

TANYA TEJASSVI

March, 2014

IIRS SUPERVISOR ITC SUPERVISOR

Dr. Harish Karnatak Dr. Ir. Rolf A. de By

An Android application to

support flash flood

disaster response

management in India

Thesis submitted to the Faculty of Geo-information

Science and Earth Observation (ITC) of the University of

Twente in partial fulfilment of the requirements for the

degree of Master of Science in Geo-information Science

and Earth Observation.

Specialization: Geoinformatics

THESIS ASSESSMENT BOARD:

Chair : Prof. Dr. Ir. A. Stein

ITC Professor : Prof. Dr. M. J. Kraak

External Examiner : Mr.Vinod Bothale (NRSC, Hyderabad)

IIRS Supervisor : Dr. Harish Karnatak

ITC Supervisor : Dr. Ir. Rolf A.de By

OBSERVERS:

ITC Observer : Dr. N. A. S. Hamm

IIRS Observer : Dr. S. K. Srivastav

An Android application to

support flash flood

disaster response

management in India

TANYA TEJASSVI

Enschede, The Netherlands [March, 2014]

DISCLAIMER

This document describes work undertaken as part of a programme of study at the Faculty of

Geo-information Science and Earth Observation (ITC), University of Twente, The

Netherlands. All views and opinions expressed therein remain the sole responsibility of the

author, and do not necessarily represent those of the institute.

Dedicated to Papa

 i

ABSTRACT

The scope of information technology is leveraged in every aspect of society. Spatial data and

related information is a major requirement in disaster management. During rescue operations,

availability of real-time information on a portable device would prove useful. The aim of this

research was to develop and test a GIS-based mobile application on the Android platform with

disaster specific software modules. This mobile application is expected to serve disaster

management teams during the rescue operations for better co-ordination and information

exchange. The rescue and relief management efforts for June 2013, Uttarakhand disaster have

been reviewed and studied for this research. A formal interview and discussions with NDRF

officials, helped form an understanding, envisage requirements for the application. The

application RescueApp has been developed after careful evaluation of requirements and case

scenarios.

The application exhibits Emergency/Distress Call, Reporting System, Disaster Alerts and Geo-

visualization as its key features. The application allows field data reporting, sending geo-location

SMS, viewing and retrieving weather and location information on the mobile device. The

application has been tested for usability, time consumption and accuracy in different field and

network availability conditions. An attempt, through this research, was also made to realise the

utility of the application in limited availability or absence of communication network.

Keywords: Android, disaster management, API, Field data reporting, response, relief

ii

ACKNOWLEDGEMENTS

“Surround yourself with dreamers and the doers, the believers and the thinkers, but most of all surround yourself
with those who see greatness within you, even when you don’t see it yourself.” - Edmund Lee

I express my sincere gratitude to both my supervisors for their patience and perennial support
and guiding me through my MSc. Thesis. I would like to thank Dr. Ir. Rolf A. de By, my ITC
supervisor, for his visionary approach towards problem definition of this research and critical
review of thesis. Dr. Harish Karnatak, my IIRS supervisor, with his profound technical
knowledge and field experience, helped me frame constructive ideas and in successful
development of the application. I am thankful to ITC faculty, Bas Retsios for his help and
guidance on setup and implementation of development environment.

I am very grateful to Shri R. K. Srivastava, Deputy Commandant, NDRF, New Delhi for sharing
his knowledge and experience about rescue operations. I appreciate his support and motivation,
which gave a meaningful direction to my research.

This joint course was a wonderful platform to meet people across the globe and experience
knowledge sharing in a multi-cultural environment. I would like to thank all the faculty members
at IIRS, Dehradun and at ITC, Enschede. I would like to thank Dr. Y.V.N Krishnamurthy,
Director IIRS for providing state of the art infrastructure and facilities, which helped nurture and
enhance our knowledge. Mr.P.L.N Raju has been a great source of motivation and Dr. Srivastav
has consistently supported me and helped channelize my efforts into the right direction.

I am thankful to my family for being my pillars of strength. Dad has stood by me and
supported all my decisions while I owe each success to my Mom‟s prayers for me; My soul mate
Amrita, for always keeping my spirits high, encouraging me to bring out the best in me and Jiju
for motivating me to always aim high and strive for perfection. And Ayush, for being by my side
always, to cheer me up. You are my Guardian Angel. I truly am blessed to have such a wonderful
family.

Worth a special mention is Vishnu Nandan, an alumnus of IIRS who has been a friend,
philosopher and guide throughout my research. He has helped me successfully propose the
research topic and take it to completion. Thanks a lot for being there.

My friends; Abhinandan, Sumit, Waibhav, Komal, Nikhil, Simrat, Ipi , Jayesh, Amol and Varun
Garg have always been so encouraging and motivating. I owe a big treat to my friend Akash who
has been very helpful throughout the development phase of my project. From IIRS, Special
thanks to Akhil for always being there, spreading happiness, being available for my App testing
and a consistent partner in burning the midnight oil in computer lab. I was lucky to have
wonderful IIRS juniors who have been instrumental in keeping my positivity intact and my spirits
high even when things were not looking too bright; Sakshi, Shradha, Garima, Vikrant and Surya -
Thank you so much for just being there and being yourselves.

And above all I thank God, for giving me the strength in having embarked and completed this
journey beautifully so. Even through the dark corners, he left a gleaming ray of hope each time.

P.S. I heartily thank my father for financing this course and especially the cherished

Euro Trip

iii

TABLE OF CONTENTS

Abstract ... i

Acknowledgement .. ii

List of Figures ... v

List of Tables ... vi

1. Introduction ... 1

1.1. Background ... 1

1.2. Motivation and problem statement ... 3

1.3. Research identification .. 4

1.4. Research objectives .. 5

1.5. Research questions ... 5

1.6. Innovation aimed at ... 5

1.7. Thesis structure .. 5

2. Literature Review .. 7

2.1. Disaster Management .. 7

2.2. Role of information in disaster management ... 8

2.3. Related work in Android technology .. 9

2.4. Dealing with disrupted communication .. 11

3. Research Methodology .. 13

3.1 Requirement Analysis ... 13

3.1.1. How does NDRF work? ... 14

3.1.2. How is the rescue operation conducted? .. 15

3.1.3. What is the information requirement and how does communication takes place? 15

3.1.4. Entities involved ... 19

3.1.5. The Information flow .. 20

3.1.6. Resources required ... 21

3.2 Design and development of software application .. 21

3.2.1. Overall system architecture design .. 21

3.2.2. Server software application design and database integration 21

3.2.3. Mobile (client) application design ... 21

3.3 Configuration of deployment environment .. 21

iv

3.3.1. Configuration of resources ... 22

3.3.2. Build test cases ... 22

3.4 Testing and evaluation .. 22

4. Design , Implementation and Testing ... 23

4.1. Steps for installations .. 23

4.2. Reporting System .. 24

4.2.1. Creating Server ... 24

4.2.2. Integration with database.. 25

4.2.3. Building report forms .. 26

4.2.4. Collecting data and uploading to server ... 27

4.3. Emergency/ Distress Call .. 27

4.3.1. Retrieving location in form of latitude and longitude .. 28

4.3.2. Using Geocoder to retrieve address from latitude and longitude 28

4.4. Disaster Alert ... 29

4.4.1. Retrieving xml data from RSS feeds ... 29

4.5. Geo-visualization System ... 30

4.5.1. Using open layers as an HTML JavaScript feature ... 30

4.5.2. Retrieving location and nearby hospitals on Google Maps ... 31

4.6. Testing and evaluation of the application .. 31

5. Results and Discussion ... 35

5.1. SOS Button – Emergency/ Distress Call .. 36

5.2. Reporting .. 36

5.3. Weather –Disaster Alerts and Geo-visualization .. 39

5.4. Assessment – Geo-visualization .. 40

5.5. Location – Geo-visualization... 40

5.6. Testing Results ... 41

6. Conclusion and Recommendations ... 43

6.1. The Research questions .. 43

6.2. Recommendations ... 44

References ... 45

Appendix ... 48

 v

LIST OF FIGURES

Figure 1-1: Disaster Management Continuum as adopted by NDMA, Govt of India [1]................. 1

Figure 3-1: Framework for Research Methodology .. 13

Figure 3-2: Information flow .. 20

Figure 4-1: Eclipse (IDE) used for application development .. 23

Figure 4-2: Apache Tomcat configuration .. 24

Figure 4-3: Server start-up ... 25

Figure 4-4: Checking installed Server... 25

Figure 4-5: Configuring PostgreSql .. 26

Figure 5-1: RescueApp ... 35

Figure 5-2: SMS with user's location .. 36

Figure 5-3: Emergency Call ... 36

Figure 5-6: Reporting options ... 37

Figure 5-4: Authentication to Server.. 37

Figure 5-5: Reporting Menu .. 37

Figure 5-7: Satellite view with point location ... 38

Figure 5-8: Reported information on click event ... 38

Figure 5-9: Reported information updated in database .. 38

Figure 5-10: (a) Weather data for user's location; (b) Satellite Imagery for weather 39

Figure 5-11: (a) Map view for weather; (b) Weather Feeds .. 39

Figure 5-12: Assessment functionality (a) Unshaded area ; (b) Shaded area ; (c) Point locations .. 40

Figure 5-13: Retrieve location and send in SMS .. 40

Figure 5-14: User's location and nearby hospitals.. 41

file:///G:\TanyaTejassvi_MscThesis.docx%23_Toc382145224
file:///G:\TanyaTejassvi_MscThesis.docx%23_Toc382145225
file:///G:\TanyaTejassvi_MscThesis.docx%23_Toc382145226
file:///G:\TanyaTejassvi_MscThesis.docx%23_Toc382145228
file:///G:\TanyaTejassvi_MscThesis.docx%23_Toc382145229

vi

LIST OF TABLES

Table 1.1: Summary of rescue operations in Uttarakhand disaster .. 3

Table 4.1: FIR Form Elements ...27

Table 4.2: Testing and Evaluation of RescueApp ..32

Table 4.3: Time variation with network coverage ..33

An Android application to support flash flood disaster response management in India

1

1. INTRODUCTION

1.1. Background

For a long time disaster management in India has been reactive and relief-centric. In the wake

of serious disasters in the past decade, a new approach has been adopted by India to give

disaster management its due importance. The emphasis now is not just on relief but also on

prevention, mitigation and preparedness. Such efforts are expected to help minimize loss to

lives and property. On 23 Dec, 2005, the Disaster Management Act was enacted by the

Government of India and led to the formation of National Disaster Management Authority

(NDMA) headed by the Prime Minister and State Disaster Management Authorities (SDMAs),

which are headed by the State Chief Ministers. The aim is to follow an integrated and holistic

approach towards disaster management.

Figure 1-1: Disaster Management Continuum as adopted by NDMA, Govt of India [1]

Disaster management involves four phases or components: Mitigation, Preparedness, Response

and Recovery. NDMA as an organization is involved in all the four phases of disaster

management. Mitigation can be described as reducing the likelihood of a disaster.

Preparedness is about informing and equipping people who may be affected by a disaster.

Response phase involves taking steps to reduce or eliminate the impact of disasters that have

occurred or are currently occurring, in order to prevent further loss. Relief is also a component

of response. Recovery is a long term goal to restore the affected livelihood back to normal [1].

An Android application to support flash flood disaster response management in India

2

Figure 1.1 is the disaster management continuum as adopted by NDMA. It displays the four

stages as six elements i.e., Prevention, Mitigation and Preparedness in the pre-disaster phase,

and Response, Rehabilitation and Reconstruction in the post-disaster phase, thus defining a

complete approach to Disaster Management. NDMA lays guidelines specific to disaster types.

These guidelines explain the course of action to be followed when disaster strikes. Standard

Operating Procedures (SOP) for each kind of disaster are formulated by NDMA, and are

executed at the time of disaster [2]. The NDRF (National Disaster Response Force) is

responsible for specialized response to disasters.

For the purpose of this research, the focus is on Response and Relief. The response phase in

disaster management requires effective means of communication. Information at this time is

crucial and needs reliable, yet quick and efficient ways to be delivered [3]. It is a challenging

situation to work in. To understand the role that information plays during disaster management,

it was important to take into account a particular type of disaster and review its rescue activities.

Hence we will make a review of a disaster that occurred recently in India and was reported to be

massive on account of the damage it caused.

Uttarakhand (North India) experienced a disaster in June 2013, of a magnitude that has not

been reported in the recent disaster history. The state received torrential rainfall measuring 64.5

mm to even 244.4 mm as reported by IMD (Indian Meteorological Department) [4]. This was

considered to be the country's worst natural disaster since the tsunami of 2004. The

Uttarakhand disaster is termed as flash flood, and it is the disaster type that we shall focus upon,

for the purpose of this research project. Sudden heavy downpour called cloudbursts, over a

small region cause devastating flash floods[5]. They are characterized by fast rise and recession

of water flow, thereby causing damage due to suddenness. For the case of Uttarakhand, the

combined effect of massive landslides and continuous rainfall in the peak pilgrimage season was

the reason for enormous loss of life and property.

The areas affected were major pilgrimage locations including Gangotri, Yamunotri, Kedarnath,

Badrinath, the Valley of Flowers, Roopkund and Hemkund. Hundreds of people lost their lives

and massive destruction to the infrastructure was reported. Over 100,000 people were reported

stranded. Rescue operations became all the more difficult due to damaged modes of transport,

rough terrain, heavy fog and rainfall. Government organizations, Non-Government

organizations (NGOs) and local administrative bodies worked together for quick rescue

operations. The relief and rescue operations continued for many days after the disaster. Table

1.1 summarizes the rescue operations conducted by various organizations [5].

An Android application to support flash flood disaster response management in India

3

 Table 1.1: Summary of rescue operations in Uttarakhand disaster

Rescue operation
Number of

people
Conducted by

Trapped people were rescued and

moved to safe places. Also relief

supplies and essential commodities

were air dropped at several places.

23775

IAF (Indian Air Force) –

Rescue Operation named

“Surya Hope”

Rescued people to safe places 38750
Indian Army for the

operation “Surya Hope”

Rescued people to safe places 33000

ITBP (Indo-Tibetan Border

Police) for the operation

“Surya Hope”

Rescued people to safe places 9000

NDRF (National Disaster

Response force) for the

operation “Surya Hope”

Airlifted people to safer places 13000 Civil Aviation helicopters

Helped in rescue and relief activities _____

State government agencies

like police department,

district authorities, (NGOs)

and volunteers

1.2. Motivation and problem statement

Reporting information is an important aspect of disaster management especially in the rescue

and relief phases. The rescue workers need current information and also need to report field

data to stake-holders such as government agencies and news media. The use of mobile

technology as an alternative to the conventional modes adopted for field data collection i.e.

paper-based surveys and reports can be a breakthrough. Paper-based methods are time-

consuming, labour-intensive and susceptible to error. The need for acquiring and visualizing

spatial and non-spatial data on portable devices has been realized in research and in industry.

Various Remote sensing and GIS techniques are used in natural disasters to report and retrieve

information [6]. This addresses the bottle necks in the task of disaster management in India

which is primarily the availability of both geo-spatial and non-spatial data on portable and less

costly devices.

Flash floods cause massive infrastructural damage due to which the communication channels

are usually disrupted. But for the rescue teams, it is fundamentally important to communicate

and retrieve information. Constant efforts were made by the service providers in Uttarakhand

region to revive communication channels after the disaster. It became an important aspect of

the rescue operation to restore the communication links. This implies network and

communication restoration is also given high importance during rescue operations. Though

communication failure seems to be a major hindrance, to mobile device‟s full operation but

An Android application to support flash flood disaster response management in India

4

these devices can be of use even in offline mode. The GPS (Global Positioning System) and

some other sensors remain functional and are independent of network access. The mobile

devices can still serve as portable map and reporting devices in cases of non-connectivity. The

application must be able to work in both connected and disconnected mode. While network

access is unavailable, the user can use the application for data collection. Once the

communication channels are functional again, the devices can be used to send/retrieve

information that needs to be exchanged. The mobile application has to be designed and used in

a way that proves functional while network access is intermittent and of course also when

communication channels are restored.

GeoTools, an Android application for geologists, demonstrated the ease of use that portable

devices offer for field data collection as compared to conventional non-digital methods like

paper forms and reports for data collection [7]. Similar to geologists, rescue workers also need

to collect field data for disaster management. They need to record location, report incidents and

sketch affected areas. Separate devices and equipment are available for the above needs but it is

not always convenient to carry all instruments and devices to field. It would be better

comparatively to have one single portable device with multiple functions. Digital methods help

overcome human errors, which are introduced while collecting data through non-digital

methods. Mobile devices also have limitations like dependency on network, battery and

sometimes require a certain skill to work with them. This research will take into account these

limitations and propose ways to overcome them.

Shu et al., 2009 [8] presented a design method of a location-based mobile service and pointed

out the simplicity that Android offers for developing map and location applications. Flexible

displays of map and control functions are features provided by Android that support the design

of location-based applications.

Apart from this, it is critical in disaster management to keep decision-makers informed. This is

different from field data collection, where the field workers can return to office and analyze the

data collected. Hence a portable and light weight device that has access to communication

network can serve the purpose. Though mobile devices find ubiquitous use in India, the use of

such devices is quite limited for the cause of disaster management. A single mobile application

if made available to the rescue teams will provide a better platform and help improve co-

ordination and management. This research work is to develop an application with a hope to

make a great impact on the way information is dealt with, during disaster management

operations in India. The proposed application will exhibit spatial functionality with a user-

friendly interface and is expected to help in disaster management rescue operations.

1.3. Research identification

The research project aims to study the requirements of the teams working in disaster

management to understand the situations in which they operate, and provide supportive

functions realized in an Android application to improve disaster management. Refining the

disaster type to flash floods and the disaster management phase to response phase , was a

An Android application to support flash flood disaster response management in India

5

conscious decision and allows us to gather specific requirements. The Android application

developed as part of this research, is intended to support rescue workers‟ co-ordination,

information exchange and consequently better disaster management. It should provide spatial

functionality, effective visualization of spatial data and ability to send/retrieve essential

information through the device.

The geographic phenomena and the climatic conditions that cause the floods are not the objectives of study because

that is another broad domain. The measures for effective predictions and warning of floods are also out of scope of

this research work. The work will involve understanding of information requirements for response phase in

disaster management during flash floods and development of an Android application fulfilling them.

1.4. Research objectives

1. To study the role of information in the rescue phase of flash flood disaster

management.

2. To study the administrative and technical obligations for communication in flash

flood disaster management.

3. To develop a mobile application meeting information and communication needs

during such disasters.

4. To evaluate and test the mobile application in a virtual scenario.

1.5. Research questions

1. What is the essential functionality required in the mobile application?

2. Is the spatial functionality achievable through a simple interface?

3. What can be the criteria for application evaluation?

4. How to make the application serviceable in the event of network failure?

1.6. Innovation aimed at

This research focuses on exploring the potential of an Android mobile application in the

response phase of flash flood disaster in India. It aims to enable well-coordinated information

exchange and therefore better disaster management.

1.7. Thesis structure

The research work is organized into the following chapters. Chapter 1, Introduction explains

the need and purpose of the research. It consists of background of work, motivation and

research identification. Chapter 2 summarizes the various research efforts already done in the

field. Subsequently in Chapter 3, the research plan and methodology is discussed. It includes the

details of the interview and discussion with rescue workers. It also lists out the analysis made

and the requirements extracted, to be developed as functionality in the mobile application.

Design and implementation of the Android application is presented in Chapter 4. Results and

discussions are explained as part of Chapter 5 while Chapter 6 presents conclusions and

recommendations for further work.

An Android application to support flash flood disaster response management in India

6

An Android application to support flash flood disaster response management in India

7

2. LITERATURE REVIEW

2.1. Disaster Management

Over the past decade, there has been an alarming increase in the frequency and also in the

intensity of disasters in various parts of the world. The Haiti earthquake, Katrina hurricane,

Indian Ocean Tsunami and the Nargis cyclone have been major disasters over the last decade.

These disasters force mankind to think of ways to cope up with such calamities. The increased

number of affected people and spatial extents of disaster impact due to disaster and the high

economic losses from natural disasters are a cause of great concern. The economic growth of

the affected country slows down and takes decades to recover completely. Especially the

developing and under-developed countries take a longer time to recover from such losses. This

calls for enhanced methods and techniques for disaster management. Every country has to

realize this need and think of better ways to manage disasters. It is true that natural disasters

occur at a scale that causes much destruction and many losses which are unavoidable. Even

though scientists and researchers work constantly on predictions and weather forecasts but

sometimes they do fail to foresee the impact a certain disaster would have. Sometimes they are

caught totally unaware by such calamities. But management of rescue and relief operations can

be planned before-hand and executed at the time of disaster. The disaster management

techniques, even if already existing, need to be constantly revised and updated. This is because

new technologies keep coming up and should be leveraged for disaster management to produce

profitable results.

Doner and Yomralioglu (2008) [9] made an assessment of using MGIS (Mobile Geographic

Information Systems) as a tool for acquisition of geo-data. They described and discussed an

MGIS developed for field data collection that also utilizes GPS. It resulted in a noticeable gain

in efficiency, accuracy and reduced cost while meeting the project completion time. It

designated MGIS as an appropriate tool for field data surveys showing the kind of efficiency

and accuracy that would be expected from a disaster management application.

A project worth a mention in this aspect is Sahana Eden [10]. It was initially conceptualized as

Sahana Software and developed by the IT community of Sri Lanka to help in the relief efforts

after the 2004 Indian Ocean Tsunami. This software package evolved to be known as Sahana

Eden. It was supported by a voluntary community that includes disaster management

practitioners, academicians, students and companies. The communities promoted customization

of the software by making it available as free open-source software, with related standards. The

project was a successful implementation of a disaster management solution to help manage

relief organizations, people involved, assets and inventory. The project also used maps to make

assessments and bring about awareness of the situation. This set a perfect example and

motivation to think of a technology-based solution to help improve the way disasters are

addressed.

Karnatak et al., 2011 [11] presented use of mobile application for flood disaster management in

Assam, India. The mobile application developed under this study used Windows as a platform

An Android application to support flash flood disaster response management in India

8

for application development. The data from field to control room was transferred through an

XML message containing different types of data including geo-location and images. The XML-

based data transmission from mobile application to server proved to be an effective mode of

communication. The data received from mobile device was integrated in Web-GIS application

in a real-time environment and other flood specific GIS data were also accessed from remote

servers.

2.2. Role of information in disaster management

“Experience without theory is blind, but theory without experience is mere intellectual play.”

-Immanuel Kant

Kevany (2008) [12] unfolded interesting information through his own experience in the disaster

management operations that took place after the World Trade Center mishap on 09/11/2001 in

New York. The author highlighted the importance of a strong relationship between the

technologies applied for disaster management and the needs of disaster response

representatives. This came from an observation that the design and deployment of technology

to serve disaster management, was performed by technologists without any participation of end

users. The technologists lacked field experience in disaster management and vice versa. To

merge the knowledge of the two was critical for effective utilization of the technology. This

particular disaster commonly referred to as 9/11, had a great impact on the way geo-information

is used for disaster management. The author emphasised the relevance of geo-information i.e.

location information. Most importantly the location of disaster impact, response teams and

resources should be known. An extensive list of geo-information data requirements was

provided in the paper. It also discussed the requirements for geo-information management.

Preparation of information is essential for relief management. Tsai et al., 2013 [13] discussed

three problem scenarios that require adequate and timely information during a disaster response

and recovery mission: (a) inadequate escape guidelines for people, (b) incomplete geographical

information for relief workers and (c) insufficient on-site information for disaster managers.

This research work signified the importance of real-time exchange of both on-site and off-site

information for disaster management. It involved three entities in the example scenarios:

rescue/relief workers, victim and disaster manager. On-site information was required by the

relief workers to plan evacuation routes and perform rescue operations whereas off-site

information was used by disaster managers for better decision-making and management. For

example disaster managers retrieved location information from relief workers and plotted them

as point locations on the guidelines maps. As soon as they received emergency assistance

requirement from victim, they could locate a rescue worker closest to the spot and convey the

information. This highlighted the need for simultaneous execution of the on-site and off-site

operations resulting in updated information at both ends and prompt emergency response. A

mobile application was designed that displayed guidelines for on-site escape and rescue.

Successful results were achieved after testing the integrated information on a mobile platform in

a simulated scenario. Participants enacted as victims, on-site rescue workers and off-site disaster

managers. Disaster managers updated current information as received from on-site rescue

http://www.brainyquote.com/quotes/quotes/i/immanuelka121324.html
http://www.brainyquote.com/quotes/quotes/i/immanuelka121324.html
http://www.brainyquote.com/quotes/quotes/i/immanuelka121324.html

An Android application to support flash flood disaster response management in India

9

workers. Victims saved time in performing self evacuation with help of emergency guidelines

received from off-site disaster managers. The study was conducted for the Typhoon disaster

type, but indicated applicability to other disaster scenarios.

Mobile technology has shown a considerable impact on society over the past few years.

Gradually, this technology has become a part of every person‟s life and is the easiest mode to

deliver information. People do not get tired of experimenting and exploring new apps and

developers leverage this advantage to create and innovative and challenging apps. Different

operating systems are available for different mobile devices. Google‟s Android, Apple‟s iOS,

Blackberry, Symbian and Windows are all available for development. Considering Android as a

target platform for application comes from the review of various works using Android

technology. The Android SDK allows application development with great ease. There are many

inbuilt features and tools in an Android device which can be integrated and programmed to be

used as and when required from within the application.

Location-based services are described as information services depending on user‟s current

location and are being used judiciously in every aspect [14]. Be it traffic information,

advertisements and promotions depending on locations or knowing amenities nearest to one‟s

own location. Such services can be leveraged for disaster management scenarios. They are

implemented in mobile devices through A-GPS (Assisted GPS) technology. This technology

integrates the location information through mobile network with that retrieved from the

device‟s GPS. This helps to quickly know location, consumes less battery, has better coverage

and can, in some cases, be used inside buildings [15]. The application can also make use of

camera, compass, calls, SMS, email facilities and the developer can think of a number of ways to

create features in an application that utilize these inbuilt facilities.

Geographic information services through mobile can help emergency response teams to identify

areas under threat or impact of disaster. Mobile GIS information combined with GPS and

satellite imagery can help retrieve important results like quick execution of evacuation plans and

tracking of emergency response vehicles [16]. Quick reporting of incidents and information is a

critical task and can be accomplished through smartphone applications. A disaster management

application is helpful if it captures important data like location of injured and non-injured

people, images of the damaged area, weather updates for the particular location, alarms and

alerts, quick access to maps and location-based services [17].

2.3. Related work in Android technology

The Google Play Store, a virtual marketplace that provides services and applications to Android

devices, presents a number of applications upon searches by the keyword „emergency‟.

Gomez et al., 2013 [18] analyzed 250 emergency-based Android applications. For each

application, the data (description of the application, version of Android targeted, price, rating,

and application technology) was collected. These applications were dedicated to either detection

of emergency, notification or management. Depending on the target end users of each

An Android application to support flash flood disaster response management in India

10

application, the applications were divided into categories to allow further analysis. The

categories were:

 Victim (59%)

 Professionals Rescue Team (14%)

 Rescue Voluntary (14%)

 Witness (7%)

 General Public (6%) – This is for those not affected by the disaster

The study and review of these applications resulted in the conclusion that more than half of

these applications were designed for victims. There were fewer applications addressing rescue

workers to support in rescue operations. Also the major features of the applications were

studied. These included:

 Location data access (Fine, coarse or mock location)

 Communication resources access (Bluetooth, internet access)

 Communication tools access (SMS, email, phone numbers)

The location service was calculated to be used by 81.2% of the applications. 106 apps use GPS

sensors whereas 81 apps rely on the network communication. Most of them combine both

technologies. This is an important consideration since GPS does not work without sky visibility.

Through this research work [18] an application was proposed for better organization of relief

activities. The study also considered the possibility of using internal sensors within device for

example shaking the device to raise an alarm and changes in user position. The framework was

designed to work in different modes (victim mode, volunteer mode, witness mode and citizen

mode) to target different needs. This study revealed the scope of experimenting with application

development in the context of disaster management by targeting them for specific end users.

Palmer et al., 2012 [19] proposed a framework to help overcome the challenges in the domain of

disaster management. RAVEN – a framework to construct an application was provided with

the utility to collect data using smartphones. The framework was built with the idea to allow

developers to construct a user interface and define a schema at runtime. The aspect of

technological advancements in the field of disaster management was also given importance.

Technology can help manage the operations and can also act as a networking channel. The

framework allowed defining a schema for a structured data store at runtime and generating a

user interface to edit instances of that schema on the mobile devices. Developers could quickly

create data-oriented applications on the phone itself in a short span of time. A “People Finder”

application using this framework was also implemented. To be able to compare and contrast the

development effort required and the usability of the application, the application was developed

both by using a standard Android implementation and by using a framework implementation.

An Android application to support flash flood disaster response management in India

11

 Standard Android implementation

Standard Android development tools and practices were used by application developers to

develop the People Finder application. This implementation consumed around 3500 lines of

code. This implied that this kind of implementation would require experienced application

developers to complete the task and take time for completion. This contradicted the fact that

rapid application deployment is required when disaster strikes. Hence the author considered

another implementation as well.

 Raven implementation

[19] This implementation was entirely done using the mobile device. It used Schema Creator

application to construct a schema which is not visible to the user but used internally to create

the database. This enabled an edit-user list with a simple user interface similar to the one

developed using Android to be created on the fly. The paper then made a comparison between

the two approaches and concluded that time consumed to develop the application using the

Raven framework was lesser than the one using the standard Android tools. Also the

framework implementation required just a smartphone. Thus this framework offered rapid

application development in case of disaster.

Asif et al., 2012 [20] presented a framework through smartphones for disaster management to

cope with mitigation activities post disaster. A smartphone application was proposed to enable

information gathering and retrieval by the general public and decision-makers. This would help

in the rehabilitation and rescue processes involved in disaster management. This framework

allowed data collection from the disaster struck areas even in offline mode i.e. when the cellular

network is unavailable. The application was able to transfer data to a central database through a

web application. This data resided on a central database and used for further analysis.

Similar to India‟s problem of absence of an efficient technological disaster management system,

Fajardo et al., 2010 [21] discussed the need for such a system in The Philippines. An Android

application named MyDisasterDroid was developed for improved co-ordination in relief and

rescue activities. Geographic locations were entered by the user through the application

interface and stored in the application database. Paths between these locations were calculated

with a travelling salesman algorithm while genetic algorithms were used to decide the optimal

path. The application interface consisted of two views: the map view and the list view. While

the map view showed the locations overlaid on a Google map, the list view showed the list of

people who needed help and their locations. The application displayed an optimal route among

the locations with a single button click. The user could prioritize the routes either by closer

location or the route with more number of people in need. But the routes did not address the

safety and concerns particularly of the rescue worker.

2.4. Dealing with disrupted communication

In disaster-struck areas, there is an adverse effect on communication infrastructure due to

congestion or physical damage. Not many applications address this issue or provide ways to

An Android application to support flash flood disaster response management in India

12

overcome it. Oppcoms (or opportunistic communications) were suggested by Gorbil and

Gelenbe (2013) [22] as a method of information exchange when mobile communication is

unavailable. In this approach, GPS and Bluetooth were used to exchange messages at close

ranges and carried over multiple hops in a store-carry-forward manner. Also a model of

communication through aerial wireless technology was discussed by Shao et al., 2011 [23]. It

proposed a BTS (Base Transceiver Station) to be installed in an air craft. This BTS acted as a

temporary aerial base station. One such base station could span a large area thereby providing

network coverage.

Eleiche and Markus (2011) [24] discussed the importance of mobile devices in acquisition and

processing of geospatial data and designing mobility applications. To enable users to perform

geospatial functions in an offline mode, a conceptual stand-alone framework was proposed.

This framework was devised to provide spatial functionality in a mobile device, independent of

the communication network. The proposed solution was to store the objects of interest (images

or data) in the mobile device memory instead of the server. These objects of interest once

accessible from the mobile device could be used for processing and analysis.

As soon as the relief and rescue work is initiated in disaster-struck regions, it also becomes

inevitable for the communication network to recover since it has a prime importance in such

situations. Smartphones have the privilege of being able to connect to different networks such

as cellular network (3G, GPRS, EDGE) or Wi-Fi. These devices provide high utility in different

kinds of emergency situations. A study by Farnham et al. 2006 revealed that cell phones network

did recover quickly after the Hurricane Katrina disaster [25]. Thus it would be a wise decision to

implement an application in such a way that it shows usability in absence of network

communication and quickly notify of available networks to perform tasks that need network

access.

An Android application to support flash flood disaster response management in India

13

3. RESEARCH METHODOLOGY

This chapter identifies the methodology that was applied for this research project. Figure 3.1

depicts an overview of the methodology and approach used for the research. It consists of four

stages viz Requirement analysis, Design and Development of the software application,

Configuration of deployment environment and finally the Testing and Evaluation stage. Each

stage and its sub-parts are explained subsequently.

 Figure 3-1: Framework for Research Methodology

3.1. Requirement Analysis

This stage involves gathering information and performing an analysis to extract requirements.

For this, it was important to understand how the disaster management authorities and

organizations work, the scenarios they face during the post-disaster phase and identify the areas

of possible improvement. It was required to know the kind of information they need and

equipment they have for communication. A meeting was scheduled with The Deputy

Commandant, NDRF at NDRF Headquarter, New Delhi, India. The agenda of the meeting

was to discuss the basic practices during rescue operations by NDRF personnel. Since the

research project cites Uttarakhand flash floods as an example scenario, it was the objective of

discussion and explanation of processes. This meeting helped gather quite a lot of important

information. Email and telephonic communication with other rescue workers at different

Testing and Evaluation

Configuration of deployment environment

Configuration of resources Build test cases

Design and Development of software application

Overall system architecture
design

Server software application
design and database integration

Mobile (client) application
design

Requirement Analysis

Entities involved Information flow
Identify resources (technical

and information)

An Android application to support flash flood disaster response management in India

14

seniority levels, was also carried out. The information extracted from the whole discussion has

been assembled and discussed in coming sections.

3.1.1. How does NDRF work?

Once a disaster occurs, it calls for immediate, prompt and active response. NDRF is a

dedicated response unit from the Government of India that is completely involved in disaster

response, disaster risk reduction, mitigation and disaster prevention. Set up under the

provisions of the Disaster Management Act, NDRF functions under the Ministry of Home

Affairs, Government of India and supervised by NDMA. NDRF battalions are located at ten

different locations across the country based on the vulnerability profile of specific regions in

the country.

The Uttarakhand disaster owing to its magnitude and the number of people affected was given

the National level disaster criteria. Once a disaster is categorized as National level disaster, the

National Crisis Management Group comes into the picture. The central government plays an

important role in such a case. For small scale disaster types, management is restricted to

district and state level government and management committees if claimed to be of even small

level. NDRF is called upon through either NDMA or MHA (Ministry of Home Affairs).

NDRF can even respond by itself if it sees a situation of emergency. The NDRF personnel

communicate with the central government or state government. At district level, they

communicate with the district magistrate (DM)/District Collector (DC) and for state level – it

is the Chief Secretary or Relief Commissioner. Either NDMA or NDRF directly

communicates the requirements and the Relief Commissioner, Chief Secretary or District

Magistrate sees to it. The relief work can be performed by rescue workers (NDRF themselves)

but only after the rescue operations. The relief task can also be performed by the NGO‟s and

relief organizations and the DM/DC takes this decision as per the situation. No separate

teams are formed to carry out rescue and relief operations. Co-ordination of team members

during the rescue and relief operations is controlled and supervised by a team officer from

Govt. agencies and department concerned, as per SOP (Standard Operating Procedures) laid

down by NDMA [2].

In case of a disaster, information related to ground reality plays an important role. There is a

great deal of variety of information that is required. It is crucial to know the disaster affected

locations, location of relief camps, equipment and amenities required and weather information.

The people indirectly affected from the disaster need to know about their relatives and

acquaintances unfortunate to have been caught in the fury of the disaster. The news channels

and journalists take the onus of imparting all this information to the public. It so happened in

Uttarakhand rescue operations that some sites were not accessible to journalists because of

difficult weather and terrain. In such cases where journalists are not allowed or are not able to

reach disaster sites, the rescue workers need to take over the responsibility of providing

information as well.

An Android application to support flash flood disaster response management in India

15

3.1.2. How is the rescue operation conducted?

NDRF is the only disaster resilience agency in India that has adequate modern equipment to

carry out rescue and relief operations in any kind of natural and man-made disaster. In

response to a disaster, the following activities are conducted; either being on-site or off-site.

On-site operations

 Quick assessment of the situation in coordination with disaster management officials viz

NDRF, NDMA representatives of State/Union Government authorities, local

authorities, defense (Army/Air Force/Navy).Central Armed Police Forces and Police

 Mobilization of disaster management teams

 Arrangement of vehicles, helicopters, boats etc for movement of teams and equipment

 Establishment of communication network

 Conduct rescue and relief operation as per the requirement of the state authorities

 Off-site operations

 Provision of medical help.

 Assisting state/local authorities in rehabilitation of the victims

 Adequate provisions of food, drinking water and other amenities

 Keeping constant contact with IMD authorities to react in the event of re-occurrence of

disaster.

3.1.3. Information requirement and communication

To understand the communication scenario during rescue operations, several questions were

posed regarding communication of information and equipment used. They are presented

below in the form of questionnaire.

Q: How is the disaster management team organized? Who are the decision-makers?

A: In case of major disaster like Uttarakhand operation recently, National Crisis Management

Teams take decision. The Government/NDMA/NDRF and the concerned State

Governments are the decision-makers for the organization of disaster management teams to

carry out the rescue and relief operations when a disaster occurs.

Q: Whom do the teams report to?

A: The teams report to the State government authorities like Relief Commissioner, Chief

Secretary, and District Collector.

Q: Which teams respond first and who takes these decisions?

A: If it is beyond the capacity of State government, they seek NDMA/NDRF for sending

disaster teams or otherwise. This decision is made by MHA or NDMA. Local police,

An Android application to support flash flood disaster response management in India

16

volunteers and NGO‟s are also sent for disaster mitigation. The NDRF teams and personnel

of CAPF‟s (Central Armed Police Forces) are pressed into service on occurrence of

emergency.

Q: What is the information required before-hand and on the spot?

A: The place of occurrence, type of disaster, effect of devastation, number of casualties,

weather conditions and conditions of roads and bridges and other access to the incident site,

availability of amenities needs to be communicated before hand by the assessment team. On

the spot information includes availability and requirement of equipment, operational

preparedness, availability and requirement of medical aids and details of official‟s in-charge.

Q: What data needs to be sent to the decision makers?

A: The strength of teams/troops to be deployed, place of concentration of teams or Relief

Camps, operational strategy, details of equipment, supporting elements and roadmap of

operations to be carried out.

Q: Is there any existing use of geospatial data. Are there any portable devices used?

A: Yes, geospatial data in the form of paper maps or digital imagery is required. Mobile

phones and tablets are used. But the usage is totally dependent on the availability of mobile

towers and internet access which may fail in such situations.

Q: What are the limitations of the available devices? What features if implemented,

would be helpful for rescue operations?

A: As stated earlier, the usage of such devices is totally dependent on the availability of the

communication channel and internet access. But assuming that the communication

infrastructure has been restored, there can be many possible features which would be helpful

to the teams.

 Disaster alert feature and notification of potential hazards

 Evacuation routes as per availability of current maps of the region

 Splitting of the area into small zones would help in better visualization

 Current maps to be made available to the rescue teams

 Image geo-tagging

 Reporting of environmental factors, situation analysis of the disaster-struck area, and

accessibility to the area.

Q: What kind of data analysis is required?

A: Weather situation, location and accessibility to the disaster struck region are the main data

inputs required for analysis. The data analysis can be the impact of disaster in terms of people

affected, infrastructure damage reported, relief camp locations and their proximity to necessary

An Android application to support flash flood disaster response management in India

17

amenities. Weather information and prediction will help for planning further rescue and

mitigation activities. The data analysis would be helpful in all spheres of disaster mitigation

mechanism for positive evaluation of the situation prevailing in the site of disaster.

Q: How capable are the rescue workers to use such devices?

A: The rescue and relief teams are possible users of such devices. The rescue workers are well

trained and conversant to operate such devices. Apart from this, adequate training is imparted

to the teams in rescue and relief operations. They are being trained in chemical, biological,

radio-active and nuclear (CBRN) emergencies, collapsed structural search and rescue (CSSR)

operations, deep diving, flood rescue and heli- slithering.

Q: What if the GPRS/ Internet do not work?

A: Besides cell phones and internet connectivity, the teams are communicating with wireless

communication equipment available with the responders. Wi-fi and other communication

equipment are available with the teams to communicate in the event of any emergency

situations. Establishment of INMARSAT sets is an alternative mode of communication.

Communication through satellite phone is also used if available.

Q: How do the rescue and relief teams’ co-ordinate?

A: A proper operational regime is formed for rescue and relief operations in the event of

disasters. The teams are deployed for operations as per the „Standing Operation Procedures‟

(SOP) issued by the Government of India. No separate teams are formed to carry out rescue

and relief operations. Coordination of the team members during rescue and relief operations

are controlled and supervised by a team officer comprising Government agencies and

departments concerned as per the SOP‟s.

Source – Interview with Mr. R. K Srivastava, Deputy Commandant, NDRF

Vasant Kunj, New Delhi

26 Sept, 2013 [26]

Also the news reports and articles related to the incidents in Uttarakhand have been studied.

With the help of this, a brief summary of the series of incidents and rescue operations in

Uttarakhand, over a week, has been drafted.

An Android application to support flash flood disaster response management in India

18

Summary Report.

June 14, 2013 Uttarakhand, India

Torrential rainfall followed by floods and landslides affects the state of Uttarakhand severely.

The early monsoons have brought misery in the life of the people in Uttarakhand, especially the

Rudraprayag, Pauri, Uttarkashi, Chamoli and Tehri districts in the state. The current death toll is

reported to be higher than 1000.

June 16, 2013 Uttarakhand, India

Heavy rainfall and cloudburst have accelerated the flash floods. 12 out of 13 districts in

Uttarakhand have been affected. Rudraprayag, Chamoli, Uttarkashi and Pithoragarh are the

worst affected districts. A team by Indian Red Cross has been sent to make an assessment of

needs which would be followed up by rescue and relief work.

June 17, 2013 Uttarakhand, India

A huge reservoir above the land area of the Kedarnath temple burst, releasing huge volume of

water. A cloudburst in the same area has worsened the situation and filled the temple and

surrounding area with gushing flow of water and buried thousands of people. Rescue operations

have started. Today the rainfall completes continuous 60 hours.

June 18, 2013 Uttarakhand, India

The NDRF team lands at Guptkashi (located between Kedarnath and Rudraprayag). A lot of

infrastructural damage is reported and quick evacuation measures are required for people buried

under structures. UAV named Netra along with two more hired UAV‟s is being used by NDRF

to monitor images and ensure complete evacuation.

June 19, 2013 Uttarakhand, India

The state government has deployed helicopters to rescue people held up in different areas.

District administration has released alerts and evacuated population living on the banks of the

river. In terms of relief supply there is an immediate need of food, shelter, potable water and

clothes.

June 21, 2013 Uttarakhand, India

The rescue operations are going on in various districts in Uttarakhand. Over 250 personnel of

the NDRF have been deployed. The Indian Army has deployed 10,000 soldiers and 11

helicopters. The Indian Air Force has already airlifted 18424 people and also dropping/landing

of relief material has begun.

Source [27] [28]

An Android application to support flash flood disaster response management in India

19

Requirement gathering consisted of reviewing research works, articles, journals, news reports and

most importantly a personal interview with NDRF official. As per the interview conducted,

summary of events and the literature review [11], the information has been analyzed and specific

requirements have been extracted from it. The functionality in the application is carefully chosen

for particular scenarios that have been drafted through careful evaluation of all the requirements.

The Android application should possess the below functionality:

1. Reporting system: The application allows rescue workers to report incidents and

other information when needed. Such reports can be about people rescued,

resources required, information about disaster and an assessment of its impact.

Two reports used for this functionality are First Incident Report and Summary

Report.

2. Emergency/Distress call: The application allows immediate call to an emergency

response office. Request can be about an airlift (evacuation or medical aid) or a

need for more resources (rescue workers or materials).

3. Disaster Alert: Weather-related information is important to be prepared for any

further chances of disaster. The application allows visualization of current weather

and weather forecast updates.

4. Geo-visualization System: Map viewer to visualize the current user‟s location,

nearby amenities, weather information and spatial extent of the disaster.

It became easier to understand who would be the target end-user of the application, who would

need the data for analysis, what kind of data would be sent for analysis and the kind of analysis

performed. The sub-parts of the requirement analysis stage are discussed in coming sections.

3.1.4. Entities involved

This application would best serve in the hands of a team officer, as he/she co-ordinates both

relief and rescue operations. The data will be sent to Relief Commissioner, Chief Secretary or

District Collector whom we will term as Data Analyst. The information that the team officer

mainly needs is location, weather updates or disaster warning, location of amenities. The

information that the analyst needs is location, incident reports, resource requirement as

per the location and visual images or video to understand the impact of the disaster and

communicate to news channels and journalists about the situation. Hereby the entities

involved in the scenario are:

 The Team Officer

 The Data Analyst

 Android application

 Server application.

An Android application to support flash flood disaster response management in India

20

3.1.5. The Information flow

 Figure 3-2: Information flow

Figure 3.2 displays the information flow for the application. It shows the communication

between the mobile application (client) and the server application. The mobile application

needs GPS signals for location services, network services for making calls and sending text

messages, and internet access to use maps and weather services. For the reporting system, the

mobile app uses GPRS to connect to the web server. The web server, after performing an

authentication check enables access to the application server. This application server is also

integrated with a database server (PostgreSQL) in this study. Depending on different

authentication roles, the user has different access rights at the application server. Site

Administration deals with managing the application server and needs admin access. Form

management deals with submitting, accessing and deleting report forms access, and this may

or may not be given to the end user. Downloading of these report forms is one time effort

which can be done online at field or at the base camp/office location itself where network

connectivity with server is available. Once data is received at the server from the mobile

application, it is updated into the integrated database. Querying and Reporting access allows

user to apply SQL queries on the database and generate specific reports for planning and

decision- making.

An Android application to support flash flood disaster response management in India

21

The other functions of Emergency/Distress Call, Disaster Alerts and Geo-visualization are

achievable through SOS (commonly used description for distress signal), weather, and location

and assessment services. The data sources used are displayed in the information flow diagram.

For these services too, the mobile application uses GPS to retrieve and display location and

GPRS to connect to the various data sources used.

3.1.6. Resources required

The technical resources required are GPRS and GPS-enabled Android Phone and a computer

system to be set up as server. The information resources have been discussed in Section 3.1.3.

3.2. Design and development of software application

This topic is explained in detail in the next chapter but a brief overview about each stage is

presented here.

3.2.1. Overall system architecture design

 The system architecture design is such that it involves two major entities: the mobile

application and server application. The mobile application should be able to send and retrieve

data from the server.

3.2.2. Server software application design and database integration

The server application needs to be installed and integrated with database. Once the data is

received by the server, it should also be used to update the database. The mobile application

should have an authentication to connect to the server. The database connectivity should be

managed at the server end only.

3.2.3. Mobile (client) application design

The mobile application is the most important component of this research project. It exhibits

the functionality discussed in Chapter 1. Also we tried to address as many as possible

requirements that were retrieved from the disaster management officials by their experience

during various rescue operations.

3.3. Configuration of deployment environment

The deployment of the application needs some resources to be configured. Most importantly

an Android Smartphone with GPRS (preferred 3G), Android OS version 4.0.1 and later

versions, inbuilt GPS, total storage of 14 MB(internal storage 9.85MB and external storage

4MB). It can consume additional storage as per usage.. The server and database should be up

and working 24/7 to accommodate information retrieval from mobile application and vice

versa.

An Android application to support flash flood disaster response management in India

22

3.3.1. Configuration of resources

The following resources should be configured to fully deploy and test the application

 Android phone

 Network /Internet connectivity

 GPS reception

 Server application

 Database server

3.3.2. Build test cases

The below criteria is devised to test the mobile application. It checks the application

performance by testing its accuracy and time consumption under various networks. It checks

the application in different field conditions. The memory and battery consumption and lastly

usability testing to check the application from user‟s point of view is also important.

 Software Testing

o Location Accuracy

o Time consumed

 GPS

 Internet (Map loading and information display)

o Battery consumed

o Memory consumed

o Network Access

 3G/2G/Wi-Fi

 Field Testing

o Dense forest

o Urban area

o Cloud cover

o Humidity

o Hilly Terrain

 Usability Testing (User Interface and Usefulness)

o Field Workers

o Random Users

3.3.3. Testing and evaluation

The test cases are formulated taking into account possible factors that may affect the app‟s

utility. Humidity and cloud cover conditions were present in Dehradun itself. Urban area

testing was done at Indian Institute of Remote Sensing, Dehradun campus and nearby areas.

The Hilly terrain testing has been performed at Mussoorie (about 35 Km from Dehradun and

at an average altitude of 6170 ft). The dense forest testing has been performed at Rajaji

National Park. It is located between Haridwar and Dehradun and consists of tropical and

subtropical moist broadleaf forests. The test results are discussed in Chapter on Results and

Discussions.

An Android application to support flash flood disaster response management in India

23

4. DESIGN , IMPLEMENTATION AND TESTING

Android is Google‟s mobile operating system and is based on Linux operating system. Android

offers its Software Development Kit (SDK) for developing and designing Android apps. For this

research project standard Android development tools were used for application development and

standard practices suggested in Android development documentation were studied. The

integrated development environment (IDE) used in this study is Eclipse (Juno) and the

programming language used for software development and customization is Java. For this JRE

(Java Run Time Environment) and Java Development Kit (JDK) was installed as well in

computer system. For integrating HTML and JavaScript code within the application, PhoneGap

was used. The installations required for the application development are as mentioned below. To

understand Android programming fundamentals and development tutorials , the website [29] was

referred.

4.1. Steps for installations

1. Eclipse (IDE) for Android SDK was downloaded and installed referring to [30]. The ADT

(Android Development Tools) package version installed was 22.0.1 and Eclipse version 3.3.2

 Figure 4-1: Eclipse (IDE) used for application development

2. Oracle JRE version 7 and JDK version 7.0.400.43 was downloaded and installed referring to

[31].

3. PhoneGap 2.9.0 was installed from GithHub [32].

For the installation procedure the source [33] was referred.

An Android application to support flash flood disaster response management in India

24

 The functionality that the software application provides is the Reporting System, an

Emergency/Distress Call, Disaster alerts and Geo-visualization. The detailed explanation of

each feature is presented in the coming sections.

4.2. Reporting System

Reporting ground reality to central system say control room is an important aspect of disaster

management. It can be used while the rescue operations are in progress and majorly once the

relief operations begin. For the team officer, it is crucial to report incidents and details that are

important for analysts. These details include the incident site, exact location coordinates,

images, video recordings, number of people rescued, injured and died. The analyst can make

assessment of the disaster impact both regarding life and property. The research work enables

reporting of this information through an interface which allows user to fill in data. It is a good

practice to have template report forms ready to be used at the time of disaster.

ODK (Open Data Kit)[34] is an open source, set of tools that are designed to be customized

and used for field data collection. ODK Collect is one of the tools available as an Android

application and used for field data collection. It allows user to download predefined forms from

the server and fill the data that needs to be reported. ODK Aggregate allows deploying a server

with data base integration. These two tools have been used in the study.

4.2.1. Creating Server

 Apache Tomcat Server version 6.0 was downloaded and installed by following

instructions from [35] and set the port number for local host as shown in Figure 4.1.

Figure 4-2: Apache Tomcat configuration

An Android application to support flash flood disaster response management in India

25

 Server configuration through command prompt was performed as shown in Figure 4.2.

Figure 4-3: Server start-up

 Server was configured and checked by opening local host in browser with defined port

number as shown in Figure 4.3.

Figure 4-4: Checking installed Server

4.2.2. Integration with database

 PostGreSql was installed and configured. The version used for this project was

PostGreSql 9.0 and pgAdmin III 1.16

 Windows ODK Aggregate Installer was downloaded from [36] and installed.

 While installing Aggregate it asked for postgres details and details of the new database to

be created. For the purpose of the project the details are as below

An Android application to support flash flood disaster response management in India

26

Database name: RescueApp

User: rescue

Password: rescue

Once installed, a readme document opened up in browser with steps to be followed and

executed on Postgres SQL shell (psql) commandline client as shown in Figure 4.4.

Figure 4-5: Configuring PostgreSql

 This created an ODKAggregate.war file which was deployed to Apache Tomcat web

server. The IIRS server installed used the url location [37].A Google account for

verification was required for first time configuration of ODKAggregate and

administration of server. After successful login through Google account, an admin login

was created for management and administration of local server.

4.2.3. Building report forms

Reporting forms are XML documents created at server. The XML Form was designed using

XML editors. ODK supports various data types for form creation like text, numeric, date,

time, location, media (image, audio and video) and selection (list, group). The forms can also

be created using ODK Build application available online [38]. The form once designed were

downloaded as xml and uploaded to Aggregate Server.

The report forms created for this research project are First Incident Report (FIR) and

Summary Report. The FIR means incident reporting by rescue workers as and when they first

visit and incident site. As soon as the rescue workers arrive at the incident site, they need to

communicate information to the analysts to help plan the disaster management operations.

Summary report is a more detailed report which includes details on the disaster impact and

relief supplies required.

Table 4.1 shows the First Incident Report template form. The Summary Report consists of

form elements of FIR with additional list of resource requirements like relief material, food

packets, medical kits and water bottles.

An Android application to support flash flood disaster response management in India

27

 Table 4.1: FIR Form Elements

4.2.4. Collecting data and uploading to server

 ODK Collect source code was downloaded and imported in Package explorer in

Eclipse. This was enabled as library by selecting IsLibrary from Android properties.[32]

 From RescueApp project properties, ODKCollect was added as library. This merged

ODK Collect with RescueApp Project. ODK Collect was customized and used for the

Reporting feature of the RescueApp along with RescueApp‟s other functionality.

 The server address was embedded in the mobile app itself to make it more user-friendly.

4.3. Emergency/ Distress Call

During disaster management, on the spot communication is important. Sometimes an

emergency call needs to be made to communicate a request and also the location of the caller is

important. The Emergency/distress call feature in RescueApp is in the form of an SOS button.

By using SOS button, a call is made to a pre-saved number which can be re-defined.

Simultaneously an SMS is sent to the same number. This SMS includes a message asking for

help at the user‟s location. Fundamental techniques used for this function are:

Form Element Description Data Type

Reporting Person
Name of the reporting

person

Text

Incident Site
Name of the incident site Text

Date/Time
Date and time of reporting System generated

Location
Exact location on map GPS co-ordinates

Image
Image of the incident site Media file

Video
Video of the incident site Media file

People Rescued
Number of people rescued Number

People died
Number of deaths Number

People with casualties
Number of people with

injuries or serious medical

condition

Number

Other information
Any relevant information Text

An Android application to support flash flood disaster response management in India

28

4.3.1. Retrieving location in form of latitude and longitude

The internal GPS of the device has been utilized to retrieve the current location of the user.

GPS gets signals through a constellation of 24 satellites. Through coding the application

realized the retrieval of the location of the device in the form of latitude and longitude. These

values were converted to a text format and displayed on the screen along with accuracy of the

coordinates. The accuracy aspect was extremely important while using the application for

Reporting purposes. To use location services in an application, an instance of the Location

Services class i.e Location Client was used. Firstly Location Manager and Location Listener

were instantiated.

 These classes executed the onLocationChanged method that returned a location object. This

object contains location information.

4.3.2. Using Geocoder to retrieve address from latitude and longitude

Reverse Geocoding i.e. the process of retrieving the address from latitude and longitude

values. This process was used in the application. The application was programmed to fetch

the latitude and longitude values and then retrieve the address corresponding to those values

to be displayed to the user.

As shown below, the Geocoder retrieved a list of addresses for the parameters: latitude and

longitude. This list was converted to type string and address was retrieved for the location.

An Android application to support flash flood disaster response management in India

29

Once the SOS button is clicked, it performs the below two actions. It places a call to a saved

number and simultaneously sends an SMS with location details.

4.4. Disaster Alert

At the time of disaster, once the rescue and relief activities have begun, it is important to know

current weather and weather alerts. Disaster alerts for the project have been chosen to be

weather-related. The Weather tab on the main screen depicts disaster alert functionality. It

shows the weather details for user‟s current location. Fundamental technique used for this

functionality is:

4.4.1. Retrieving xml data from RSS feeds

Firstly a connection is created to the URL through HTTP

Parser was created to read the XML data. This data is output to an array and retrieved as string

An Android application to support flash flood disaster response management in India

30

Various data sources in the form of API‟s are used. For weather information an API key is

used to retrieve weather information from [39]. Geocoder is again used to retrieve city or

locality from user‟s current location and the result is passed as a parameter to the weather

URL. It then retrieves the weather details for user‟s location. For weather feeds another

URL is used. It can be retrieved from [40].

Satellite imagery for weather visualization is Kalpana-1 of INSAT series of satellites of

ISRO. The image resolution of Kalpana-1 satellite image is 8km. It uses VHR Sensor,

Mercator projection and a cloud cover visible channel. The image has been retrieved from

[35]. Google Maps API with weather layer are also used to show local and nearby weather

conditions.

4.5. Geo-visualization System

Geo-visualization in simple terms means to form a mental image of some information and

associating it with earth location. This function cannot be depicted on its own and needs some

aspect which uses it for displaying information. Hence geo-visualization has been used for

displaying current location and weather information. The assessment function also uses geo-

visualization techniques to display data.

Fundamental techniques used for this function are:

4.5.1. Using open layers as an HTML JavaScript feature

l%20

An Android application to support flash flood disaster response management in India

31

4.5.2. Retrieving location and nearby hospitals on Google Maps

This code retrieves the latitude and longitude of the user‟s location and loads Google map for

the location by passing it as a parameter. It then gives a list from which the user can choose

radius. It searches for hospitals within that radius and displays to the user. Geo-visualization

is also depicted by weather function as explained above. It is possible to locate and display

various amenities near user‟s current location using Google maps API. For the sake of

demonstration, hospital has been used. A Google places documentation [41] lists out the

various possible types of places that can be searched for, using the API.

4.6. Testing and evaluation of the application

The testing and evaluation of the software application with major importance to accuracy and

time consumed is shown in Table 4.1 while Table 4.2 shows time consumed by various type of

information to load and display on screen. This has been checked for in presence of 3G, 2G,

Wi-Fi networks and also when there is no network access. The testing has been performed using

Sony Xperia neo L with operating system Android v4.0.4 (Ice Cream Sandwich). It has an

internal memory of 1 GB and 512 MB of RAM. The dimensions of the device are 121 x 61.1 x

12.2 mm (4.76 x 2.41 x 0.48 in). The app can be used on other versions of Android as well. This

can be managed by making changes to the minimum and target Sdk version in code. The current

min Sdk Version is 14 and target Sdk version is 19.

<uses-sdk

 android:minSdkVersion="14"

 android:targetSdkVersion="19" />

The total memory storage used by the app is around 14 MB. Internal storage memory consumed

by RescueApp is 9.84 MB and external storage of 4 MB. The reporting feature needs storage to

store report forms. This can exceed when reports are filled up and saved to be sent later. This is

because the report forms allow uploading images and video recordings of the incident site, and

these media files occupy storage on SD Card.

An Android application to support flash flood disaster response management in India

32

Table 4.2: Testing and Evaluation of RescueApp

 Location Accuracy Time Taken Battery

Test Conditions GPS

Network

GPS

 Internet

 (Maps loading,

 Information

Display)

NETWORK

3G Up to 5m

 Up to 30m

10 seconds

 8-10 seconds

Increased

consumption

when used with

3G

2G Up to 5m

 Up to 39 m

18 seconds

 10-40 seconds

Normal Battery

use

Wi-Fi Up to 5m

 Up to 22 m

4 seconds

 3-7 seconds

Lesser Battery

consumption

No Signal Up to 6m

 Nil

26 seconds

 10 seconds

Lesser Battery

consumption

FIELD TEST

Dense Forest Less Accuracy and sometimes

no signal

20-30 seconds Battery use

independent of

field test

conditions

Urban Area 5m -29m 10-20 seconds

-do-

Cloud Cover Up to 5m 10 seconds

-do-

Humidity Up to 5m 10 seconds

-do-

Hilly Terrain 5m-30m 10-20 seconds

-do-

An Android application to support flash flood disaster response management in India

33

Table 4.3: Time variation with network coverage

 3G 2G Wi-Fi No Signal

Weather Information 8 seconds 10 seconds 5 seconds Nil

Weather feeds 10 seconds 20 seconds 4 seconds Nil

Weather on Maps 8 seconds 20 seconds 7 seconds Nil

Satellite Image 7 seconds 30 seconds 5 seconds Nil

Location on Maps 5-10 seconds 4-10 seconds 5 seconds 10 seconds

An Android application to support flash flood disaster response management in India

34

An Android application to support flash flood disaster response management in India

35

5. RESULTS AND DISCUSSION

The research involved understanding requirements by personnel involved in rescue operations

and subsequently, development of application. The App has been named as RescueApp as it

addresses the communication requirements of the rescue workers for disaster management. The

disaster management rescue operations begin as soon as the rescue teams are mobilised.

Evacuation of people and moving them to relief camps or safety zones is given prime

importance. Quick medical help is provided to those in need. Communication and information

retrieval comes next. This is where the application RescueApp will prove useful. The team officer

who coordinates for both rescue and relief operations is the target user of this mobile (client)

application. The information collected by team officer is sent to the Relief Commissioner, Chief

Secretary or District Collector. These officials might further involve a third person as the analyst.

That analyst is the target end user for the server application.

The main screen of RescueApp shows some features in the form of buttons that represent the

proposed functionality. Each button click takes the user to a separate screen with options to

choose from.

Figure 5.1 shows the main screen of RescueApp. Each of these buttons depict the features of the

App. The App uses a logo to represent it in the mobile device. The app makes use of GPS,

network/ internet access to retrieve and send information. The functionality as retrieved from

requirements in Section 3.1.3 has a feature catering to its function in the application. Each of

these features is explained in the coming sections along with Case Scenarios.

Figure 5-1: RescueApp

SOS feature is used for Emergency Call

Reporting feature is for field data collection and reporting

Weather feature is for retrieving weather information

Assessment allows user to point locations and mark areas on

the map to make an assessment about the disaster.

Location feature is to know, view and send current location as

SMS

An Android application to support flash flood disaster response management in India

36

5.1. SOS Button – Emergency/ Distress Call

Case Scenario: Suppose the user is in need of urgent medical help. This needs to be

communicated as soon as possible with the dedicated helpline numbers. Such numbers are made

available at the time of disaster. Emergency Call allows the user to quickly place a call without

wasting time in searching the contacts list and dialling some number. The user can request for

help. Figure 5.3 shows the Emergency Call feature. By the time the user ends the call, an SMS will

have been sent to the emergency number also.

The exact location of the caller is important to know. In an emergency situation, the user cannot

dictate full address or landmark and chances are that the user might not even know his/her exact

location. Geo-location sent in the form GPS co-ordinates can help pin point the location on map

and know the address and nearby landmarks. If address is retrieved and sent in SMS, it is an

added advantage and will help save time. Figure 5.2 shows the contents of the SMS that is sent by

use of the SOS button. The SMS consists of a message, address and location co-ordinates. It is

sometimes possible that Geocoder does not return an address corresponding to the location; in

such case only the location coordinates are sent.

5.2. Reporting

Case Scenario: Suppose the rescue team officer needs to communicate First Incident Report

(explained in Section 4.2.3). By applying the reporting button, the app displays a screen with a

menu layout (as shown in Figure 5.5). The user needs to login to server to download the report

templates (as shown in Figure 5.4). Only authorized user can download the report template and

the login will be valid till the session time expires (120 seconds). This implies that the user can

download the report templates once for all, while the network access is available. The process of

filling out reports does not require cell network or internet connectivity. It uses the mobile

device‟s own resources like device memory, GPS and camera.

Figure 5-2: SMS with user's location

Figure 5-3: Emergency Call

An Android application to support flash flood disaster response management in India

37

The Reporting feature allows user to upload images, location co-ordinate, video, textual and

numeric information, date and time of reporting. Figure 5.6 shows the report elements as per

First Incident Report.

Figure 5-6: Reporting options

The data once collected can be saved in Report. The user can create many such reports and

upload them to the server. Once uploaded, the analyst can view and analyze this data from the

database server. The data reported from mobile application to server system is in the form of an

XML document. The data is submitted through an HTTP request to server and the server

application parses the XML content to database with proper validation of the data types. The

conversion of XML to SQL allows the analyst to query data, perform analysis and create reports

on this submitted information. Spatial analysis can be performed on this information for example

one can determine the shortest route to nearest airport. Visualization of this submitted

information will enable the analyst to view the location on map along with the tagged image,

Figure 5-4: Authentication to Server Figure 5-5: Reporting Menu

An Android application to support flash flood disaster response management in India

38

video and other information. Figure 5.7 shows a satellite view with the point location. Once

clicked on this point, it displays the geo-tagged information recorded for this location as in Figure

5.8. The reported information is updated into PostgreSql database as shown in Figure 5.9.

Figure 5-7: Satellite view with point location

Figure 5-8: Reported information on click event

Figure 5-9: Reported information updated in database

An Android application to support flash flood disaster response management in India

39

5.3. Weather –Disaster Alerts and Geo-visualization

Case Scenario: Suppose the team officer needs to take some decisions based on the weather

conditions. For example the relief camp is set up at a particular location and needs to be

moved to another location because the weather predicts extreme conditions. By using the

Weather button, the app shows a screen with weather information of the user‟s current

location as shown in Figure 5.10 (a). This can take a few seconds to load since it first retrieves

location and then fetches the weather information for that particular location. It displays the

information in text format. It shows minimum and maximum temperature, rainfall if recorded,

sunset and sunrise timings.

Figure 5-10: (a) Weather data for user's location; (b) Satellite Imagery for weather

Other options include visualization of weather data on map or satellite imagery. Weather data

can be using a satellite cloud cover image (as shown in Figure 5.10(b)) and local level through

weather layer overlaid on Google maps (as shown in Figure 5.11(a)). It also gives a three day

forecast. The Figure 5.11(b) shows weather feeds that are updated daily. These weather feeds

are themselves analytical reports.

Figure 5-11: (a) Map view for weather; (b) Weather Feeds

a b

a b

An Android application to support flash flood disaster response management in India

40

5.4. Assessment – Geo-visualization

 Case Scenario: Suppose the team officer wants to visualize the extent of disaster impact or

point out affected locations on map. The Assessment button shows a screen that loads Open

Street Maps along with tools shown on left upper corner of the screen. With these tools the user

can zoom in and mark areas and point out locations on the map. Open layers are in the form

JavaScript libraries. The JavaScript source for this functionality is [42] . This information will be

updated in database and the analyst can use this information for planning and analysis. Figure

5.12 (a) shows marking an unshaded region on map, (b) shows shaded region on map while (c)

shows point locations that can be marked on the map.

Figure 5-12: Assessment functionality (a) Unshaded area ; (b) Shaded area ; (c) Point locations

5.5. Location – Geo-visualization

Case Scenario: Suppose the team officer wants to know his/her current location and send that

information to a number other than the emergency number possibly another rescue worker. Also

the officer may want to know nearby amenities within a given distance from his/her current

location.

Figure 5-13: Retrieve location and send in SMS

b a c

An Android application to support flash flood disaster response management in India

41

The Location feature provides two options. One is to view and send location information as in

Figure 5.13. This allows the user to retrieve location coordinates and accuracy through the on-

board GPS. This information can be sent as an SMS to a number that user can provide. The

other option is to view location on map. This location shows up as a marker in a Google map

window as shown in Figure 5.14. The user can choose a radius value (in meters) and the map will

show nearby hospitals within the selected radius. The hospitals are shown as plus sign marker and

provide information about the hospital when tapped on the icon. The application can be

programmed to show other amenities as well but for the sake of demonstration, hospitals have

been used.

Figure 5-14: User's location and nearby hospitals

5.6. Testing Results

The testing results as displayed in Chapter 4 are discussed here. After performing the network

testing, it was found that GPS exhibited same accuracy in presence and absence of Network but

the time consumed to display GPS results varied. Using Wi-Fi, reduced GPS loading time since

it itself gave an accuracy of up to 22 meters. Maps loading and information display was best

with Wi-Fi and 3G network. The 2G network comparatively took more time to display maps

and satellite imagery. As proven theoretically, cloud cover and humidity had no influence on

GPS signals but dense forest greatly affected it. It was almost at the verge of getting no signal

for a long time. Hilly terrain and urban area affected GPS signals in some areas as experienced

while walking or travelling besides a trail of high mountains, standing near the entrance of a

building and between clusters of buildings.

Network connectivity was affected in hilly areas and alternative available network had to be

manually chosen. In absence of network, GPS gave the same accuracy but it took longer time tp

display results as compared to the time taken in the presence of network. Maps could be loaded

and displayed in absence of network as well. This was because the maps were used earlier and

thereby stored in cache memory. They showed up only for the location they were earlier used.

An Android application to support flash flood disaster response management in India

42

The app consumed minimal memory and battery. While the App was running, the battery

consumed was about 2% of the total hours remaining for use. The total memory used by the

app was around 14 MB. Internal storage memory consumed by RescueApp was 9.84 MB and

external storage of 4 MB.

For usability testing, the application was distributed to users in separate locations and asked for

screenshots of the application. A small introduction about each feature helped the users

understand and use the application with ease. The application gave weather and location details

for different user locations. It was checked on different Android versions (4.0.4, 4.1.2, 4.3) as

well. It gave some package parsing issues when checked with the latest Android version 4.4 but

after updating the Android 4.4 operating system to the latest version, it worked well.

An Android application to support flash flood disaster response management in India

43

6. CONCLUSION AND RECOMMENDATIONS

The primary objective of the research was to build an Android application abiding by information

and communication requirements envisaged by discussions with the disaster management teams.

The interview conducted with an official involved in rescue and relief activities of disaster

management helped gather useful information. The functionality proposed for the mobile

application addresses the elicited requirements. Each function has a feature in the application

dedicated to it. Also utmost care has been given to make the application as user-friendly as

possible. Textual detail has been kept minimal on the screen but still each feature has been

explained well. The application involves various data sources to make weather data and

predictions available. Many Android apps exist for disaster management but RescueApp

combines various features into one.

6.1. The Research questions

1. What is the essential functionality required in the mobile application?

Review of rescue operations, discussions and the interview conducted helped understand

the scenarios and frame requirements. These requirements further helped to decide the

functionality in the application. The essential functionality planned and developed in the

mobile application is:

o Reporting system

o Emergency/Distress call

o Disaster Alert

o Geo-visualization system

2. Is the spatial functionality achievable through a simple interface?

Yes, the spatial functionality is achievable through a simple interface. The application

offers all the proposed functionality through a simple and user-friendly interface.

Effective display of maps and images is possible on a small handheld device.

3. What can be the criteria for application evaluation?

The criteria for application evaluation are categorized into four types. Software testing,

Network Access testing, Field testing and Usability testing. Software testing checks the

use of resources by the application. The network access testing checks the mobile

application use in all available forms of network and also in absence of network. Field

testing involved testing and evaluating the application in different kinds of situations.

Lastly usability testing was performed by giving the app to random users and users found

the interface easy to use and understand.

An Android application to support flash flood disaster response management in India

44

4. How to make the application serviceable in event of network failure?

The application makes use of the in-built features in the mobile device. The camera and

GPS are functional in absence of network and internet access. The Reporting function

shows that the reports once downloaded from the server can be used for field data

collection even in absence of network and the data can be sent once the network access

resumes. Location information can be retrieved in absence of network since it needs only

GPS that works independent of network access. Calling, Sending SMS, Retrieving Maps

and Images for displays are features dependent on network access. However in some

cases alternate means of network can be set up like satellite phone or connectivity

through Wi-Fi/Bluetooth in computer device.

6.2. Recommendations

1. As of now the application depicts client-server architecture but only as a part of the

Reporting system feature. This architecture can be extended to other functions as well.

Also more features can be added through which the application user receives information

from the analyst and vice-versa. Weather and location updates will also be sent from the

application to the server. In case the analyst needs to inform the user in the field about

any weather hazard related to current location, it will be possible.

2. The Assessment feature can be elaborated. The marked points and area on the map can

be converted into WKT (Well known text) format and sent to the server. Also for better

assessment, a tablet is recommended.

3. The location feature on map currently shows only hospitals near the user‟s location. This

can be extended to show other amenities also.

4. The Emergency/ Distress call places a call to a pre-saved local number. But this can be

changed to an existing emergency number like 911 or 100 which are usual helpline

numbers made available at the time of disaster.

5. As of now, only weather has been considered for Disaster Alerts. But disaster alerts can

be proximity alerts (if the user is in or near a danger zone).

6. The weather feeds as of now are retrieved from a source that receives updates from IMD

in form of a batch daily at 4 PM. This needs to use an alternative source that provides

more current data. Accurate weather API‟s are available for commercial purposes. Such

API‟s can be used when the application is deployed by disaster management teams. Also

GeoRSS feeds if available will make it easier to visualize weather conditions.

7. The maps can be prepared to be stored offline and used even in absence of network

access.

An Android application to support flash flood disaster response management in India

45

REFERENCES

1. Coppola, D.P., Introduction to international disaster management. 2006: Butterworth-Heinemann.

2. National Disaster Management Authority, G.o.I., National Disaster Management Guidelines- National

Disaster Management Information and Communication System (NDMICS). 2012, NDMA Bhawan:

National Disaster Management Authority, Govt of India.

3. Bhanumurthy, V., et al., Emergency Management–A Geospatial Approach. the International Archives of

the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, 2008.

4. Gupta, A.K., S. Singh, and S.S. Nair, Hydrometeorological Hazards in Uttarakhand India, Himalaya-

Forensic Assessment of 2013 Flash Flood Disaster: Need of Integrated Planning for Sustainable Development.

International Journals of Geography and Environment Sciences, 2013. Vol. 1(1).

5. Thayyen, R.J., et al., Study of cloudburst and flash floods around Leh, India, during August 4–6, 2010.

Natural Hazards, 2013. 65(3): pp. 2175-2204.

6. Manfré, L.A., et al., An analysis of geospatial technologies for risk and natural disaster management. ISPRS

International Journal of Geo-Information, 2012. 1(2):pp. 166-185.

7. Weng, Y.-H., F.-S. Sun, and J.D. Grigsby, GeoTools: An android phone application in geology.

Computers & Geosciences, 2012. 44(0): pp. 24-30.

8. Shu, X., Z. Du, and R. Chen. Research on mobile location service design based on Android. in Wireless

Communications, Networking and Mobile Computing, 2009. WiCom'09. 5th International Conference on.

2009. IEEE.

9. Doner, F. and T. Yomralioglu, Examination and comparison of mobile GIS technology for real time geo-data

acquisition in the field. Survey Review, 2008. 40(309): pp. 221-234.

10. Kohli, S., et al., Sahana Eden Essential Guide, Google Summer of Code Documentation Summit, Mountain

View, USA, 18-20 October 2011, publisher: Lulu Enterprises. 2011, Inc.

11. Karnatak, H.C., et al., Spatial mashup technology and real time data integration in geo-web application using

open source GIS–a case study for disaster management. Geocarto International, 2012. 27(6): pp. 499-514.

12. Kevany, M.J., Geo-information for disaster management: lessons from 9/11, in Geo-information for disaster

management. 2005, Springer. pp. 443-464.

13. Tsai, M.-K. and N.-J. Yau, Improving information access for emergency response in disasters. Natural

Hazards, 2013: pp. 1-12.

14. Jiang, B. and X. Yao, Location-based services and GIS in perspective. Computers, Environment and

Urban Systems, 2006. 30(6): pp. 712-725.

15. Singhal, M. and A. Shukla, Implementation of Location based Services in Android using GPS and Web

Services. IJCSI International Journal of Computer Science Issues, 2012. 9(1).

16. Tsou, M.-H. and C.-H. Sun, Mobile GIServices applied to disaster management. Dynamic and Mobile

GIS: Investigating Changes in Space and Time, 2006.

An Android application to support flash flood disaster response management in India

46

17. Richter, S. and M. Hammitzsch. Development of an Android App for notification and reporting of natural

disaster such as earthquakes and tsunamis. in EGU General Assembly Conference Abstracts. 2013.

18. Gómez, D., et al., A Review on Mobile Applications for Citizen Emergency Management, in Highlights on

Practical Applications of Agents and Multi-Agent Systems. 2013, Springer. pp. 190-201.

19. Palmer, N., et al. Raven: Using Smartphones For Collaborative Disaster Data Collection. in Under

Submission To The Intl. Workshop on Information Systems for Crisis Response and Management (ISCRAM

2012). 2012.

20. Asif, M., et al., A Web-based Disaster Management-Mitigation Framework Using Information and

Communication Technologies and Open Source Software. JU Journal of Information Technology, 2012.

Vol. 1.

21. Fajardo, J.T.B. and C.M. Oppus, A mobile disaster management system using the android technology.

WSEAS Transactions on Communications, 2010. 9(6): pp. 343-353.

22. Gorbil, G. and E. Gelenbe. Disruption Tolerant Communications for Large Scale Emergency Evacuation. in

Proceedings of the 11th IEEE International Conference on Pervasive Computing and Communication, San Diego,

CA, USA. 2013.

23. Shao, Z., et al. A Rapid and Reliable Disaster Emergency Mobile Communication System via Aerial Ad Hoc

BS Networks. in Wireless Communications, Networking and Mobile Computing (WiCOM), 2011 7th

International Conference on. 2011. IEEE.

24. Eleiche, M.A. and B. Markus, Network Analysis Methods for Mobile GIS. 2011, University of West

Hungary.

25. Farnham, S., E. Pedersen, and R. Kirkpatrick. Observation of Katrina/Rita Groove deployment:

Addressing social and communication challenges of ephemeral groups. in Proceedings of the 3rd International

ISCRAM Conference. 2006.

26. Srivastava, M.R.K., Specific requirements of rescue teams, M.T. Tejassvi, Editor. 2013.

27. Officer, C.R., Daily Flood Situation Report. 2013, Ministry of Home Affairs (Disaster Management

Division).

28. India, S. Flood Incident in Uttarakhand. Available from: www.sphereindia.org.in [Accessed

16/09/2013]

29. Project, T.A.O.S. Android Development.Available from:

http://developer.android.com/training/index.html.[Accessed 18/09/2013]

30. Project, A.O.S. Get the Android SDK. Available from:

http://developer.android.com/sdk/index.html. [Accessed 18/09/2013]

31. Oracle. Java Download.Available from: http://www.java.com/.

[Accessed 18/09/2013]

32. Github. Download Phonegap. Available from:

https://github.com/phonegap/phonegap/archive/master.zip. [Accessed 09/10/2013]

http://www.sphereindia.org.in/
http://developer.android.com/training/index.html
http://developer.android.com/sdk/index.html
http://www.java.com/

An Android application to support flash flood disaster response management in India

47

33. V.Retsios, Installation of the Android Development Kit for developing a PhoneGap application. 2013, ITC,

Enschede, The Netherlands: 2nd SEMA Hackathon and Software Training, 26-27 October 2013,

Dar es Salaam, Tanzania.

34. Borriello, G., Open data kit: creating an open source community for mobile data collection, in Proceedings of the

3rd ACM international workshop on MobiArch. 2011, ACM: Bethesda, Maryland, USA. p. 1-2.

35. Kit, O.D. Tomcat Install. Available from: http://opendatakit.org/use/aggregate/tomcat-install/.

[Accessed 23/11/2013]

36. Kit, O.D. Downloads. Available from: http://opendatakit.org/downloads/.[Accessed

28/11/2013]

37. Kit, O.D. ODKAggregate Server. Available from: http://bis.iirs.gov.in:8080/ODKAggregate/.

[Accessed 28/11/2013]

38. Kit, O.D. ODK Build. Available from: http://build.opendatakit.org/.[Accessed 29/11/2013]

39. DataWeave.in. Weather api. Available from:

http://api.dataweave.in/v1/indian_weather/findByCity/?api_key=c9a17a31ac8c6aebf6edf52374f

e9e7ca956b264&city=+city. [Accessed 24/01/2014]

40. skymetweather.com. Weather feeds and analysis. Available from:

http://www.skymetweather.com/content/stories/weather-news-and-analysis/feed/. [Accessed

23/01/2014];

41. GoogleDevelopers. Google Places API. 2013; Available from:

https://developers.google.com/places/documentation/supported_types.[Accessed 25/01/2013]

42. OpenLayers. OpenLayers development examples for mobile.Available from:

http://openlayers.org/dev/OpenLayers.mobile.js. [Accessed 23/11/2013]

http://opendatakit.org/use/aggregate/tomcat-install/
http://opendatakit.org/downloads/
http://bis.iirs.gov.in:8080/ODKAggregate/
http://build.opendatakit.org/
http://api.dataweave.in/v1/indian_weather/findByCity/?api_key=c9a17a31ac8c6aebf6edf52374fe9e7ca956b264&city=+city
http://api.dataweave.in/v1/indian_weather/findByCity/?api_key=c9a17a31ac8c6aebf6edf52374fe9e7ca956b264&city=+city
http://www.skymetweather.com/content/stories/weather-news-and-analysis/feed/
http://openlayers.org/dev/OpenLayers.mobile.js

An Android application to support flash flood disaster response management in India

48

An Android application to support flash flood disaster response management in India

49

APPENDIX

RescueApp:Java Code

MainActivity.java

package com.tanya.rescueapp;

import java.io.IOException;
import java.util.List;
import java.util.Locale;
import org.odk.collect.android.activities.SplashScreenActivity;
import com.tanya.rescueapp.R;
import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.content.SharedPreferences;
import android.content.pm.PackageManager;
import android.location.Address;
import android.location.Geocoder;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.net.Uri;
import android.os.Bundle;
import android.preference.PreferenceManager;
import android.provider.Settings;
import android.telephony.SmsManager;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.widget.Button;
import android.widget.Toast;

public class MainActivity extends Activity implements LocationListener
{
 public String numberTextPref = null;
 public boolean enableTextPref = true;
 public String textMessagePref = null;
 public double latitude;
 public double longitude;
 public String lat=null;
 public String lon=null;
 public String city=null;
 public LocationListener locationListener=null;
 public LocationManager locationManager=null;
 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 // A pop up message to request enabling of GPS

An Android application to support flash flood disaster response management in India

50

//Toast.makeText(getBaseContext(),"Please enable
GPS",Toast.LENGTH_SHORT).show();

 //Declare Shared Preferences for emergency call
SharedPreferences prefs =
PreferenceManager.getDefaultSharedPreferences(getBaseContext());

 numberTextPref = prefs.getString("numberfield", "+919634082137");
 enableTextPref = prefs.getBoolean("enabletextmessage", true);

textMessagePref = prefs.getString("textmessagefield", "I need Help at"+"Latitude:
"+lat+"Longitude: "+lon+city);

 //Declare Button variables
 Button weather1=(Button) findViewById(R.id.weather1);
 Button assessment1= (Button)findViewById(R.id.assessment1);
 Button reporting1= (Button)findViewById(R.id.reporting1);
 Button location1= (Button)findViewById(R.id.location1);
 Button SOS= (Button) findViewById(R.id.SOS);

 //Create on click event for buttons

 // Weather Info
 weather1.setOnClickListener (new View.OnClickListener()

{
 public void onClick(View v)
 {
 //Opening a web page through button click in another window

//Intent browserIntent= new Intent
(Intent.ACTION_VIEW,Uri.parse("http://www.imd.gov.in/section/nhac/dyna
mic/nhacsatimg.htm"));

 //startActivity(browserIntent);
 Intent nextScreen = new Intent(MainActivity.this, WeatherActivity.class);
 startActivity(nextScreen);
 }
 });

 // Assessment
 assessment1.setOnClickListener (new View.OnClickListener()
 {
 public void onClick(View v)
 {
 Intent nextScreen = new Intent(MainActivity.this, SecondActivity.class);
 startActivity(nextScreen);

 }
 });

 //Reporting Data
 reporting1.setOnClickListener (new View.OnClickListener()
 {
 public void onClick(View v)
 {

 Intent intent= new Intent(MainActivity.this, SplashScreenActivity.class);
 startActivity(intent);
 }
 });

An Android application to support flash flood disaster response management in India

51

 //Get Location
 location1.setOnClickListener (new View.OnClickListener()
 {
 public void onClick(View v)
 {
 Intent nextScreen = new Intent(MainActivity.this, FourthActivity.class);
 startActivity(nextScreen);
 }
 });

 //Emergency Call
 SOS.setOnClickListener (new View.OnClickListener()
 {
 public void onClick(View v)
 {

Toast.makeText(MainActivity.this, "Your location will be sent as an
SMS", Toast.LENGTH_SHORT).show();

 dialEmergency();
 }
 });
 }

 @Override
 public void onResume()
 {

SharedPreferences prefs =
PreferenceManager.getDefaultSharedPreferences(getBaseContext());

 numberTextPref = prefs.getString("numberfield", "+919634082137");
 enableTextPref = prefs.getBoolean("enabletextmessage", true);

textMessagePref = prefs.getString("textmessagefield", "I need Help at Latitude: "+lat+"
Longitude: "+lon);

 super.onResume();
 }

protected void launchCall()
 {
 PackageManager pm= getPackageManager();
 Intent intent = pm.getLaunchIntentForPackage("org.odk.collect.android");
 startActivity(intent);
 try
 {
 startActivity(intent);
 }
 catch (Exception e)
 {
 // TODO: handle exception
 e.printStackTrace();
 }
 }
 public void dialEmergency()
 {
 //Declare Location variables
 //Call, finally
 //Makes a call to the saved number
 startActivity(new Intent(Intent.ACTION_CALL, Uri.parse("tel:"+ numberTextPref)));

An Android application to support flash flood disaster response management in India

52

locationManager = (LocationManager)
getSystemService(Context.LOCATION_SERVICE);

 locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, ,this);
 }

 // Menu section
 private static final int MENU_SETTINGS = Menu.FIRST;
 private static final int MENU_EXIT = Menu.FIRST + 1;

 @Override
 public boolean onCreateOptionsMenu(Menu menu)
 {
 super.onCreateOptionsMenu(menu);
 menu.add(0, MENU_SETTINGS, MENU_SETTINGS, "Settings");
 menu.add(0, MENU_EXIT, MENU_EXIT, "Exit");
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item)
 {
 super.onOptionsItemSelected(item);
 switch (item.getItemId())
 {
 case MENU_SETTINGS:

Intent myIntent= new
Intent(Settings.ACTION_LOCATION_SOURCE_SETTINGS);

 startActivity(myIntent);
 break;
 case MENU_EXIT:
 Intent exit_intent = new Intent(Intent.ACTION_MAIN);
 exit_intent.addCategory(Intent.CATEGORY_HOME);
 exit_intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 startActivity(exit_intent);
 }
 return true;
 }

 @Override
 public void onLocationChanged(Location loc)
 {
 latitude=loc.getLatitude();
 longitude=loc.getLongitude();
 lat=String.valueOf(loc.getLatitude());
 lon=String.valueOf(loc.getLongitude());
 locationManager.removeUpdates(this);

 //Use Geocoder to retrieve location

 Geocoder geocoder = new Geocoder(getBaseContext(), Locale.getDefault());

 // Changed the Max results to 10--to check
 try
 {
 List<Address> list = geocoder.getFromLocation(latitude,longitude,10);

An Android application to support flash flood disaster response management in India

53

 if(list != null & list.size() > 0)
{

Log.v("tanya", list.toString());
Address address=list.get(0);
 //Retrieving city from address
city=address.getLocality()+ "," + address.getSubLocality();

try
{

SmsManager sms = SmsManager.getDefault();
StringBuilder strReturnedAddress = new StringBuilder();
for(int i=0; i<address.getMaxAddressLineIndex(); i++)

{
strReturnedAddress.append(address.getAddressLine(i)).append("\n");
 }

 sms.sendTextMessage(numberTextPref, null, "HELP! I am at "+strReturnedAddress.toString()+". My
co-ordinates are "+lat+", "+lon, null, null);
 }
catch (Exception e)
{
 e.printStackTrace();
}
}
else

{
Toast.makeText(getBaseContext(),"No Address returned! Sending Co-ordinates via
SMS!",Toast.LENGTH_SHORT).show();

 SmsManager sms = SmsManager.getDefault();
 sms.sendTextMessage(numberTextPref, null, "HELP! I am at these co-ordinates. "+lat+", "+lon,
null, null);

 }
}
catch (IOException e)
{
 // TODO Auto-generated catch block
 e.printStackTrace();
 Log.v("tanya", "error: "+e.getMessage());
 Toast.makeText(getBaseContext(),"Cannot get Address!",Toast.LENGTH_SHORT).show();
} }

 @Override
 public void onProviderDisabled(String provider)
 {
 // TODO Auto-generated method stub
 }
 @Override
 public void onProviderEnabled(String provider)
 {

// TODO Auto-generated method stub
 }
 @Override
 public void onStatusChanged(String provider, int status, Bundle extras)
 {
 // TODO Auto-generated method stub
 }
}// End of Class

An Android application to support flash flood disaster response management in India

54

SplashScreenActivity.java
package org.odk.collect.android.activities;

import org.odk.collect.android.R;
import org.odk.collect.android.application.Collect;
import org.odk.collect.android.preferences.PreferencesActivity;
import android.app.Activity;
import android.app.AlertDialog;
import android.content.DialogInterface;
import android.content.Intent;
import android.content.SharedPreferences;
import android.content.SharedPreferences.Editor;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Bundle;
import android.preference.PreferenceManager;
import android.util.Log;
import android.view.View;
import android.view.Window;
import android.widget.ImageView;
import android.widget.LinearLayout;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

public class SplashScreenActivity extends Activity
{

 private static final int mSplashTimeout = 2000; // milliseconds
 private static final boolean EXIT = true;
 private int mImageMaxWidth;
 private AlertDialog mAlertDialog;
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 // must be at the beginning of any activity that can be called from an external intent
 try {
 Collect.createODKDirs();
 } catch (RuntimeException e) {
 createErrorDialog(e.getMessage(), EXIT);
 return;
 }
 mImageMaxWidth = getWindowManager().getDefaultDisplay().getWidth();
 // this splash screen should be a blank slate
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 setContentView(R.layout.splash_screen);

 // get the shared preferences object
 SharedPreferences mSharedPreferences = PreferenceManager.getDefaultSharedPreferences(this);

An Android application to support flash flood disaster response management in India

55

 Editor editor = mSharedPreferences.edit();
 // get the package info object with version number
 PackageInfo packageInfo = null;
 try {
 packageInfo =
 getPackageManager().getPackageInfo(getPackageName(),
PackageManager.GET_META_DATA);
 } catch (NameNotFoundException e)
 {
 e.printStackTrace();
 }

 boolean firstRun = mSharedPreferences.getBoolean(PreferencesActivity.KEY_FIRST_RUN, true);
 boolean showSplash =
 mSharedPreferences.getBoolean(PreferencesActivity.KEY_SHOW_SPLASH, false);
 String splashPath =
 mSharedPreferences.getString(PreferencesActivity.KEY_SPLASH_PATH,
 getString(R.string.default_splash_path));

 // if you've increased version code, then update the version number and set firstRun to true

 if (mSharedPreferences.getLong(PreferencesActivity.KEY_LAST_VERSION, 0) <
packageInfo.versionCode) {

 editor.putLong(PreferencesActivity.KEY_LAST_VERSION, packageInfo.versionCode);
 editor.commit();
 firstRun = true;
 }
 // do all the first run things
 if (firstRun || showSplash) {
 editor.putBoolean(PreferencesActivity.KEY_FIRST_RUN, false);
 editor.commit();
 startSplashScreen(splashPath);
 } else {
 endSplashScreen();
 }
 }
 private void endSplashScreen()
 {

 // launch new activity and close splash screen
 startActivity(new Intent(SplashScreenActivity.this, MainMenuActivity.class));
 finish();
 }
 // decodes image and scales it to reduce memory consumption
 private Bitmap decodeFile(File f) {
 Bitmap b = null;
 try {
 // Decode image size
 BitmapFactory.Options o = new BitmapFactory.Options();
 o.inJustDecodeBounds = true;
 FileInputStream fis = new FileInputStream(f);
 BitmapFactory.decodeStream(fis, null, o);
 try {
 fis.close();
 } catch (IOException e) {
 // TODO Auto-generated catch block

An Android application to support flash flood disaster response management in India

56

 e.printStackTrace();
 }
 int scale = 1;
 if (o.outHeight > mImageMaxWidth || o.outWidth > mImageMaxWidth) {
 scale =
 (int) Math.pow(
 2,
 (int) Math.round(Math.log(mImageMaxWidth
 / (double) Math.max(o.outHeight, o.outWidth))
 / Math.log(0.5)));
 }

 // Decode with inSampleSize
 BitmapFactory.Options o2 = new BitmapFactory.Options();
 o2.inSampleSize = scale;
 fis = new FileInputStream(f);
 b = BitmapFactory.decodeStream(fis, null, o2);
 try {
 fis.close();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 } catch (FileNotFoundException e) {
 }
 return b;
 }
 private void startSplashScreen(String path) {

 // add items to the splash screen here. makes things less distracting.
 ImageView iv = (ImageView) findViewById(R.id.splash);
 LinearLayout ll = (LinearLayout) findViewById(R.id.splash_default);
 File f = new File(path);
 if (f.exists()) {
 iv.setImageBitmap(decodeFile(f));
 ll.setVisibility(View.GONE);
 iv.setVisibility(View.VISIBLE);
 }

 // create a thread that counts up to the timeout
 Thread t = new Thread() {
 int count = 0;
 @Override
 public void run() {
 try {
 super.run();
 while (count < mSplashTimeout) {
 sleep(100);
 count += 100;
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 endSplashScreen();
 }

An Android application to support flash flood disaster response management in India

57

 }
 };
 t.start();
 }

 private void createErrorDialog(String errorMsg, final boolean shouldExit) {
Log.v("ERRORCHECK", errorMsg);

 Collect.getInstance().getActivityLogger().logAction(this, "createErrorDialog", "show");
 mAlertDialog = new AlertDialog.Builder(this).create();
 mAlertDialog.setIcon(android.R.drawable.ic_dialog_info);
 mAlertDialog.setMessage(errorMsg);
 DialogInterface.OnClickListener errorListener = new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int i) {
 switch (i) {
 case DialogInterface.BUTTON_POSITIVE:
 Collect.getInstance().getActivityLogger().logAction(this, "createErrorDialog", "OK");
 if (shouldExit) {
 finish();
 }
 break;
 }
 }
 };
 mAlertDialog.setCancelable(false);
 mAlertDialog.setButton(getString(R.string.ok), errorListener);
 mAlertDialog.show();
 }

 @Override
 protected void onStart() {
 super.onStart();
 Collect.getInstance().getActivityLogger().logOnStart(this);
 }

 @Override
 protected void onStop() {
 Collect.getInstance().getActivityLogger().logOnStop(this);
 super.onStop();
 }

}

WeatherActivity.java
package com.tanya.rescueapp;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.List;
import java.util.Locale;
import org.json.JSONArray;
import org.json.JSONObject;

An Android application to support flash flood disaster response management in India

58

import android.app.Activity;
import android.app.AlertDialog;
import android.content.Context;
import android.content.DialogInterface;
import android.content.Intent;
import android.location.Address;
import android.location.Geocoder;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.os.AsyncTask;
import android.os.Bundle;
import android.telephony.SmsManager;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;
import android.widget.Toast;
import com.tanya.rescueapp.R;

public class WeatherActivity extends Activity implements LocationListener
{

 TextView source;
 TextView textViewMax;
 TextView textViewMin;
 TextView textViewRain;
 TextView textViewSunrise;
 TextView textViewSunset;
 Button alerts;
 Button view;
 JSONArray data;
 double latitude;
 double longitude;
 String lat;
 String lon;
 public LocationManager locationManager;
 String city;
 public String response,minTemp,maxTemp,rainfall,date,sunrise,sunset;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.weatheractivity);

 locationManager = (LocationManager) getSystemService(Context.LOCATION_SERVICE);
 locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 0, this);

 //Initialize buttons
 alerts =(Button) findViewById(R.id.button1alert);
 view =(Button) findViewById(R.id.button2view);
 //Initialize Text View
 source =(TextView) findViewById(R.id.txtSource);
 textViewMax=(TextView) findViewById(R.id.textViewMax);

An Android application to support flash flood disaster response management in India

59

 textViewMin=(TextView) findViewById(R.id.textViewMin);
 textViewRain=(TextView) findViewById(R.id.textViewRain);
 textViewSunrise=(TextView) findViewById(R.id.textViewsunrise);
 textViewSunset=(TextView) findViewById(R.id.textViewsunset);

 // Calling Weather Alerts on button click
 alerts.setOnClickListener (new View.OnClickListener()
 {
 public void onClick(View v)
 {
 //Getting weather feeds
 Intent nextScreen = new Intent(WeatherActivity.this,ReadXMLActivity.class);
 startActivity(nextScreen);
 }
 });
 // Calling Weather Geovisualiztion on button click
 view.setOnClickListener (new View.OnClickListener()
 {
 public void onClick(View v)
 {
 // View Weather Data
 Intent nextScreen = new Intent(WeatherActivity.this,ViewWeather.class);
 startActivity(nextScreen);
 }
 });
}
 private class BackgroundCall extends AsyncTask<Void, Void, Void>
 {
 @Override
 protected Void doInBackground(Void... params)

{
 // TODO Auto-generated method stub

 URL url;
 try {
url = new
URL("http://api.dataweave.in/v1/indian_weather/findByCity/?api_key=c9a17a31ac8c6aebf6edf52374fe
9e7ca956b264&city="+city);
HttpURLConnection con=(HttpURLConnection)url.openConnection();
con.setRequestMethod("GET");
con.setDoInput(true);
con.connect();
//con.connect();
InputStream is=con.getInputStream();

//PRINT INPUTSTREAM IN CONSOLE
BufferedReader br = new BufferedReader(new InputStreamReader(is));
StringBuilder sb = new StringBuilder();
String line;
while ((line = br.readLine()) != null)
{
sb.append(line);
}
response=sb.toString();
System.out.println(response);

An Android application to support flash flood disaster response management in India

60

br.close();
 JSONObject jsonObj = new JSONObject(response);
data = jsonObj.getJSONArray("data");
if(data.length()>0)
{
JSONObject tempObj=data.getJSONObject(0);
minTemp=tempObj.getJSONArray("Minimum Temp").getString(0);
maxTemp=tempObj.getJSONArray("Maximum Temp").getString(0);
date=tempObj.getString("date");
rainfall=tempObj.getJSONArray("24 Hours Rainfall").getString(0);
sunrise=tempObj.getJSONArray("Tommorows Sunrise").getString(0);
sunset=tempObj.getJSONArray("Todays Sunset").getString(0);
}
}
catch (Exception e)
{
Log.i("WeatherError", e.getMessage());
}
return null;
}
@Override
protected void onPostExecute(Void result)
{
 // TODO Auto-generated method stub
 super.onPostExecute(result);
 //Log.v("ERRORCHECK", artifact);
 //((TextView)findViewById(R.id.textView1)).setText(artifact);
if(data.length()>0)
{
 ((TextView)findViewById(R.id.txtMax)).setText(maxTemp);
 ((TextView)findViewById(R.id.txtMin)).setText(minTemp);
 ((TextView)findViewById(R.id.txtDate)).setText("As on "+date);
 ((TextView)findViewById(R.id.txtCityName)).setText(city);
 ((TextView)findViewById(R.id.txtsunset)).setText(sunset);
 ((TextView)findViewById(R.id.txtsunrise)).setText(sunrise);
if(rainfall.equalsIgnoreCase("nil")){
(TextView)findViewById(R.id.txtRain)).setText("No rainfall");}
else
{
 ((TextView)findViewById(R.id.txtRain)).setText(rainfall);
}
else
{
AlertDialog.Builder builder=new AlertDialog.Builder(WeatherActivity.this);
builder.setTitle("Attention!");
builder.setMessage("No data found for this location.");
builder.setNegativeButton("OK", new DialogInterface.OnClickListener()
{
@Override
public void onClick(DialogInterface arg0, int arg1)
{
// TODO Auto-generated method stub
}
});
builder.show();

An Android application to support flash flood disaster response management in India

61

}
}
}
 public void onLocationChanged(Location loc)
 {
 latitude=loc.getLatitude();
 longitude=loc.getLongitude();
 lat=String.valueOf(loc.getLatitude());
 lon=String.valueOf(loc.getLongitude());
 locationManager.removeUpdates(this);
 //Use Geocoder to retrieve location
 Geocoder geocoder = new Geocoder(getBaseContext(), Locale.getDefault());

 // Changed the Max results to 10--to check
 try
 {
 List<Address> list = geocoder.getFromLocation(latitude,longitude,10);

 if(list != null & list.size() > 0)
 {
 Log.v("tanya", list.toString());
 Address address=list.get(0);
 //Retrieving city from address
 city=address.getLocality();
 if(city==null)
 city=address.getSubLocality();
 // Toast.makeText(getApplicationContext(),city,Toast.LENGTH_SHORT).show();
 new BackgroundCall().execute();
 }

 }
 catch (IOException e)
 {
 // TODO Auto-generated catch block
 e.printStackTrace();
 Log.v("tanya", "error: "+e.getMessage());
 Toast.makeText(getBaseContext(),"Cannot get Address!",Toast.LENGTH_SHORT).show();
 }
 }

 public void onProviderDisabled(String provider)
 {
 // TODO Auto-generated method stub
 }

 public void onProviderEnabled(String provider) {
 // TODO Auto-generated method stub
 }

 public void onStatusChanged(String provider, int status, Bundle extras)
 {
 // TODO Auto-generated method stub
 }

}

An Android application to support flash flood disaster response management in India

62

SecondActivity.java

package com.tanya.rescueapp;

import com.tanya.rescueapp.R;
import android.os.Bundle;
import android.annotation.SuppressLint;
import android.app.Activity;
import android.webkit.WebSettings;
import android.webkit.WebView;

public class SecondActivity extends Activity
{
 @SuppressLint("SetJavaScriptEnabled")
 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.secondactivity);

 // Declare webView
 final WebView map= (WebView) findViewById(R.id.webView1);
 WebSettings webSettings = map.getSettings();
 webSettings.setJavaScriptEnabled(true);

 map.loadUrl("file:///android_asset/www/openlayers.html");
}
}

FourthActivity.java

package com.tanya.rescueapp;

import com.tanya.rescueapp.R;
import android.os.Bundle;
import android.app.Activity;
import android.content.Intent;
import android.view.View;
import android.widget.Button;

public class FourthActivity extends Activity
{

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.fourthactivity);

 //Declare Button variable
 Button get_location =(Button) findViewById(R.id.get_location);
 Button send_location =(Button) findViewById(R.id.send_location);

 // On click event for Get Location

An Android application to support flash flood disaster response management in India

63

 get_location.setOnClickListener (new View.OnClickListener()
 {
 public void onClick(View v)
 {
 // Current data fetch from google maps

Intent nextScreen = new Intent(FourthActivity.this,MapActivity.class);
 startActivity(nextScreen);
 }
 });

 // On click event for Send Location
 send_location.setOnClickListener(new View.OnClickListener()
 {
 public void onClick(View v)
 {

Intent nextScreen = new Intent(FourthActivity.this, CheckCode.class);
 startActivity(nextScreen);

 }
 });
}
}
Layout Files XML Code

Activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@drawable/help"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:textAlignment="viewEnd"
 tools:context=".MainActivity" >
 <Button
 android:id="@+id/reporting1"
 style="android:buttonStyle"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="@android:color/transparent"
 android:layout_alignParentLeft="true"
 android:layout_centerVertical="true"
 android:layout_marginLeft="22dp"
 android:text="Reporting"
 android:textAlignment="viewStart"
 android:textSize="20dp"
 android:textStyle="bold|italic" />
 <Button
 android:id="@+id/weather1"
 style="android:buttonStyle"
 android:layout_width="wrap_content"

An Android application to support flash flood disaster response management in India

64

 android:layout_height="wrap_content"
 android:layout_alignLeft="@+id/reporting1"
 android:layout_below="@+id/reporting1"
 android:background="@android:color/transparent"
 android:text="Weather"
 android:textAlignment="viewStart"
 android:textSize="20dp"
 android:textStyle="bold|italic" />
 <Button
 android:id="@+id/assessment1"
 style="android:buttonStyle"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignLeft="@+id/location1"
 android:layout_below="@+id/weather1"
 android:background="@android:color/transparent"
 android:text="Assessment"
 android:textAlignment="viewStart"
 android:textSize="20dp"
 android:textStyle="bold|italic" />
 <Button
 android:id="@+id/location1"
 style="android:buttonStyle"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignLeft="@+id/weather1"
 android:layout_below="@+id/assessment1"
 android:background="@android:color/transparent"
 android:text="Location"
 android:textAlignment="inherit"
 android:textSize="20dp"
 android:textStyle="bold|italic" />
 <Button
 android:id="@+id/SOS"
 android:layout_width="70dp"
 android:layout_height="65dp"
 android:layout_alignParentLeft="true"
 android:layout_alignParentTop="true"
 android:layout_marginLeft="16dp"
 android:layout_marginTop="25dp"
 android:background="@drawable/round_button"
 android:clickable="true"
 android:text="SOS"
 android:textAlignment="center"
 android:textStyle="bold" />

</RelativeLayout>
WeatherActivity.xml
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:background="@drawable/helpbck"
 android:orientation="vertical"
 android:weightSum="1" >

An Android application to support flash flood disaster response management in India

65

 <TextView
 android:id="@+id/txtCityName"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@+id/txtDate"
 android:layout_alignBottom="@+id/txtDate"
 android:layout_alignLeft="@+id/textViewMin"
 android:text=""
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <Button
 android:id="@+id/button2view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignLeft="@+id/button1alert"
 android:layout_alignParentBottom="true"
 android:layout_marginBottom="28dp"
 android:text="View Weather Data" />

 <TextView
 android:id="@+id/txtMin"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@+id/textViewMin"
 android:layout_alignBottom="@+id/textViewMin"
 android:layout_alignLeft="@+id/txtMax"
 android:text=""
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <Button
 android:id="@+id/button1alert"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_above="@+id/button2view"
 android:layout_alignLeft="@+id/textViewsunset"
 android:layout_marginBottom="15dp"
 android:text="Get Weather Alerts" />

 <TextView
 android:id="@+id/textViewsunrise"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/textViewsunset"
 android:layout_marginTop="23dp"
 android:text="Sunrise Tomorrow(IST):"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView
 android:id="@+id/textViewsunset"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_below="@+id/textViewRain"
 android:layout_marginTop="26dp"

An Android application to support flash flood disaster response management in India

66

 android:text="Sunset Today(IST):"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView
 android:id="@+id/textViewRain"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_below="@+id/textViewMax"
 android:layout_marginTop="21dp"
 android:text="Rainfall (mm):"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView
 android:id="@+id/textViewMax"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_below="@+id/textViewMin"
 android:layout_marginTop="22dp"
 android:text="Max Temp(Celcius):"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView
 android:id="@+id/textViewMin"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_below="@+id/txtCityName"
 android:layout_marginTop="37dp"
 android:text="Min Temp(Celcius):"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView
 android:id="@+id/txtDate"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentRight="true"
 android:layout_alignParentTop="true"
 android:layout_marginRight="25dp"
 android:layout_marginTop="32dp"
 android:text=""
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView
 android:id="@+id/txtsunrise"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@+id/textViewsunrise"
 android:layout_alignBottom="@+id/textViewsunrise"
 android:layout_alignParentRight="true"
 android:text=""
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView

An Android application to support flash flood disaster response management in India

67

 android:id="@+id/txtSource"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_above="@+id/button1alert"
 android:layout_alignRight="@+id/txtDate"
 android:layout_marginBottom="25dp"
 android:text="Source -- IMD" />

 <TextView
 android:id="@+id/txtsunset"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_above="@+id/textViewsunrise"
 android:layout_alignLeft="@+id/txtsunrise"
 android:text=""
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView
 android:id="@+id/txtRain"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_above="@+id/textViewsunset"
 android:layout_alignRight="@+id/txtsunset"
 android:text=""
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView
 android:id="@+id/txtMax"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@+id/textViewMax"
 android:layout_alignBottom="@+id/textViewMax"
 android:layout_alignRight="@+id/txtRain"
 android:text=""
 android:textAppearance="?android:attr/textAppearanceMedium" />

</RelativeLayout>

RescueApp Manifest File
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.tanya.rescueapp"
 android:versionCode="1"
 android:versionName="1.0" >

<uses-sdk
 android:minSdkVersion="14"
 android:targetSdkVersion="19" />

 <uses-feature android:name="android.hardware.location" android:required="false" />
 <uses-feature android:name="android.hardware.location.network" android:required="false" />
 <uses-feature android:name="android.hardware.location.gps" android:required="false" />
 <uses-feature android:name="android.hardware.telephony" android:required="false" />

An Android application to support flash flood disaster response management in India

68

 <uses-feature android:name="android.hardware.wifi" android:required="false" />
 <uses-feature android:glEsVersion="0x00020000" android:required="true"/>

 <uses-permission android:name="android.permission.READ_PHONE_STATE"/>
 <uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
 <uses-permission android:name="android.permission.GET_ACCOUNTS" />
 <uses-permission android:name="android.permission.USE_CREDENTIALS" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name="android.permission.CALL_PHONE" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.SEND_SMS" />
 <uses-permission
android:name="com.google.android.providers.gsf.permission.READ_GSERVICES"/>

 <permission
 android:name="org.opendatakit.tables.permission.MAPS_RECEIVE"
 android:protectionLevel="signature" />

 <uses-permission android:name="org.opendatakit.tables.permission.MAPS_RECEIVE" />
 <uses-permission android:name="com.google.android.providers.gsf.permission.READ_GSERVICES"
/>
 <application
 android:allowBackup="true"
 android:name="org.odk.collect.android.application.Collect"
 android:icon="@drawable/ic_rescueicon"
 android:label="@string/app_name"
 android:theme="@style/AppTheme"
 android:logo="@animator/staranimation">
 <provider
 android:exported="true"
 android:name="org.odk.collect.android.provider.FormsProvider"
 android:authorities="org.odk.collect.android.provider.odk.forms" />
 <provider
 android:exported="true"
 android:name="org.odk.collect.android.provider.InstanceProvider"
 android:authorities="org.odk.collect.android.provider.odk.instances" />

 <activity
 android:name="org.odk.collect.android.activities.FormEntryActivity"
 android:configChanges="orientation"
 android:label="@string/app_name"
 android:windowSoftInputMode="adjustResize" >
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <action android:name="android.intent.action.EDIT" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="vnd.android.cursor.item/vnd.odk.form" />
 <data android:mimeType="vnd.android.cursor.item/vnd.odk.instance" />
 </intent-filter>
 </activity>
 <activity

An Android application to support flash flood disaster response management in India

69

 android:name="org.odk.collect.android.activities.DrawActivity"
 android:label="@string/app_name" />
 <activity
 android:name="org.odk.collect.android.activities.InstanceChooserList"
 android:label="@string/app_name" />
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <action android:name="android.intent.action.EDIT" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="vnd.android.cursor.dir/vnd.odk.instance" />
 </intent-filter>
 <activity
 android:name="org.odk.collect.android.activities.InstanceChooserTabs"
 android:label="@string/app_name" />
 <activity
 android:name="org.odk.collect.android.activities.FormChooserList"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <action android:name="android.intent.action.EDIT" />
 <action android:name="android.intent.action.PICK" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="vnd.android.cursor.dir/vnd.odk.form" />
 </intent-filter>
 </activity>
 <activity
 android:name="org.odk.collect.android.activities.FormManagerList"
 android:label="@string/app_name" />
 <activity
 android:name="org.odk.collect.android.activities.FormDownloadList"
 android:label="@string/app_name" />
 <activity
 android:name="org.odk.collect.android.activities.DataManagerList"
 android:label="@string/app_name" />
 <activity
 android:name="org.odk.collect.android.activities.FileManagerTabs"
 android:label="@string/app_name" />
 <activity
 android:name="org.odk.collect.android.activities.InstanceUploaderList"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <action android:name="android.intent.action.EDIT" />

 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>
 <activity
 android:name="org.odk.collect.android.activities.InstanceUploaderActivity"
 android:label="@string/app_name" />
 <activity
 android:name="org.odk.collect.android.activities.MainMenuActivity"
 android:configChanges="orientation"
 android:label="@string/app_name" >
 </activity>

An Android application to support flash flood disaster response management in India

70

 <activity
 android:name="org.odk.collect.android.preferences.PreferencesActivity"
 android:label="@string/app_name" />
 <activity
 android:name="org.odk.collect.android.preferences.AdminPreferencesActivity"
 android:label="@string/app_name" />
 <activity
 android:name="org.odk.collect.android.activities.FormHierarchyActivity"
 android:label="@string/app_name" />
 <activity
 android:name="org.odk.collect.android.activities.GeoPointActivity"
 android:label="@string/app_name" />
 <activity
 android:name="org.odk.collect.android.activities.GeoPointMapActivity"
 android:label="@string/app_name" />
 <activity
 android:name="org.odk.collect.android.activities.GeoPointMapActivitySdk7"
 android:label="@string/app_name" />
 <activity
 android:name="org.odk.collect.android.activities.BearingActivity"
 android:label="@string/app_name" />
 <activity
 android:name="org.odk.collect.android.activities.SplashScreenActivity"
 android:theme="@android:style/Theme.Dialog" >
 </activity>
 <!-- Enable Shortcuts for Command Actions -->
 <activity
 android:name="org.odk.collect.android.activities.AndroidShortcuts"
 android:label="ODK Form"
 android:theme="@android:style/Theme.Translucent.NoTitleBar" >
 <intent-filter>
 <action android:name="android.intent.action.CREATE_SHORTCUT" />

 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>
 <receiver
 android:name="org.odk.collect.android.receivers.NetworkReceiver"
 android:enabled="true" >
 <intent-filter>
 <action android:name="android.net.conn.CONNECTIVITY_CHANGE" />
 </intent-filter>
 <intent-filter>
 <action android:name="org.odk.collect.android.FormSaved" />
 </intent-filter>
 </receiver>

 <activity
 android:name="com.tanya.rescueapp.MainActivity"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>

An Android application to support flash flood disaster response management in India

71

 </activity>
 <activity
 android:name="com.tanya.rescueapp.SecondActivity"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 <activity
 android:name="com.tanya.rescueapp.ThirdActivity"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 <activity
 android:name="com.tanya.rescueapp.FourthActivity"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 <activity
 android:name="com.tanya.rescueapp.Feeds"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 <activity
 android:name="com.tanya.rescueapp.ReadXMLActivity"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 <activity
 android:name="com.tanya.rescueapp.RSSAdapter"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 <activity
 android:name="com.tanya.rescueapp.RSSFeedClass"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 <activity
 android:name="com.tanya.rescueapp.GetWeather"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 <activity
 android:name="com.tanya.rescueapp.ViewWeather"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 <activity
 android:name="com.tanya.rescueapp.GetCity"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 <activity
 android:name="com.tanya.rescueapp.SendSms"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >

An Android application to support flash flood disaster response management in India

72

 </activity>
 <activity
 android:name="com.tanya.rescueapp.CheckCode"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 <activity
 android:name="com.tanya.rescueapp.GetLocation"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 <activity
 android:name="com.tanya.rescueapp.Weather"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 <activity
 android:name="com.tanya.rescueapp.WeatherHTTPClient"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 <activity
 android:name="com.tanya.rescueapp.JSONWeatherParser"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 <activity
 android:name="com.tanya.rescueapp.Emergency"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 <activity
 android:name="com.tanya.rescueapp.ShowWeather"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 <activity
 android:name="com.tanya.rescueapp.WeatherActivity"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 <meta-data
 android:name="com.google.android.maps.v2.API_KEY"
 android:value="AIzaSyCVQIPkijBsJKdbHtuMJ3Icm1ibIFVwAA8"/>

 <meta-data
 android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" />
 <activity android:name="MapActivity"
 android:screenOrientation="portrait"
 android:label="@string/app_name" >
 </activity>
 </application>
</manifest>

An Android application to support flash flood disaster response management in India

73

First Incident Report form

<h:html xmlns="http://www.w3.org/2002/xforms"

xmlns:h="http://www.w3.org/1999/xhtml"

xmlns:ev="http://www.w3.org/2001/xml-events"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:jr="http://openrosa.org/javarosa">

 <h:head>

 <h:title>First Incident Report</h:title>

 <model>

 <instance>

 <data id="build_First-Incident-Report_1389677284">

 <meta>

 <instanceID/>

 </meta>

 <reportingofficer/>

 <date/>

 <time/>

 <location/>

 <image/>

 <video/>

 <resources/>

 <information/>

 </data>

 </instance>

 <itext>

 <translation lang="eng">

 <text id="/data/reportingofficer:label">

 <value>Reporting Officer</value>

 </text>

 <text id="/data/date:label">

 <value>Date of Occurence</value>

 </text>

 <text id="/data/date:hint">

 <value></value>

 </text>

 <text id="/data/Time:label">

 <value>Time</value>

 </text>

 <text id="/data/Time:hint">

 <value>Choose the current time</value>

 </text>

 <text id="/data/location:label">

 <value>Location</value>

 </text>

 <text id="/data/image:label">

 <value>Capture Image</value>

 </text>

 <text id="/data/video:label">

 <value>Record Video</value>

 </text>

 <text id="/data/resources:label">

 <value>Resources Required</value>

 </text>

An Android application to support flash flood disaster response management in India

74

 <text id="/data/resources:option0">

 <value>Medical Help</value>

 </text>

 <text id="/data/resources:option1">

 <value>Blankets</value>

 </text>

 <text id="/data/resources:option2">

 <value>Food and water supplies</value>

 </text>

 </translation>

 </itext>

 <bind nodeset="/data/meta/instanceID" type="string"

readonly="true()" calculate="concat('uuid:', uuid())"/>

 <bind nodeset="/data/reportingofficer" type="string"

required="true()"/>

 <bind nodeset="/data/date" type="date" required="true()"/>

 <bind nodeset="/data/Time" type="time" jr:preload="timestamp"

jr:preloadParams="start"/>

 <bind nodeset="/data/location" type="geopoint"

required="true()"/>

 <bind nodeset="/data/image" type="binary" required="true()"/>

 <bind nodeset="/data/video" type="binary"/>

 <bind nodeset="/data/resources" type="select1"/>

 </model>

 </h:head>

 <h:body>

 <input ref="/data/reportingofficer">

 <label ref="jr:itext('/data/reportingofficer:label')"/>

 </input>

 <input ref="/data/date">

 <label ref="jr:itext('/data/date:label')"/>

 <hint ref="jr:itext('/data/date:hint')"/>

 </input>

 <input ref="/data/Time">

 <label ref="jr:itext('/data/Time:label')"/>

 <hint ref="jr:itext('/data/Time:hint')"/>

 </input>

 <input ref="/data/location">

 <label ref="jr:itext('/data/location:label')"/>

 </input>

 <upload ref="/data/image" mediatype="image/*">

 <label ref="jr:itext('/data/image:label')"/>

 </upload>

 <upload ref="/data/video" mediatype="video/*">

 <label ref="jr:itext('/data/video:label')"/>

 </upload>

 <select1 ref="/data/resources">

 <label ref="jr:itext('/data/resources:label')"/>

 <item>

 <label ref="jr:itext('/data/resources:option0')"/>

 <value/>

 </item>

 <item>

 <label ref="jr:itext('/data/resources:option1')"/>

An Android application to support flash flood disaster response management in India

75

 <value/>

 </item>

 <item>

 <label ref="jr:itext('/data/resources:option2')"/>

 <value/>

 </item>

 </select1>

 </h:body>

</h:html>

	THESIS ASSESSMENT BOARD:
	Chair : Prof. Dr. Ir. A. Stein
	ITC Professor : Prof. Dr. M. J. Kraak
	External Examiner : Mr.Vinod Bothale (NRSC, Hyderabad)
	OBSERVERS:
	DISCLAIMER
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Background
	Motivation and problem statement
	Research identification
	Research objectives
	Research questions
	Innovation aimed at
	Thesis structure

	literature review
	Disaster Management
	Role of information in disaster management
	Related work in Android technology
	Dealing with disrupted communication

	research Methodology
	Figure 3-1: Framework for Research Methodology
	Requirement Analysis
	How does NDRF work?
	How is the rescue operation conducted?

	On-site operations
	Off-site operations
	Information requirement and communication

	Source – Interview with Mr. R. K Srivastava, Deputy Commandant, NDRF
	Summary Report.
	Entities involved
	The Information flow

	Figure 3-2: Information flow
	Resources required
	Design and development of software application
	Overall system architecture design
	Server software application design and database integration
	Mobile (client) application design

	Configuration of deployment environment
	Configuration of resources
	Build test cases
	Testing and evaluation

	design , Implementation and Testing
	Steps for installations
	Reporting System
	Creating Server

	Figure 4-2: Apache Tomcat configuration
	Figure 4-3: Server start-up
	Figure 4-4: Checking installed Server
	Integration with database

	Figure 4-5: Configuring PostgreSql
	Building report forms
	Collecting data and uploading to server
	Emergency/ Distress Call
	Retrieving location in form of latitude and longitude
	Using Geocoder to retrieve address from latitude and longitude

	Disaster Alert
	Retrieving xml data from RSS feeds

	Parser was created to read the XML data. This data is output to an array and retrieved as string /
	Geo-visualization System
	Geo-visualization in simple terms means to form a mental image of some information and associating it with earth location. This function cannot be depicted on its own and needs some aspect which uses it for displaying information. Hence geo-visualizat...
	Fundamental techniques used for this function are:
	Using open layers as an HTML JavaScript feature
	Retrieving location and nearby hospitals on Google Maps

	Testing and evaluation of the application

	<uses-sdk
	Table 4.2: Testing and Evaluation of RescueApp
	Table 4.3: Time variation with network coverage
	Results and discussion
	SOS Button – Emergency/ Distress Call
	Reporting
	Weather –Disaster Alerts and Geo-visualization
	Assessment – Geo-visualization
	Location – Geo-visualization
	Testing Results

	conclusion and recommendations
	The Research questions
	Recommendations

	references
	Appendix
	RescueApp:Java Code
	MainActivity.java
	//Declare Shared Preferences for emergency call
	//Declare Button variables
	Geocoder geocoder = new Geocoder(getBaseContext(), Locale.getDefault());
	//Retrieving city from address
	SplashScreenActivity.java
	} catch (RuntimeException e) {
	String splashPath =
	WeatherActivity.java
	List<Address> list = geocoder.getFromLocation(latitude,longitude,10);
	// TODO Auto-generated method stub
	SecondActivity.java
	FourthActivity.java
	Layout Files XML Code
	Activity_main.xml
	<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
	WeatherActivity.xml
	<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
	RescueApp Manifest File
	<uses-feature android:name="android.hardware.telephony" android:required="false" />
	<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>
	<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
	<uses-permission android:name="android.permission.USE_CREDENTIALS" />
	<uses-permission android:name="android.permission.CALL_PHONE" />
	<uses-permission android:name="android.permission.SEND_SMS" />
	<application
	<data android:mimeType="vnd.android.cursor.item/vnd.odk.form" />
	</intent-filter>
	<activity
	<intent-filter>
	<data android:mimeType="vnd.android.cursor.dir/vnd.odk.instance" />
	<activity
	<data android:mimeType="vnd.android.cursor.dir/vnd.odk.form" />
	<activity
	<activity
	<activity
	<activity
	<intent-filter>
	</intent-filter>
	<activity
	<activity
	<activity
	<activity
	<activity
	<activity
	<activity
	<activity
	</intent-filter>
	<activity
	<activity
	<activity
	<activity
	<meta-data
	<activity android:name="MapActivity"
	</application>

