature anomaly data. Variance of 

temperature time-series (a); relative proportions of temperature variance contributed by seasonal, 

trend and irregular components are shown in (b–d), respectively (1951-2013) 

Figure 5.16 shows the trends derived from STL/LOESS for maximum and minimum temperature 

anomaly data. Maximum temperature reported increasing trend in Southern peninsula and 

decreasing trend in Gangetic plain and Central Highlands. Minimum temperature reported 

increasing trend in Rajasthan and decreasing trend in Bihar, West Bengal and parts of Odisha.  

STL/LOESS on Temperature ETCCDI Indices 

As discussed in Section 4.2.1 (Climatic data), ETCCDI Indices 6 and 9 (monthly maximum value 

of daily maximum temperature and monthly minimum value of daily minimum temperature) were 

prepared and STL/LOESS was applied on the monthly maximum and minimum temperature 

aggregates.  

Figure 5.17a & 5.18a maps the variances in the original series of ETCCDI Indices 6 and 9. Higher 

variances were observed in Northern India as compared to Southern India.  
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Figure 5.15 Results of STL/LOESS on minimum temperature anomaly data. Variance of 

temperature time-series (a); relative proportions of temperature variance contributed by seasonal, 

trend and irregular components are shown in (b–d), respectively (1951-2013) 

 

Figure 5.16 Trends in max. & min. temperature anomaly (derived from STL/LOESS results) 

(1951-2013) 
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Monthly maximum temperatures show complete effect of seasonality and very low impact of trend 

as seen in Figures 5.16b-c. Monthly minimum temperatures show the banding effect as discussed 

in previous paragraph. 

Figures 5.19a-b show the trends obtained from STL/LOESS on Index 6 and 9. A general increasing 

trend is observed in the entire country. A maximum increase of about 0.01oC per year is reported 

in monthly maximum temperatures for North Eastern India. The western half of the country shows 

positive trends in monthly minimum temperatures and eastern half shows negative trends. These 

graphs are also similar to Figure 5.16 showing trends in maximum and minimum temperature 

anomaly (derived from STL/LOESS results) for the same time period i.e., 1951 to 2013. 

 

 

Figure 5.17 Results of STL/LOESS on ETCCDI Index ‘6’ monthly maximum Tmax (1951-2013) 
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Figure 5.18 Results of STL/LOESS on ETCCDI Index ‘9’ monthly minimum Tmin (1951-2013) 

 

Figure 5.19 Trends in ETCCDI Index 6 and 9 on Tmax and Tmin (derived from STL/LOESS) 

(1951-2013) 
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OLS & M-K on Temperature Annual Temporal Aggregates 

Figures 5.20a&b and 5.21a&b shows the results obtained on application of OLS and Sen’s slope 

estimator algorithms on annually aggregated maximum and minimum temperature data. Both the 

techniques give identical results at such coarse resolution (1o x 1o).  

Most of the south, west and eastern India show increasing trends in maximum temperatures. Parts 

of Punjab, Haryana, Rajasthan, Gujarat, Tamil Nadu, Andhra Pradesh and North Eastern states 

show positive trends in the minimum temperatures data. 

Although some negative trends were observed in the Sen’s slope estimates, they were clipped out 

after masking for 95% confidence interval (α<0.05, derived from M-K test). 

 

Figure 5.20 Significant slopes derived from OLS & M-K / Sen’s estimator on Annual Temporal 

Aggregates of Maximum Temperature (1951-2013) 

 

Figure 5.21 Significant slopes derived from OLS & M-K / Sen’s estimator on Annual Temporal 

Aggregates of Minimum Temperature (1951-2013) 
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OLS & M-K on Maximum Temperature ETCCDI Temporal Aggregates 

Figure 5.22a-d shows significant slopes derived from OLS & M-K / Sen’s estimator on non-

seasonal ETCCDI Indices 2 & 13 on maximum temperature datasets. Index 2 represents the number 

of summer days (SU) and Index 13 represents the percentage of days when maximum temperatures 

are greater than the 90th percentile of values centred at a 5-day window (TX90p). 

The results obtained from both parametric and non-parametric test are identical. Number of summer 

days i.e., days with daily maximum temperature is greater than 25oC shows an increasing trend in 

Northern Himalayas, North East states and parts of Western Ghats.  

The TX90p results are similar to those of trends from annual temporally aggregated maximum 

temperature data (Figure 5.20).  Except J&K and the Gangetic plains, the rest of India shows 

increasing maximum temperatures for this ETCCDI Index.  

 

 

Figure 5.22 Significant slopes derived from OLS & M-K / Sen’s estimator on ETCCDI (Non 

seasonal) Indices 2 & 13 (on Tmax data) (1951-2013) 
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OLS & M-K on Minimum Temperature ETCCDI Temporal Aggregates 

The non-seasonal ETCCDI indices 4 and 10 i.e, number of tropical nights and percentage of days 

when minimum temperatures is less than 10th percentile of a 5-day window period (TN10p) - were 

subjected to the OLS and Sen’s slope estimator methods. The slope values at 95% confidence 

interval are shown in Figures 5.23a-d, from both the methods. As seen in the above 2 examples, the 

OLS and Sens’ slope estimator values with M-K test are identical in nature.  

Parts of J&K, Rajasthan, Kutch peninsula, Kerala, Tamil Nadu, West Bengal and Arunachal 

Pradesh show positive trends in number of tropical nights (i.e., days with minimum temperatures 

are greater than 20oC). Nearly the same areas, with larger footprint, show decreasing trends in the 

TN10p data results. Only exception was the parts of J&K where positive trends were observed in 

both the results.  

 

 

Figure 5.23 Significant slopes derived from OLS & M-K / Sen’s estimator on ETCCDI (Non 

seasonal) Indices 4 & 10 (on Tmin data) (1951-2013) 
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Trend analysis on difference of monthly maximum and minimum temperature data (ΔT) 

Maximum and minimum temperature values and its associated ETCCDI indices were studied using 

the statistical methods described in Section 4.1.4. However an important ETCCDI Index 16 (DTR) 

which suggests to study trends in daily temperature range i.e, trends in monthly mean difference 

between maximum and minimum temperatures was also carried out.  

For ease of calculation, instead of taking an average of daily differences, the difference of monthly 

average of maximum and minimum temperatures was calculated for all 12 months for 63 year time 

period from 1951 till 2013. The spatial trend in these (12 x 63=) 756 months were calculated using 

both the OLS and Sen’s slope estimator techniques. After masking with 95% confidence interval 

(α < 0.05) calculated again for each pixel, identical results were obtained from both techniques. The 

results from the Sen’s slope estimator is shown in Figure 5.24. 

The result clearly shows parts of Haryana, Punjab and adjoining areas having a marked decreasing 

trend in the monthly difference of maximum and minimum temperatures. This is in line with results 

reported by Lee et al., 2009. Also increasing trends are reported in South India, Odisha and parts 

of Rajasthan and North Eastern states. The increase and decrease of monthly range of temperatures 

is in the order of 0.001oC. 

 

Figure 5.24 Trends in monthly difference of Tmax and Tmin (1951-2013) 

 

  



50 
 

5.2.4 Precipitation trends 

STL/LOESS on Precipitation Time-Series Anomaly 

As discussed in Section 4.1.4, STL/LOESS was applied on the 111 years (1 day temporal resolution) 

rainfall anomaly data from January 1901 till December 2011. This anomaly dataset was prepared 

by subtracting the temperature ‘normals’ derived by averaging all the datasets and then subtracting 

from the original series.  

Figure 5.25a shows the variance in rainfall anomaly values (mm) which is ~50mm throughout the 

country except the Western Ghats and north east hills where it is reported to go up to 500mm in 

extreme cases. This variance is mainly (>70%) explained by seasonal component throughout the 

country (Figure 5.25b).  

The trend component (Figure 5.25c) shows a handful of pixels having trend in rainfall data. The 

residual component (Figure 5.25d) due to irregular rainfall anomaly show irregular patterns in 

Southern and Western parts of the country. The median of the residual component is ~6% only. 

Figure 5.26 shows the trends in rainfall anomaly as derived from STL/LOESS technique. The 

Western Himalayas and Western Ghats report an increasing trend in rainfall anomaly of about 0.08 

mm / year, whereas North Eastern Hills report a decreasing trend in rainfall anomaly of about 0.04 

mm / year. 

 

Figure 5.25 Results of STL/LOESS on Rainfall anomaly data (1901-2011) 
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Figure 5.26 Results of trends in Rainfall anomaly (derived from STL/LOESS) (1901-2011) 

STL/LOESS on Precipitation ETCCDI Indices 

Figure 5.27 and 5.28 show the results of STL/LOESS on seasonal ETCCDI indices 17 & 18 for 

rainfall. Both sets of results show that rainfall (1 day maximum and 5 day maximum) are governed 

completely by seasonality and irregularities. The irregularities seem to be concentrated in North, 

North West, West and South India. The median of the both the residual components were found to 

be ~8%. 

 

Figure 5.27 Results of STL/LOESS on Seasonal ETCCDI Index 17 for Rainfall (1901-2011) 
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Figure 5.28 Results of STL/LOESS on Seasonal ETCCDI Index 18 for Rainfall 

Figure 5.29 show the trends as derived from STL/LOESS results on these 2 seasonal ETCCDI 

indices. Both are identical in nature with large areas in South, West and North India showing 

increasing trends. Decreasing trends are observed in parts of Central plateau, Gangetic plains, and 

North Eastern states.  

 

Figure 5.29 Trends in ETCCDI Indices 17 & 18 (as derived from STL/LOESS) (1901-2011) 
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OLS & M-K on Precipitation JJAS Temporal Aggregates 

 

Figure 5.30 Significant slopes derived from OLS & M-K / Sen’s estimator on JJAS temporal 

aggregated Rainfall data (1901-2011) 

Figure 5.30a shows significant trends (obtained from OLS) in rainfall data over the Indian summer 

monsoon rainfall season. Positive trends are obtained in parts of J&K, South India and along the 

Eastern coast. Negative trends are observed in Bihar, Chhattisgarh, parts of Madhya Pradesh and 

North Eastern states. Figure 5.30b shows trends obtained from Sen’s slope estimator with M-K test 

and show identical results as that of the OLS method.  

OLS & M-K on Precipitation ETCCDI Temporal Aggregates 

Figure 5.31 and 5.32 shows results of application of OLS and Sen’s slope estimator (at 95% 

confidence interval) on ETCCDI Index 23 and 24 data. Results of Index 23 (Figure 5.31) which 

shows trends in maximum length of dry spell shows significant negative trends in Northern 

Himalaya and parts of Rajasthan. Positive trends are seen in Kutch & Kathiawar regions, parts of 

South India and Central highlands & plateaus.  

 

Figure 5.31 Significant slopes derived from OLS & M-K / Sen’s estimator on ETCCDI Index 23 

(1901-2011) 
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Results of Index 24 (Figure 5.32) for maximum length of wet spell shows identical results for OLS 

and Sen’s slope estimator; just as seen for Index 23. Positive trends are seen in parts of J&K and 

scattered places in Eastern & Western Coasts and North East states. However, negative trends are 

predominant over the rest of India showing shortening of maximum length of wet spells across 

India.  

 
Figure 5.32 Significant slopes derived from OLS & M-K / Sen’s estimator on ETCCDI Index 24 

(1901-2011) 

5.3 Correlation among datasets and gravity anomaly 

Section 3.2.3 discussed about the Gravity anomaly datasets followed by Section 4.3 which discusses 

about the process followed to find correlation among different datasets. 

5.3.1 Results obtained from Eureqa 

The technique as discussed in Section 4.3.2 (Eureqa) was implemented and results obtained. The 

inputs were ‘anomaly values’ at monthly temporal aggregation of input variables (NDVI, Albedo, 

Rainfall, Maximum and Minimum Temperatures) and output variable (Gravity) at 0.5o x 0.5o spatial 

resolution for the time period 2004-2010.  

As discussed, the model was tried to be setup with 2 independent variables NDVI (n) and Rainfall 

(r) and 1 dependent variable Gravity anomaly (g). However, this attempt failed as the model failed 

to converge beyond 70% even after running for over 6 hours and could achieve was only 6% 

stability & 55% maturity.  

The second attempt was on 5 independent variables and 1 dependent variable and the model was 

stopped, it has achieved 100% convergence and was 90%+ stable. The final model fitting equation 

derived is given in Equation 5.1. 

Model:  

g = b*sma(r, 4) + c*n + d*cos(sma(tn, 15)) + e*tx*sma(r, 7) + f*n*sma(tx, 4) …. Equation 5.1 

where g, r, n, tn, tx, were model variables representing gravity anomaly, rainfall anomaly, NDVI 

anomaly, minimum and maximum temperature anomalies respectively; and coefficients b, c, d, e, 
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f were assigned values 1.797511, 0.002937, 2.534784, 0.171359, 0.000493. ‘sma(u, v)’ in the 

equation represents simple moving average of the ‘u’ variable by ‘v’ time steps and ‘cos’ is cosine.  

18 different models with varying complexities were attempted by the software before stagnating on 

the current one (19th model). The number of occurrences of each variable (across all models) is 

shown in Figure 5.33 and the variable sensitivity in Table 5.2.  

Variable Sensitivity % Positive 
Positive 

Magnitude 
% Negative 

Negative 

Magnitude 

tn 1.0763 0.57 1.1535 0.43 0.97252 

r 0.60941 1 0.60981 0 0.00268 

n 0.47551 0.99 0.48159 0.01 0.051982 

tx 0.35182 0.37 0.30178 0.63 0.38146 

Table 5.2 Relative impact within the model that the input variables (tn, r, n, tx) had on the target 

variable (g) 

 

Figure 5.33 Number of Occurrences of each variable (across all models) 

Noticeably, the software ignored the input variable ‘a’ (for albedo) as it proxies ‘n’ (NDVI), in 

some manner, and that it would increase the model complexity. The attributes of Table 5.2 are 

explained below. 

% Positive: The likelihood that increasing this variable will increase the target variable. If % 

positive = 70%, then 70% of the time increases in this variable lead to increases in the target variable 

(but the remaining 30% of the time it either decreases it or has no impact). If % positive = 0%, 

increases in this variable will not increase the target variable. 

Positive Magnitude: When increases in this variable lead to increases in the target variable, this is 

generally how big the positive impact is. 

% Negative: The likelihood that increasing this variable will decrease the target variable. If % 

negative = 60%, then 60% of the time increases in this variable lead to decreases in the target 

variable (but the remaining 40% of the time it either increases it or has no impact). If % negative = 

0%, increases in this variable will not decrease the target variable. 

Negative Magnitude: When increases in this variable lead to decreases in the target variable, this 

is generally how big the negative impact is. 
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The model output was quantified by calculating various statistical parameters and spatially 

distributed comparisons. The observed versus predicted scatter plot is shown in Figure 5.33a. 

Overall an r
2
 value (Goodness of Fit) of 0.657 and Correlation Coefficient (r) of 0.811 was 

obtained. 

 

Figure 5.33a Observed vs. Predicted 

The derived model (in Equation 5.1) was applied on observed variables and the gravity anomaly 

was predicted and predicted gravity anomaly obtained. The results at 2 pixels, first at 83.25oN 

26.75oE and second at 79.25oN 15.75oE was plotted in Figure 5.34a & b respectively. The model is 

found to be correctly predicting the trajectory of gravity anomaly each year. 

 

(a) Location = 83.25oN 26.75oE 

 

(a) Location = 79.25oN 15.75oE 

Figure 5.34 Monthly plots for time duration 2004-2010 of observed and predicted (prefixed with 

‘p’) gravity anomaly. Y-axis represents gravity anomaly and X-axis represents months. 

To understand the spatial correctness of the derived model, 3 spatially distributed parameters were 

derived namely Pearson’s correlation coefficient (r), Coefficient of Determination (r2) and 

normalized root mean square error (RMSE) in Figures 5.35 and 5.36. The results are encouraging 

as they show high correlation coefficient (near 1.0) for most of the Indian land mass. The goodness 

of fit measure which ranges from 0.25-0.75 for most of the land mass, depicts a good fitting of 

expected values with observed values.  
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The normalised RMSE summarizes that most of the area has low discrepancy between predicted 

and observed values. Higher RMSE is observed in Western Ghats and parts of J&K. A normalized 

RMSE of less than 0.30 is observed in the rest of India. 

 
Figure 5.35 Spatial distribution of r and r2 of predicted vs observed gravity anomalies 

 
Figure 5.36 Spatial distribution of normalized RMSE between predicted vs observed gravity 

anomalies 

5.3.2 Results obtained from EOF 

Variability of the 6 land surface parameters namely albedo, gravity anomaly, NDVI, rainfall, 

maximum temperature and minimum temperature is calculated as described in Section 4.3.2. 

Figures 5.37 shows the first 2 modes of variability (or EOF-1 and EOF-2) which effectively 

represents 46.36% and 26.39% of the entire variability in the monthly albedo data from 2004 till 

2010.  

The first mode shows negative variances in Maharashtra, Assam and their adjoining areas. This 

result is in agreement with trends derived from time-series albedo data using STL/LOESS shown 

in Figure 5.10. The patches of positive trend in Maharashtra and Assam could explain the negative 

variances in these areas.  
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The spatial pattern in positive variance in the second mode of albedo are in agreement with the 

spatial pattern of the seasonal component of albedo time-series as derived using STL/LOESS 

(Figure 5.8b).  

 

 
Figure 5.37 Spatial variation of first two eigenvectors of monthly mean albedo data (2004-2010) 

 

Figures 5.38 shows EOF-1 and EOF-2 of the monthly gravity anomaly data from 2004 till 2010, 

which represents 83.20% and 8.49% of the entire variability in the time-series dataset. Although 

negative variances are seen completely in EOF-1, the Eastern and Central regions of the country 

explain greater negative variance in the dataset as compared to the North and South regions. The 

second mode, EOF-2, shows a distinct line dividing the country in 2 halves showing negative and 

positive variances.  

 
Figure 5.38 Spatial variation of first two eigenvectors of monthly mean gravity anomaly data  

(2004-2010) 

Figures 5.39 shows the EOF-1 and EOF-2 of the monthly mean NDVI data. The EOF-1 shows 

negative variance covering the country. However, the spatial patterns in high negative variances 

match with the high seasonal component contribution as derived from STL/LOESS (Figure 5.4b). 
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Figure 5.39 Spatial variation of first two eigenvectors of monthly mean NDVI data (2004-2010) 

 

Figures 5.40 show spatial variability as explained by EOF-1 and EOF-2 for monthly mean rainfall 

data during 2004-2010. Mode 1 shows general positive variance in the country except in parts of 

Tamil Nadu. High positive variance is observed in Western Ghats and parts of North East which 

receive above average rainfall annually. EOF-2 shows negative variability in most parts of the 

country except Deccan and North Eastern states.  

 

 
Figures 5.40 Spatial variation of first two eigenvectors of monthly mean Rainfall data  

(2004-2010) 

 

The variances in monthly mean maximum temperature is shown in Figures 5.41. The first mode 

shows positive variability throughout the country with higher values towards North India. The 

second mode shows the “banding” effect as seen in STL/LOESS derived trends (Section 5.2.3).  

 

 
Figures 5.41 Spatial variation of first two eigenvectors of monthly mean maximum temperature 

data (2004-2010) 
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Figures 5.42 shows the EOF-1 and EOF-2 for monthly mean minimum temperature, which explains 

96.59% and 1.99% of the entire time-series dataset. The results are similar to that of minimum 

temperature and mimic the “banding” effect shown in Section 5.2.3. 

 

 
Figure 5.42 Spatial variation of first two eigenvectors of monthly mean minimum temperature 

data (2004-2010) 

 

The gravity anomaly spatial variability is explained better by temperature (minimum and 

maximum) and NDVI as compared to Rainfall and Albedo. This data supports the results obtained 

from Eureqa which developed a model giving more weightage of temperature values, NDVI & 

rainfall, and completely eliminated albedo from its model setup.  

 

The results from simultaneous PCA performed on all 6 fields are shown in Figures 5.43 and 5.44. 

Figure 5.43 shows the first mode of all the 6 variables which explains the joint variances of 42.63%. 

 

The results, although similar to single field PCA, explains the joint variance in the time-series 

datasets for all 6 fields. The high negative joint variance in the NDVI dataset matches spatially to 

the variance explained by high positive variances in albedo (Figure 5.37). These are reconfirmed 

by the NDVI-albedo correlation analysis done at the end of Section 5.2.2. 

Figure 5.44 shows the second mode of joint variability and explains about 32.98% of the total joint 

variance.  

 

The analysis was repeated by projecting the anomaly data on rotated eigenvectors. The spatial 

patterns and time series obtained for the rotated EOFs were found to be essentially the same as for 

the unrotated case. This indicates that the EOF decomposition is robust. 
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Figure 5.43 Joint spatial variation of first eigenvector in 6 land-surface parameters (2004-2010).  

 

 

 
Figure 5.44 Joint spatial variation of second eigenvector in 6 land-surface parameters (2004-2010) 
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CHAPTER 6 - CONCLUSIONS  

The study aimed to understand the effect of temporal granularity in land surface parameters 

and gravity anomalies and their relation with land-use/ land-cover and climate over India. 

To achieve this, the study was sub-divided into 3 major component / research questions, 

the answer to which are given below. 

Does MODIS-NDVI and NOAA-AVHRR-NDVI complement each other? Can a 

combined time-series NDVI be generated? 

NDVI plays an important role to understand vegetation phenology. Both MODIS-NDVI 

and GIMMS-NDVI were found to complement each other on modelling an inter-

relationship between them. 

A least square regression based model was used to understand the inter-dependency of 

MODIS-NDVI and GIMMS-NDVI. It was found that model parameters derived from 

linear relationships did not give acceptable statistical fitness parameters. The result did not 

change even when applied separately to forested (permanent vegetation cover) and non-

forested (temporary vegetation cover) pixels.  

Model parameters derived from strictly controlled & calibrated testing environment gave 

good statistical fitness between the two datasets. This enabled to create a combined time-

series dataset which was used for long term studies. 

Can temporal granularity help in understanding the trend in NDVI, albedo, 

precipitation and temperature? How do the trends vary in different statistical 

methods?  

To understand the effect of temporal granularity, an attempt was made to deseasonalize the 

datasets by creating temporal aggregates. Season lengths and season start dates for different 

parameters are dissimilar in various parts of the country. Selection of time granules is a 

critical procedure which needs to be carried out carefully in order to avoid false results. 

Coarser/Higher aggregation levels tend to overestimate the amount of trends detected in 

such analysis. It may also result in higher variations in terms of significance of observed 

trends as well. Sufficient temporal sampling is critically required to obtain significant 

trends but different temporal bins shows variation in the detected significant trend. 

For NDVI and Albedo, aggregates were created by averaging for annual and cropping cycle 

basis. For temperature and precipitation, apart from annual and monsoon season 

aggregates, an attempt was made to aggregate climatic datasets based on WMO 

recommended ETCCDI indices. Sets of four and six, seasonal and non-seasonal indices 

were selected from multitude of ETCCDI indices to understand the trends from them.  

For any trend analysis, the choice of statistical method for evaluation and quantification of 

trends is very critical. The STL/LOESS technique has been applied pixel wise on all 

datasets without aggregation, and the technique decomposed the patterns into individual 

components explaining contribution of season, long-term trend and irregularities; making 

it less sensitive to the outliers.  
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It was seen that the STL/LOESS method improves on the previous linear regression 

analyses both by allowing a more flexible representation of the underlying trend, and by 

considering all aspects of the time-series simultaneously. 

The M-K test assumes observations to be independent and identically distributed. These 

properties make M-K test a strong statistical test which is among the most widely used and 

extensive methods for detecting trends. Therefore, M-K test was preferred and considered 

to be the most reliable statistical estimators for detecting statistical significance, in this 

study.   

The trends in albedo and NDVI were similar as derived from OLS, Sen’s slope estimator 

and STL/LOESS. The application of these techniques on different time scale (annual, JJAS, 

cropping cycle etc.) based temporal aggregates revealed new trends. These results obtained 

from different trend analysis methods showed identical spatial patterns, even after masking 

for 95% confidence interval.  

The application of these algorithms on climatic data reconfirmed the findings of IPCC 

reports that the frequency of extreme events such as anomalies (in North, West and South 

India), spells (in Northern J&K, Rajasthan, Eastern & Western Ghats and North Eastern 

states) and measures of temperature and rainfall (Northern J&K and South India) are 

increasing.  

However, datasets and trends derived from them, for Northern J&K, Western Ghats and 

North Eastern states need to be further investigated for spurious trend detection.  

With respect to statistical estimators, OLS and Sen's slope gave similar results for high 

resolution datasets (albedo and NDVI) and nearly identical results for coarse resolution 

datasets (temperature and rainfall). 

Is there a correlation between the trends in climatic forcing, satellite derived NDVI, 

albedo and gravity data? Do these correlations reflect LULC and climate change 

scenarios?  

The study was able to establish a working model based on building blocks and natural 

progression to understand the impact of land-surface parameters on gravity anomalies. 

Minimum temperature was seen to be the most sensitive parameter in the model, which 

could emphasize the role of condensation of water in liquid or solid form to gravity 

anomaly. However, the maximum likelihood is that increasing the NDVI and rainfall values 

will increase the gravity anomaly values. NDVI, which also stood out to be the third most 

sensitive parameter, shows the impact of biomass on gravity anomalies.  

The EOF results also established correlation between the trends in the variables used. The 

spatial variability explained by the fields were found to have a spatial match with trends 

and outputs of other methods applied on the fields individually. Joint EOF reconfirmed 

Eureqa output by spatially matching the variances of important fields and that there exists 

homogenous correlation among the variables.  
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General conclusions 

Positive trends in NDVI could indicate effects of green revolution (plant breeding, 

agrochemicals, mechanized farming), irrigation development, advent of double or more 

cropping, afforestation and even climate change (increasing temperatures lead to longer 

growing season lengths).  

Negative trends in NDVI could be because of deforestation, conversion of land-use from 

cropping to others leading to urbanisation or wastelands, conversion of double or more 

cropping to single crops, decline in irrigation, climate change (higher temperatures and 

erratic rainfall lead to low crop yield) and other socio-economic causes. 

On similar lines, albedo trends could be because of increasing snow line, increase in 

wastelands / decrease in vegetation etc. Trends in climatic patterns are effect by many 

regional and global factors such as El Niño and La Niña, subtropical Indian Ocean dipole 

and global trade winds.  

Spatio-temporal studies require immense computational resources. Modern day 

programming language have banked upon techniques such as compiler optimization, multi-

threading and multicore processing to bring a better user experience in terms to runtime 

and responsiveness. Multi-purpose languages such as Python have enabled GIS specialists 

and computer programmers to attempt what was virtually impossible till about a decade 

back.  

Limitations and Further recommendations 

A  genuine  scientific  research  gives  rise  to  more  questions  than  it  could  possibly  

answer.  This work has also raised questions for further research. The problem in combining 

distinct data at different spatial and temporal resolution will always give rise to MAUP and 

MTUP. The current study has a major limitation in combining datasets of different 

resolutions (spatial and temporal) and time scales. More emphasis is required in the right 

approach to study such wide array of datasets. 

During this study, few problems related to data used were also encountered. Missing data, 

incompatible GIS data formats and humungous data size did pose some technological 

problems. Use of HPC and Cloud computing needs to be explored along-with newer 

technologies such as Machine learning and HADOOP framework, for spatial data 

processing. 
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