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Abstract 

 

Biological invasion is the second-greatest threat to biodiversity, after habitat destruction. 

Pre-emptive management is necessary for the regions under severe threat of invasion. In the 

present research, the hotspots of forest invasive species (FIS) has been modelled in India 

using species distrituion model. The occurrence records of 105 FIS gathered from natural 

vegetation (comprising forests, shrublands, grasslands) regions of the country over past one 

decade were used for predicting hotpots of invasion. The species distribution model (i.e. 

MaxEnT) was trained with climatic, topographic and landscape variables and occurrence 

data to predict potential distribution for each of FIS. The high average Area Under Curve 

(AUC) (0.94 ±0.5) and True Skill Statistics (TSS) (0.74 ±0.5) value was obtained for all FIS 

suggesting good prediction accuracy. The high to medium invasion risk are predicted in the 

north-eastern part of Deccan Peninsula, semi-arid biogeographic zones. The foothills of 

Himalaya and Western Ghats are also under medium invasion risks. The mixed forest, 

woody savannahs, grasslands and open shrub lands are the potential habitats of most of 

tropical FIS. The potential habitats of most of FIS are distributed in the low canopy density 

habitats and low phytorichness areas.  The study reveals that forest areas with high canopy 

density, rich in native plant diversity and located in the relatively complex terrain have less 

probability of getting invaded by most number of FIS presently introduced in India.  

 

The behaviour of most widespread and noxious FIS has been studied in terms of changes in 

their potential geographic range under the projected climate change scenario. Ensemble of 

three widely used climate models namely: CGCM2, CSIRO-mk2 and HADCM3 were used 

to predict range shift for 15 FIS. The ensemble forecast projection was found effective in 

overcoming minor contradictions in the prediction by individual model. Study alarms 

expansion in potential invasion range of FIS such as Ageratum conyzoides, Bidens pilosa, 

Cassia occidentalis, Cassia tora, Chromolaena odorata, Eupatorium adenophorum, 

Mikania cordata, Lantana camara and Parthenium hysterophorus. Whereas other species 

such as Prosopis juliflora, Euphorbia hirta, Hyptis suaveolens, Cyperus rotundus, Eclipta 

prostrata would shrink in their potential invasion range offering opportunities for ecosystem 

restoration.  

 

Present research provides valuable spatial knowledge about major areas of concentration of 

potential habitats of FIS or hotspot of invasion in India. Study also provides knowledge 

about distribution of most noxious and widespread FIS of India under climate change. Study 

has been successful in prioritizing forests and phytorichness zones susceptible to FIS 

invasion. Overall, the spatial knowledge about distribution of FIS would be useful for 

developing surveillance and control strategies and devising efficient conservation and 

management strategies to preserve biodiversity. 

Keywords- Invasion, species distribution modelling, climate change, hotspots, range shift. 
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Chapter-1 Introduction 

 
Biological invasion have intrigued ecologists for decades. Elton “Father of Invasion 

Ecology” coined the term invaders and invasion in ecological context (Elton 1958). Forest 

invasive species may include plants, animals and even micro-organisms that are non-native 

to a specific ecosystem and are capable of establishing a self-sustaining population causing 

significant ecological destruction. Kolar and Lodge (2001) defined invasive species as “a 

non-indigenous species that spreads from the point of introduction and becomes abundant”. 

These species may be introduced by humans into places out of their natural range of 

distribution either accidently or deliberately, where they establish themselves, disperse and 

out-compete the existing native species (Richardson et al., 2011). Forest invasive species 

includes introduced and non-native species specific to forested ecosystems having tendency 

to spread causing significant damage to the forest structure, composition including 

regeneration. 

Biotic invasion is considered as one of the most important environmental issues of 

the 21st century (Miller et al., 2010). Invasive FIS are the second-greatest threat to 

biodiversity, after habitat destruction and the cause of substantial economic damage 

(Ficetolaet al., 2007). The invasive species are known to affect the ecosystems in a number 

of ways e.g. displacement of the native species; effecting the ecosystem processes; reducing 

the native wildlife habitats; degradation of recreation lands; reducing the forest health and 

productivity (False-brome Working Group 2003) 

The invasive species bear certain traits which help them to colonize and establish 

populations in the new environment. The spread of invasive species depends upon several 

factors including the physiological traits , ecosystem properties (Bazzaz 1986) and 

landscape structure (Richardson et al., 2000) The associated physiological traits of  invasive 

plant species includes: extensive growth, high reproductive capacity, good dispersal 

mechanism, high competitive ability, wide range of ecological amplitude, unique ability to 

adapt physiologically to new environmental conditions, high phenotypic plasticity coupled 

with hybridization capacity, wide range of ecological strategies and strong allelopathic 

potential (Bazzaz 1986). The lack of natural enemies and suitable growing conditions helps 

an invasive species to spread (Sutherst 2000). Landscape structure including disturbance 

facilitates the spread of invasive species (With and King 1997; Richardson et al., 2000).  

The ongoing climate change is a major factor which can dramatically influence the 

spread of invasive. Intergovernmental Panel for Climate Change (IPCC) defines climate 

change as any change in the average climatic conditions over a long period of time, whether 

due to any natural variability or as a result of human activities. The rate of global climate 

change is accelerating, and global mean surface temperatures is projected to increase by 2.4 

to 6.4 ºC between 1990 and 2100 (Solomon et al., 2009), along with various changes in 

rainfall patterns (increases, decreases and changes in seasonality) (Taylor et al., 2012) 

Climate change has complex effects on the potential distribution of non-native weed by 

altering current climatic habitat (Roura-Pascual, 2004; Peterson, 2008), expected to 

exacerbate non-native species invasions as conditions at any given site become less suitable 
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for existing species and may become more suitable for invasive species (Dukes and 

Mooney, 1999). 

Prudent management of biological invasions requires information about the 

expected potential distribution and relative abundance of invasive species under current and 

future climate change scenarios. Such information is necessary for risk assessment as well 

as the formulation of appropriate long-term management strategies (Taylor et al., 2012).  

Species distribution models (SDMs) have become the extensively useful tools to 

determine the relationships between species and their environments (Robertson et al., 2004; 

Guisan and Thuiller, 2005, Yang et al., 2013), and are used to predict drastic impacts of 

climate change,  biogeographic studies, assisting in reserve selection, improve species 

management and answer conservation biology questions (Guisan and Zimmerman, 2000). 

SDMs are a set of computer algorithms that are used to predict the species distribution in 

geographic space basing on mathematical representation of their known distribution in 

ecological niche (environmental space). These models are developed to meet the current 

challenges of predicting the future geographic distributions of the invasive alien species 

ranging from genetic algorithm, maximum entropy, neural network and multivariate 

regression algorithm (Babar et al., 2012). Few examples of SDMs include MaxEnT, GARP, 

and BioCLIM etc. 

The countries located in tropical and sub-tropical climatic regions particularly have 

been invaded by more number of alien invasive species. It may not be possible keep track of 

each of invasive species rather focusing on ecosystems which have high suitability for large 

number of FIS for adopting management practices. Information about major areas of 

concentration of forest invasive plant species (hereafter referred as FIS) or hotspot is useful 

in identifying the emerging threats posed by the invaders on the native vegetation at larger 

scale and help in devising conservation and management strategies and efficient decision 

making. SDMs can be very effective tools to identify such hotspots areas at different scales. 

1.1 Motivation and Problem Statement 

India has a major proportion of exotic species, however, a significant number of 

them have become invasive and posing negative impacts on natural ecosystems. Though 

species survey on some of the widespread invasive species is feasible yet for majority of 

invasive species field data collection is difficult at regional and national level. In absence of 

a nation-wide database on occurrence of invasive, so far explicit knowledge on areas of 

major concentration of invasive plants lacking. These gaps in knowledge about the major 

areas plant invasion in the country can be met by generating potential hotspot distribution 

scenario using reasonably good occurrence records which have been recently become 

available. This research would provide valuable information about major areas of 

concentration of invasive species or hotspot under current scenario and their range shift 

under future climate projections. This information would be useful in identifying threats on 

the native vegetation and biogeographic zones at larger scale. The research would help in 

development of understanding about the probable impact of climatic changes on the 

potential niches of invasive species. It would provide information about major hotspots and 

future range shift, which would be useful for recognizing threat on various forested 
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ecosystems and help forest managers and policy makers in devising efficient conservation 

and management strategies 

1.2 Aim and Objectives 

The aim of this study is identifying the potential hotspots of plant invasion in the terrestrial 

natural ecosystems of India.  

1.2.1 Objectives 

1. To model the potential hotspot of alien forest invasive species (FIS) in India using 

species distribution modelling. 

2. To predict the potential distributions of most aggressive and widespread FIS in the 

future climate change scenarios. 

3. To assess the geographic range shift of FIS for major natural vegetation types and 

biogeographic zones in country in future climate scenarios. 

1.2.2 Research Questions 

1. What is the levels of uncertainty associated climatic data models, and thresholding 

techniques used for predicting invasion? 

2. Does an ensemble overcome the predictive uncertainties of future climate change 

projections? 

3. Does inclusion of landscape heterogeneity and soil characteristics help SDM in 

improving prediction of potential spread of invasive? 

1.3 Innovation 

The present study is a first ever attempt to identify potential hotspots of alien 

species in India. The study has considered unprecedented field information on major 

proportion of FIS distribution to demonstrate the applicability of SDMs for prioritizing 

potential invasion hotspots in India. Study relates potential concentration areas of alien 

species with affected natural vegetation and native plant species diversity. The climate 

envelopes of geographic zones under the various levels of threats from FIS have been 

characterized. The study has analysed agreement/disagreement in the spatial predictions of 

three different climate model projections and their influence in modelling future suitability 

of most widespread FIS in India. 
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Chapter -2 Literature Review 

 

2.1 Status of Invasive Plants in India 

Invasive alien species (IAS) have become a major environmental concern in India. 

Reddy et al.,(2008) has listed 176 as species in India based on published literature. Indian 

Council of Forestry Research and Education (ICFRE) organised a national workshop at 

Dehradun and documented the status of plant invasive species affecting the structure and 

composition of forests in the country. ICFRE (2005) listed 111 plants as species of 

immediate attention. The selected species include a range of weeds, vascular plants, fungi 

etc. 75 number of species (including herbs, shrubs, trees and climbers) are mentioned in 

world’s top 100 most noxious species (http://www.issg.org/database/ 

species/reference_files/) database mentioned by World Invasive species Database. 

2.2 Species Distribution Modelling (SDM) 

Species distribution model (SDMs) are used to predict the potential distribution of 

the species in space and time against various bio climatic and biophysical parameters. Most 

of the SDMs are based on following major environmental niche assumptions (Wienset al., 

2009): 

 The species under study are in dynamic equilibrium with their environment factors 

drive species distribution. 

 The niche is coincident with climate change. 

 Reported evidences for species dying and not reproducing due to change in the 

climate. 

 There exists co linearity between the variables used in SDMs.  

The usefulness of Species distribution models can be summarized under two 

categories; firstly these models can be used to detect the occurrence of the rare species at 

remote regions (Pearce et al., 2001) secondly, the habitat change mapping can be very 

useful in accessing the direct impact of anthropogenic pressure in terms of land use land 

cover change, and the climate change on the existing habitats (Johnson et al., 2004). The 

species distribution models are based on presence-absence data (e.g. GAM (Generalized 

Additive Model), GLM (Generalized Liner Model), CART (Classification and Regression 

Tree etc.), presence only (e.g. BioClim (Bioclimatic envelope)), presence-pseudo absence 

data (e.g. Genetic Rule Set Prediction (GARP)) and presence-background data (e.g. 

Maximum Entropy (MaxEnT)).  

2.2.1 MaxEnT (Maximum Entropy) 

MaxEnT was introduced by Phillips, et al., (2006) for modelling the species 

geographic distribution; it is a general purpose machine learning method with precise 

mathematical calculations. It is based on the maximum entropy approach for modelling 

species habitat. MaxEnT takes as input, a set of environmental variables e.g. temperature, 

precipitation etc. along with the species occurrence data and obtains a range of given 



5 
 

species. I.e. it executes by finding out the maximum spread (maximum entropy) by 

estimating the probability distribution for the species in geographic dataset with respect to 

the ‘background’ environmental layers (Phillips et al., 2006). MaxEnT is used for modelling 

the species distribution and the range making use of the presence-only data utilizing both 

continuous and categorical data. According to Elith (2006), MaxEnT is observed to have 

outperformed other modelling methods, since it can also work well when the number of 

occurrence record is less. Pearson et al., (2006) also advocated the better performance of the 

model with small sample size data. MaxEnT models the suitability of each grid cell as a 

function of environmental variables in the grid cell. The grid with high value is considered 

to have been predicted with suitable conditions to favour the species occurrence. Elithet 

al.,(2006) and Ortega- Huerta and Peterson (2008) commented on the better performance of 

MaxEnT over rest of the modelling approaches. 

2.3 Plant Invasion vis-a-vis Environmental Linkages 

The environmental conditions (climatic and non-climatic), plays an important role 

in defining the ecological niche of any species. Climate is the most important factor which 

influences on environmental processes. It accelerates invasion from the introduction to its 

establishment and spread (Walther et. al., 2009). IPCC has reported recently about the 

severe impact of climate change on the species range shift and the consistent response of 

species towards the growing temperature conditions (IPCC, 2007b). Other environmental 

factors include topography and landscape heterogeneity etc. Topographic variables such as 

elevation, slope and aspect play an important role in determining the patterns of spread of 

several species and the shift in their range. Landscape heterogeneity on the other hand is 

considered as one of the major factors governing the biodiversity and its functions; as it is 

known to enhance or retard the disturbance in the landscape. Many studies have analysed 

the positive as well as negative association between the landscape heterogeneity and species 

richness (Tewset al., 2004; Benton et al., 2003).In addition to climate change, landscape 

heterogeneity etc., the human activities e.g. degradation of land, excessive agricultural 

practices, transcontinental transportation etc. is equally responsible for the spread of the 

non-native species in a region (Foley et al., 2005). 

2.4 Prediction of Hotspots of Invasion 

Duursmaet al., (2013) predicted the hotspots of invasion in Australia, using 

MaxEnT over 292 species under continental as well as regional scale. Wulffet al., (2013) 

carried our hotspot analysis 283 narrow endemic species in the north and south province of 

New Caledonia using maximum entropy approach. Liang et al., (2014) stressed upon the 

importance of hotspot analysis to control the invasion and better decision making. The 

probability of invasion was accessed using MaxEnT and Mahalanobis distance technique, 

while the hotspots were predicted for North America. The ensemble technique was 

considered to have provided better results for predicting hotspots. Miller et al.,(2010) 

modelled the suitable habitats for eight invasive alien plants. Catfordet al., (2011) carried 

out hotspot analysis and claimed its usability in identification of regions of high risk of 

invasion. 
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2.5 Landscape Change vis-a-vis Plant Invasion 

Change from forest into non-forest has tremendous impact on the ecosystem 

through destruction of the existing habitats, change in the competitive regimes of the species 

etc. (Monney and Hofgaard 1999). As the forest changes to non-forest, the products and 

services associated with forest changes. Few examples of impacts of forest change include 

habitat fragmentation changes in the transportation corridors and change in the native 

species habitats (Echaverria 1996). The changes within the forested ecosystems also 

promote introduction and spread of invasives. Various modelling techniques are available to 

predict the changes in the landscape patterns (Cheong et al., 2012).   Markov models are 

generally used to generate the landscape scenarios; it is easy to develop with minimal data 

requirement (Brown et al., 2004). Other models that are now being used for predicting the 

change in the landscape includes logistical models (Brown et al., 2008), non-linear fitting 

models (Hastie et al., 1986) and models based on artificial neural network (Tewoldeet al., 

2011). 

2.6 Climate Change vis-a-vis Plant Invasion 

The change in the climatic regimes can be majorly understood with the change in 

the temperature and precipitation conditions and CO2 and aerosol levels in the atmosphere. 

Climate change may impact the overall invasion process by affecting three major 

constraints: Invasive species source pools, the dispersal pathways and the process of 

invasion in the new host ecosystem (Sutherstet al., 2000). The climate change can lead to 

extreme conditions of droughts, floods, forest fires etc. and may thereby trigger new 

opportunities for the species to invade new regions by creating extreme disturbance events. 

Climate change may affect the natural ecosystems, communities and habitats in several 

ways (Parmeason and Yohe 2003) but most remarkable is the shift in their natural ranges.  

Environmental gradient have profound impact on the suitable habitat shift of the species 

therefore more stress should be laid upon the environmental variables that are responsible 

for the current spread of the invasive alien plant species and the loss of the native species 

population (Zhang et al., 2014). Buckley et al., (2010) observed that the range shifts from 

the lower to upper climate-change scenarios, with several invasive species that notably 

underwent some degree of range shift. It was found that changing climate conditions the 

expansion in the range of the invasive alien species is more as compared to the contraction 

due to effects of physical barriers, limited dispersal and potential life history of the species. 

Sutherstet al., (2000) on the other hand advocated that the climate change may impact the 

overall invasion process by affecting three major constraints: Invasive species source pools, 

the dispersal pathways and the process of invasion in the new host ecosystem. 

2.7 Climate Scenarios 

The future prediction of spread of invasive species demands development of climate 

scenarios (present and future) considering CO2 emission levels, the factors associated with 

depletion of ozone layer, landuse changes and globalization etc. (Parry 2007). IPCC 

(Intergovernmental Panel on Climate Change) a scientific body active under United Nations 

provides guidelines on emission scenarios (SRES).  IPCC was established in 1988 by World 
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Meteorological Organization (WMO) and United Nation Environment Programme (UNEP). 

IPCC publishes reports in favour of United Nation Framework Convention on Climate 

Change (UNFCCC) with the aim to reduce the greenhouse gas emissions to considerable 

level so as to discourage the impact of human interference on climate change. SRES 

discusses the possible future emission scenarios, for example the AR4 focuses on scenarios 

namely A1- marked with homogenous world and global rapid economic growth, and B1- 

associated with global environmental sustainability, A2-describes a heterogeneous world 

with regional economic development, B2- focuses on local environmental sustainability.  

2.7. 1 Climate Models 

2.7.1.1 HadCM3 (Hadley Centre Coupled Model) 

 

HadCM3 was developed in 1999 and has been the first unified climate model that 

does not require flux adjustments. Flux adjustments are the adjustments applied to climate 

model simulations which prevents it from drifting into unrealistic climate state i.e. the 

model climate remains stable. It is a general circulation model (GCM) which has 

atmosphere-ocean coupling. In case of this model there is always a good match between 

ocean and atmosphere components and is known to capture the time-dependent footprints of 

historical climate change in response to anthropogenic and natural forcing. It has an 

improved ocean mixing scheme over other climate models that are used in climate related 

studies. The atmospheric model consists of 19 vertical levels with a resolution of 3.75 

degree, which approximates to around 300 km resolution. While the ocean model consists of 

20 levels with a resolution of 1.25 degree. 

2.7.1.2 CSIRO-mk2 (Commonwealth Scientific and Industrial Research Organization) 

CSIRO-mk2 is a combination of global ocean, atmosphere, biospheric and sea-ice 

sub models. It consists of a diagnostic cloud scheme and is a fully flux corrected climate 

model. The model combines the effect of all radiatively active trace gases into equivalent 

CO2 concentrations. It is quite similar to Hadley experiments on negative forcing from 

atmospheric sulphate-aerosol. The forcing found missingare solar variability, sulphate 

indirect impacts and influence of soot. The atmospheric model consists of 9 vertical levels. 

While the ocean model consists of 21 levels and the resolution of data provided by the 

model is 5.6 degree X 3.2 degree (latitude x longitude). 

 

2.7.1.3 CGCM-2 (Canadian Global Coupled Model) 

CGCM-2 stands for in this model the ocean mixing parameterization has been 

changed from horizontal/vertical diffusion scheme to ispycnal/eddy stirring 

parameterization. This model is used to produce ensemble climate change projections. The 

model uses radiative forcing equations are used to convert greenhouse gas emission into 

effective CO2 concentration. The model takes into account linearly interpolated data and 

includes the direct impact of sulphate. To reduce the climate variability alternate runs of 

GHG + A1 and GHG + A2 scenarios are made. The atmospheric model consists of 10 

vertical levels with a resolution of 3.75 degree, which approximates to around 300 km 

resolution. While the ocean model consists of 29 levels with a resolution of 1.8 degree. 
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2.8 Uncertainties in SDM; Occurrence data, Algorithms and Climatic Scenarios 

Species distribution modelling is affected by a number of uncertainties arise due to 

insufficient occurrence data, difference in species distribution algorithms (e.g. 

presence/absence or presence only), sensitivity of modelled continuo suitability  outputs to 

techniques used for binary (presence and absence) predictions and due differences in 

climatic projections.  

Several studies stress upon the effect of sample size on the predictive accuracy and 

the model simulation results. Generally with larger sample size the model accuracy 

increases until the maximum accuracy is reached (Harnendezet. al., 2006). Kumar et al., 

(2014) highlighted the problems associated with the lack of precise coordinates of species 

occurrence at regional level to be used a inputs in the species distribution models; therefore 

he emphasised on the use of the occurrence data even at a coarser district level. Different 

SDMs differ in terms of their conceptualization e.g. MaxEnTis based on the maximum 

entropy approach. It provides a probability distribution of species habitat. On the other hand 

GARP is a fuzzy envelope model using genetic algorithm for determining the ecological 

niche for the spread of the species and maintain a viable population. One of the majorly 

faced uncertainties is the selection of rule to obtain binary predictions of the species 

potential spread from a continuous result. Selection of appropriate threshold may result in 

eliminating major biasness in species distribution modelling (Phillips et al., 2008). Liu et 

al., (2013) observed 13 different threshold selection methods (e.g. Fixed cumulative value 1, 

Fixed cumulative value 5, 10 percentile training presence, Equal test sensitivity and 

specificity etc.) working with presence-only data and discovered that Maximum training 

sensitivity and specificity to have been giving better results with presence-only data. Major 

uncertainties in the predicted outputs arise due to differences in climate models used for 

prediction. Bellardet al., (2013) modelled the future hotspots of world’s top 100 noxious 

species using three different climate models namely, HADCM3, CSIRO-mk2 and CGCM2 

and exclaimed the usability of multiple models and the ensemble forecast projections for 

better predictions. Zhang et al., (2014) studied the change in woody plant species range in 

Yunan using the three climate models and reported similar predictions with less uncertainty 

amongst them. 

2.9 Ensemble Modelling 

Ensemble modelling techniques are employed to obtain a robust estimate of the 

suitability of the habitat for the potential spread of the invasive species under study at given 

time period. Ensemble models are employed to reduce the uncertainty of single model by 

combining the predictions of all the models and therefore reduce the weakness of single 

model prediction. Ensemble model is therefore a model which involves combining model 

outputs from different models (Stohlgrenet al., 2010) and is reported to have outperformed 

the predictions from other individual models (Crossman and Bass 2009). Ensemble models 

makes use of various algorithm e.g. PCA (Thuiller 2004; Araújoet al., 2006) and statistical 

criteria (Johnson and Omland 2004), or on basic mathematical functions such as averages 

and medians of ensembles of predictions (Gregory 2001; Araújo and New 2007).  
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Chapter-3 Study Area 

 

3.1 Geographical Location 

India occupies a strategic position in Asia; surrounded by China, Tibet, Nepal and 

Bhutan in north. In the South, it is surrounded by Sri Lanka by a narrow channel of sea 

called Palk Strait and the Gulf of Mannar. India is located to the north of the equator 

between 8°4' and 37°6' north latitude and 68°7' and 97°25' east longitude.  The total land 

area of the country is around 328.7 million hectares (mha) which forms 2.4% of the world’s 

total area. Fig. 1 represents the study area map of India with different biodiversity hotspots 

shown with black shaded area. 

 

Figure 1: Location of study area i.e. India (in square box) (source:www.biodiversity.sg) 

3.2 Climate 

India being mainly a tropical country, however due to variations in the altitude 

varying climatic conditions ranging from hot deserts to cold deserts prevails. In India there 

exists total of four seasons in a year namely: a) Spring (January-March) b)Summer (April-

June) c) Monsoon (July-September) d) Winter (October-December). Though the monsoons 

in the winter months provide some precipitation, around 80% of the precipitation of the 

country is received from the south west monsoon (summer monsoon). 

3.3 Physiography 

India consists of four major geographical landforms namely: 

 

a) The Northern Mountains- Corresponding of the Himalayan mountains alongside 

country’s northern boundary including Jammu & Kashmir, Himachal Pradesh, 
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Uttarakhand, North-West Uttar Pradesh, Sikkim, Assam, Arunachal Pradesh, 

Nagaland, Manipur, Mizoram, Tripura and Meghalaya.  

 

b) The Indo-Gangetic Plains- Formed by basins of three river systems including the 

Indus, Brahmaputra and Ganges. The Indo-Gangetic Plains marks their extension 

from Rajasthan in the west to Brahmaputra valley in the east. 

 

c) The Deccan Peninsula-It covers the southern region of India including Tamil Nadu, 

Karnataka, Andhra Pradesh and Kerala. Also includes the sates of Madhya Pradesh 

and parts of Bihar. 

 

d) The Coastal Plains and Islands-Covered by Eastern and Western Ghats on two 

sides. The region is marked by very high population density. 

3.4 Soil and Geology 

India bears a wide range of soil types that are locality specific. The two most 

important soil types found in India are the alluvial covering about 78 million ha (24%) of 

the total land and black cotton soil covering 51.8 million ha and are considered as important 

soil types required for agriculture. Alluvial soil is considered good for the production of 

rice, pulses, wheat, oil seeds, potatoes etc. The black cotton soil supports cotton, cereals, 

pulses; oil seeds etc. The other soil types found in India includes red soil (51.8 million ha), 

laterite soil (12.6 million ha) and desert soil (37 million ha). 

3.5 Flora 

India hosts four biodiversity hotspots namely: the Western Ghats, the Himalayas, 

Indo-Burma region and Sundaland (Conservation International, 2012). According to the 

2003 State Forest Report, the total forest cover in India is around 67.82 million hectare 

constituting around 20.64% of its geographical area. The total tree cover in India is 

estimated to be nearly 9.99 million hectare which is about 3.04% of its area. The major 

forest types of India used in the study includes: evergreen needle leaf forest, evergreen 

broad leaf forest, deciduous needle leaf forest, deciduous broadleaf forest and mixed forests. 

3.6 Fauna 

India is rich in fauna. It has been estimated that 500 species of mammals, more than 

200 species of birds and around 30,000 species of insects are present in India in addition to 

this India reports the presence of a hundreds of species of fishes and reptiles. The invasion 

of exotic plant species in natural ecosystems has already started exerting negative impacts 

on native fauna. 
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3.7 Socio-Economy 

The statistics of the National Census (2001) recorded the total population of the 

country to be 1027 million which was about 21.34% above the population recorded between 

1991 and 2001. As per the latest 2011 census the population of India is 1.221 billion. It has 

increased by 1.21 billion with a decadal growth rate of 17.64%. The population density is 

reported to be 382 persons per km2.India is considered as one of the world’s largest 

economies and ranked fourth with the present GDP of 1.877 trillion USD (2013). India as a 

growing economy is going to develop cities, linking of rivers, transportation corridors and 

other spatial infrastructure with reduction in natural habitats. All of these processes brings 

spatial changes in landscape and thus would influence the spread of invasive plant species.    
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Chapter-4 Materials and Methods 

 
4.1 FIS Occurrence Data 

The majority of FIS occurrence data was compiled from the species database of the 

national project “Biodiversity Characterisation at Landscape Level using RS and GIS” 

carried out by the Department of Science and Technology (DST) and Department of 

Biotechnology (DBT) between 1998 and 2010. In total 105 FIS (including 94 herbs, 8 

shrubs, 1 tree and 2 climbers) were found having well-distributed and sufficient number of 

occurrence records (Appendix-1). These FIS were included because they were found during 

sampling in the forested areas during biodiversity project. After having identified the FIS, 

the occurrence data was collected from the Global biodiversity Information Facility 

Database (GIBF).  

 

The most widespread and invasive plant species of ecological and economical 

concern was identified based on published research articles, reports and consultation. The 15 

most noxious FIS were selected and considered for modelling the distribution under 

projected climate change scenarios. Table in Appendix-2 give the details of these FIS and 

their occurrence records. 

4.2 Environmental Database 

4.2.1 Climatic Variables 

The global climate data at 30 arc-second (approx. equal to 1 km2) grid size was 

downloaded from World Climatic Research Centre (Hijmanset al., 2006; 

http://worldclim.org/ bioclim.htm). The climate data comprised of monthly maximum 

temperature (tmax), monthly minimum temperature (tmin) and monthly precipitation (prec). 

DivaGIS software was used to derive19 Bioclimatic variables that are biologically 

significant for defining the eco-physiological tolerances of different FIS, for present as well 

as for the future climate scenarios. The Bioclimatic variables coding is included in 

Appendix 3. Fig. 2 represents the selected climatic variables used as inputs in the study. 

 



13 
 

 

 

Figure 2: Selected climatic variables namely (a) annual mean temperature (b) mean diurnal range (c) 

isothermality (d) temperature seasonality (e) mean temperature of driest quarter (f) mean temperature 

of coldest quarter (g) annual precipitation (h) precipitation of wettest quarter (i) precipitation of driest 

quarter (j) precipitation of coldest quarter at 1 km spatial resolution 
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4.2.2 Non-Climatic Variables 

Three non-climatic variables namely topography (elevation, slope and aspect), 

forest density and soil were considered for defining geographic distribution of FIS. The 

elevation map generated from Shuttle Radar Topographic Mission (SRTM) digital elevation 

model (DEM) downloaded from United State Geological Survey (USGS) website 

(http://earthexplorer.usgs. gov/) available at 90 m spatial resolution. The slope and aspect 

maps were derived from the DEM using surface tools in ArcMap 10.1.The forest density 

layer was obtained from Global Land Cover Facility (GLCF) (http://www.landcover.org) at 

30 m pixel size. The forest density layer is based on Landsat Vegetation Continuous Fields 

(VCF) tree cover prepared for the year 2000. The soil type information was obtained from 

the vector database prepared by National Beureo of Soil Survey and Land Use Planning 

(NBSS&LUP) at 1:1 million scale. The soil type classes (in total 13) were generalised to 

order level (7 classes) representing Mollisols, Ultisols, Aridisols, Vertisols, Alfisols, 

Entisols and Inceptisols. The vector soil order map was rasterized to 1 km spatial resolution. 

Fig. 3 represents the non-climatic variables used as an input in the study. 

 

 

Figure 3:Selected non-climatic variables namely (a) elevation (b) slope (c) forest density (d) soil (e) 

forest type at 1 km spatial resolution 

4.2.3 Biogeographical Zones 

FIS range shift in the climate change scenarios was assessed for different 

biogeographic zones of the country. The biogeographical classification of India (Rodger et 

al., 2002) comprises 10 classesviz., Trans Himalayan zone, Himalayan zone, Desert zone, 

Semi-Arid zone, Western Ghats zone, Deccan Peninsula zone, Gangetic Plain zone, North-

(d) 
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East zone, Coastal zone and Islands. Each biogeographic unit represents distribution of flora 

and fauna and their ecosystem in geographic space through geological time.  

4.3 Model Design 

4.3.1 Selection of Optimal Environmental Variables 

Considering the large number of environmental variables (24 viz., climatic (19), 

topographic (3), landscape heterogeneity (2), the variables were tested for multi-collinearity 

using ENM (Ecological Niche Model) tool v. 1.3. Amongst every two highly correlated 

variables (Pearson’s correlation coefficient r> 0.90) one was selected keeping the 

importance of variable in determining ecophyisiological requirement of the FIS. The 

Pearson’s correlation coefficient between the variables is shown in Appendix 4. The 

correlation values shown with highlighted text represent highly correlated variables and the 

highlighted variables are the ones that are discarded for their less usefulness in the study. In 

the next step, the variables selection was further optimized by calculating the percentage 

contribution of above selected variables for prediction of potential invasion range for 

different FIS. 

4.3.2 Model Selection 

The most accepted species distribution modelling technique was used to work with 

presence-only data namely, MaxEnT (Phillips et al., 2006; Phillips and Dudík 2008), based 

on its better performance while working with presence-only data. The model was used to 

predict the potential habitat suitability for invasion of the FIS in present scenario and was 

used to generate hotspot prediction maps. It was also used to model the future suitability and 

distribution of the selected invasive species under CGCM2, CSIRO-mk2 and HADCM3 

A2a and B2a climate change scenarios for 2050. 

 

The model was generated using the standard of 75% occurrence records randomly 

selected for the purpose of training dataset and remaining 25% a test dataset. The FIS 

occurrence data was prepared in .CSV (Comma Separated Value) and environmental layers 

in ASCII (American Standard Code for Information Interchange) format for model 

execution. 

4.3.2.1 Model Training  

An auto feature limiting function was used to train the MaxEnT model. The 

multiplier value was set very low at 1 along with the default set of parameters with 

convergence limit set to 0.00001. Logit rule was applied to observe the binary predictions 

and the number of iterations was set to 500 and replicates equal to 10. The replicate run type 

was selected as cross validate which is also known as k fold technique as it breaks the 

sample into k subsets and it runs the model k number of times and withhold the kth subset in 

each model run which in turn is used for model testing. 
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4.4 Model evolution 

4.4.1 Accuracy Assessment 

4.4.1.1 Threshold Independent ROC AUC 

 

The receiver operating characteristic (ROC) curve is obtained by plotting the 

sensitivity (1- omission rate) against fractional predicted area (1-specificity) across the 

range of varying thresholds. Sensitivity is defined as the correctly predicted presence 

records and specificity on the other hand is defined as the correctly predicted absence 

records.  

 

Sensitivity = a/(a + c) = True Positive / (True Positive + False Negative) 

Specificity = d/(b + d) = True negative / (True negative + false positive) 

 

Where, a = number of cells for which the presence was correctly predicted, b = number of 

cells for which FIS was not found but the model predicted presence, c = number of cells for 

which the FIS were found but the model predicted absence, d = number of cells for which 

the absence was correctly predicted, Therefore 1-specificity defines the absences that are 

incorrectly predicted.  

 

The Area Under Curve (AUC) value above 0.90 shows high accuracy of the model 

suggesting that the model is able to discriminate well between the FIS presence and FIS 

absence, value ranging between 0.7 – 0.9 shows good accuracy, 0.5 – 0.7 shows low 

accuracy while the AUC value below 0.5 is equivalent to random chance. AUC value is 

correlated to the size of the study area and the prevalence of the occurrence points and the 

spread of the FIS and ignores the predicted probability values and the goodness-of-fit of the 

model. It weights omission and commission errors equally (reliable if presence/absence 

model is used). 

 

4.4.1.2 True Skill Statistics (TSS) 

 

It is another method to examine the goodness of model fitting and is used in the 

study. The TSS technique also accounts for the omission and commission errors. 

 

TSS = Sensitivity + Specificity – 1 

 

The range of this index falls in between -1 to +1. On one hand +1 is indicative of 

the perfect fit whereas -1 on the other hand represents a random fit (Alloucheet al., 

2006).TSS values are not affected by the prevalence of the occurrence point or the size of 

the study region. It uses a threshold dependant measure and can be used to overcome the 

problem in the previous technique, in this approach weights can easily be provided to 

sensitivity and specificity.  
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4.4.2 Sensitivity Analysis 

The sensitivity of the MaxEnT model was tested using the jack-knife technique. It 

was used to determine the relative importance and training gain of each of the predictor 

variable that was used to train the model considering the model being run for each variable 

in isolation, to the training gain considering all the variables at a time. 

4.5 Thresholding of MaxEnT outputs 

MaxEnT model was run for selected three thresholding techniques namely 

Minimum training presence; Fixed cumulative value 1and 10 percentile training presence. 

Although there are four other techniques, but those were not taken into account because of 

their less usability in previous studies. The selection of method was based on results 

pointing to lower threshold values i.e. greater fractional predicted area, and the omission 

error nearing 0 values or 0 itself. Since, if the omission error is not low, the wide range and 

long lived FIS like Lantana camara would definitely find suitable conditions to spread 

within the total predicted area; which would result in incorrect prediction. The AUC values 

were also considered and the technique which resulted in higher AUC values was selected to 

overcome the uncertainty associated with different thresholding techniques. Therefore for 

threholding the maps, minimum training presence threshold values were used.  

4.6 Potential Invasion Hotspots Modelling 

The invasive species hotspot map represented the areas with potential number of 

invasive plant species concentration. It highlighted the regions where the invasion risk 

would be high (i.e. more than 65 noxious FIS found together), moderately high (45-65 FIS), 

medium (25-45 FIS), low (5-25 FIS) and least (<5 FIS). The hotspot analysis was used in 

the study to identify the regions having high suitability for the potential spread of the FIS in 

forested ecosystems of the country and in each of the biogeographic zones. The MaxEnT 

produced continuous outputs of potential habitat suitability ranging from 0 to 1, which was 

further reclassified into two classes 0-0.25 (unsuitable) and 0.25-1 (suitable). The threshold 

was selected as per the ‘minimum training presence’ threshold technique limits. The 

hotspots were calculated by summing up the thresholded binary maps all the 105 FIS and 

reclassifying the grid cells with the habitat suitability based on the percentile at 25% bands. 

It highlights the zones where the invasion risk would be very high (> 75%), moderately high 

(50-75%), medium (25-50%) and low (<25%). This technique was chosen for its robustness 

while working with a large number of FIS. 

4.7 Characterisation of Hotspots of Invasion 

The identified potential hotspots of invasion were characterised in terms of their 

climate envelope, geographic distribution in various forest ecosystems, canopy density 

classes and vascular species diversity. The phytorichness map is from the Biodiversity 

Characterisation Landscape Level Study carried by Department of Space and Department of 

Biotechnology (Roy et al., 2012). 
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4.8 Potential Distribution under Future Scenario 

The impact of climate change on the potential distribution of the selected invasive 

species was accessed using MaxEnT modelling for the projected CGCM2, CSIRO-mk2 and 

HADCM3 A2a and B2a climate change scenarios for 2050. The model was trained with the 

environmental variables and occurrence records of species. This was done by projecting the 

future environmental variable over a set of present environmental variables. Along with the 

future climate, the Landscape heterogeneity variables i.e. forest-nonforest change were also 

projected for future and used as an input to train the model.  

 

Forest-nonforest maps (2001, 2006 and 2011) based on MODIS 250m LULC layers 

were used to generate a scenario for 2050 using artificial neural network (ANN) in Land 

Change Modeller module in IDRISI Taiga software. The MODIS product with 16 categories 

was reclassified into forest/grasslands, non-forest, snow/glaciers. The model training 

accuracy for the year 2011 based on forest-nonforest for the year 2001 and year 2006 was 

found 93%. The trained ANN model was used to simulate forest-nonforest scenario for the 

year 2050 that was used for future analysis. The final MaxEnT model output of potential 

habitat suitability ranged from 0 to 1, which was further reclassified into two classes based 

on the ‘minimum training presence’ threshold values.  

Ensemble maps were generated for each FIS under A2a and B2a scenario. This was 

achieved by combining the binary suitability maps obtained from the individual climate 

models using the AUC weighted mean. The outputs obtained from the models were 

continuous values ranging between 0 and 1. A threshold value was selected to convert the 

continuous binary maps from, showing the habitats that are suitable for the potential spread 

of the invasive alien species and the no habitat for the spread. This ensemble map for each 

FIS was used for further analysis. 

4.9 FIS Range Shift 

The ensemble outputs were used to generate the change maps (suitable to unsuitable 

and vice-versa) between present and future for each of the 15 selected invasive FIS. These 

change maps were used to generate a range shift plot for A2a and B2a climate change 

scenarios. The range shift plots represented x axis as the biogeographic zones or forest types 

respectively and y axis as potential invasion area in km2. It represented the positive 

(expansion in the suitable habitat) or a negative (reduction in the suitable habitat) shift in the 

FIS range under future climate projection. 

 

The overall methodology is shown in Fig. 4.  
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Figure 4:Methodology Flowchart 
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Chapter-5 RESULTS& DISCUSSION 

 
5.1 Potential Hotspots of Invasion 

5.1.1 FIS Concentration 

The potential geographic distribution of 105 alien plant species (constituting 

approx. 80% of total FIS identified in the country) was predicted using MaxEnT algorithm. 

The modelling was performed for the geographical areas represented by the natural 

ecosystems (forests, savannah and alpine pasture) in the country excluding areas under 

agriculture, snow/glacier and barren /rocky areas and water body. Fig. 5 represents 

summation of potential distribution surfaces of 105 FIS in the country. The summed output 

has been further categorized into the areas with high, moderately high, medium, low and 

least number of potential distribution surfaces of FIS.  

 

 

Figure 5: Potential number of FIS 

It was observed that a majority of the FIS were concentrated in mixed forests, 

woody savannahs, evergreen broad leaf forest, open shrubland and grasslands. Fig. 6 

represents the potential FIS richness in each of the forest ecosystem category. 
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Figure 6: Potential FIS richness in different forest categories 

5.1.2 Environmental Variables  

The statistical analysis of multicollenarity among variables helped in reducing 

number of climatic variables to be used for potential distribution modelling of FIS. Further, 

selection of climatic variables for modelling potential distribution of each FIS was decided 

based on % contribution of variables (also considering topographic and landscape 

heterogeneity variables). In general, annual mean temperature, isothermality, temperature 

seasonality, mean temperature of driest quarter and precipitation of wettest quarter, canopy 

closure and elevation showed largest influence (% contribution) in modelling potential 

distribution. While climatic variables such as mean temperature of coldest quarter, 

precipitation of coldest quarter, precipitation of driest quarter and soil,  showed least % 

percentage contribution in predictions.  

5.1.3 FIS Potential Distribution Model Accuracies 

  

The average AUC score for the 105 FIS was calculated 0.94 (± 0.5) with the values 

ranging from 0.88 to 0.99. Whereas the average TSS score for the all the FIS was calculated 

0.74 (± 0.5) with the TSS scores ranging from 0.64 to 0.83. AUC scores indicate that the 

area predicted suitable for the FIS distribution was correlated with a random 10% of 

observation data, which was not considered for species training and used to test the models. 

The high AUC and TSS scores suggest that good prediction accuracy and stronger 

prediction was achieved using MaxEnT model. 

5.2 Hotspot of Invasion Risk 

The hotspots of FIS at country level were modelled by reclassifying the grid cells 

with the habitat suitability based on the percentile at 25% intervals (Fig. 7). The percentage 

quantile has been depicted in the regular interval of 25% in categories namely very high (> 

75%), moderately high (50-75%), medium (25-50%) and low (<25%). The forested areas 

distributed in the semi-arid regions and some parts of Deccan peninsula of the country were 

represented by very high invasion risk with risk varying from (75 – 100%). Such areas were 
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observed of having at least 73 FIS represented at least once within the area. The moderately 

high and medium risk hotspots extended in semi-arid, Deccan peninsula, north-east, 

Western Ghats and part of Himalayan foot hills. The low FIS risk zones were found 

distributed in the temperate Himalaya, high rainfall region of Western Ghats and north-east 

India as well as the warm and cold desertic regions of the country.  

 

 
 

Figure 7: Hotspot map of FIS 

 

 

5.2.1 Climatic Envelope of Potential Hotspots of FIS 

The climatic envelope of potential hotspots FIS has been defined in terms of 

average maximum temperature, average minimum temperature and average annual 

precipitation prevailing in such areas. Fig. 8 depicts the climatic conditions of areas 

identified with various levels of invasion risks.  
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Figure 8: Climatic envelope of potential hotspots FIS 
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 The values on the Y-axis shows the predicted of suitable conditions whereas X-

axis shows the variable under consideration. For hotspot zone (<25%) it is observed that 

predicted habitat suitability increase with increasing temperature up to 20°C above which 

the conditions becomes unfavourable. While the predicted suitability increases with 

increase in the annual precipitation. For hotspot zone (25-50%) the habitat suitability is 

predicted to increase within mean annual temperature < 20 °C above which the unsuitable 

conditions prevails. 200mm of annual precipitation is predicted to favour suitable habitat 

for the FIS to spread above which the unfavourable conditions prevails. For hotspots (50-

75%) the suitable habitat is predicted to increase with increase in temperature, however 

extreme temperature conditions may discourage the spread. Annual precipitation over 

200mm is unfavourable. Hotspots (>75%) show direct relationship with temperature, the 

predicted suitability increases with increasing temperature. Extreme temperature conditions 

would also not discourage the spread of invasive in these zones. However the zone remains 

unaffected with the precipitation. 

5.2.2 FIS Invasion hotspots: Forest Ecosystems and Canopy Closure wise 

Table1 represents the forest ecosystems type wise FIS invasion hotspots. It can be 

observed that for majority (> 45) FIS, the potential distributions was predicted in the 

geographical areas represented by the evergreen broad leaf forest, mixed forest, woody 

savannahs, grasslands and open shrub lands.  

 

Table 1: Forest ecosystems type wise FIS hotspots. 

Forest Classes Area  (km2) under parentage quantile categories   

 0 – 25  25 - 45 45 - 65 > 65 

Evergreen broad leaf 8, 05, 527  35, 457  17, 334  37  

Deciduous needle leaf 892  25  7  00 

Deciduous broad leaf 3, 389  7, 274  5, 536  1, 088  

Mixed 86, 344  64, 679  22, 659  37, 701  

Close shrubland 1, 636  1, 651  790  69  

Open shrubland 74, 906  40, 129  6, 802  1, 382  

Woody savannah 1, 26, 264  1, 57, 542  90, 801  11, 466  

Savannah 1, 580  626  218  36  

Grasslands 67, 229  9, 169  7, 811  1, 399  

 

 

Table 2 depicts the FIS hotspots as per the status of canopy cover (%) interpreted 

using Landsat satellite imageries for the year 2000.  It can be inferred from the table that the 

majority of FIS (74) have their potential occurrence in forested area having tree canopy 

closer between 0-50% while lesser number of FIS potential distribution are represented in 

higher canopy closure forest areas (>50%). Woody savannahs and deciduous broad leaf 

forest with a canopy density ranging from 0 to 50 % were majorly modelled under high risk 

of invasion by FIS. 
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Table 2: Forest canopy closure (%) wise FIS invasion hotspots 

Forest Canopy Closure  Area (km2) of FIS invasion hotspots percentile quantile categories  

0 - 25 25 - 45 45 - 65 >65 

0 - 25 % 1, 43, 7802  9, 98, 145  3, 55, 108  100  

25 - 50% 26, 435  25, 462  49, 750  11, 319  

50 - 75% 42, 303  39, 750  46, 268  7, 058  

75 - 100% 82, 155  71, 490  7, 733  459  

 

 

5.2.3 Potential invasion hotspots vis-a-vis Phyto Richness  

 

The relationship between the geographic distribution of hotspots of FIS invasion 

and forest type was analysed at country level (Fig. 9 and Fig. 10).  Phytorichness map (with 

categories 0-25%, 25-50%, 50-75% and 75-100%) was used to find relationship with 

different forest types and the hotspot classes, and their aerial coverage.  

 

 
Figure 9: Forest type wise potential invasion risk 

 

 
 

Figure 10: Relationship between potential invasion risk and phytorichness 
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Phytorichness and invasion were observed to have an inverse relation. The high 

invasion risk areas falls in the medium (25-50%) to low (<25%) phytorichness regions. 

However, low invasion risk is encountered in the regions with high phytorichness (>50%). 

5.3 Potential Distribution of FIS in Climate Change Scenario 

5.3.1 Comparison of Climatic Projections 

The three climate models viz., CGCM2, CSIRO-mk2 and HADCM3 considered for 

under A2a and B2a climate change scenario for 2050 are constructed based conceptually 

different global general circulation models. Table 3 shows the correlation between mean 

annual temperature and mean annual precipitation derived by different climate models.  

Table 3: Correlation between climate models in terms of mean annual temperature and precipitation 

 

 Table 4 and table 5 depict in terms of mean annual temperature and mean annual 

precipitation HADCM3 differ from CGCM2 and CSIRO-mk2 under A2a and B2a scenario. 

A similar trend was observed for mean annual precipitation as well. 

 

Table 4: Comparison of climate models based on temperature and precipitation values for A2a 

scenario 

 

 Temperature and precipitation projections for the 2050A2a scenario are similar in 

case of CGCM2 and CSIRO-MK2 but slightly differ from HadCM3 projections. The 

precipitation projections of HadCM3 are markedly different from CGCM2 and CSIRO-

MK2. Overall the HadCM3 projection predicts more quantify of rainfall for all major 

physiographic zones in the country except for Vindhyan plateau. All the projections show 

increase in rainfall in the same manner. 

 

 

Mean Annual  

Temperature 

(ºC ) 

HADC

M3 

CGCM2 CSIRO- 

mk2 

Mean Annual 

Precipitation 

 (mm) 

HADCM3 CGCM2 CSIRO-

mk2 

HADCM3 0.00 0.73 0.72 HADCM3 0.00 0.71 0.70 

CGCM2 0.00 0.00 0.99 CGCM2 0.00 0.00 0.99 

CSIRO-mk2 0.72 0.00 0.00 CSIRO-mk2 0.70 0.00 0.00 

A2 Scenario, 

Temperature (ºC ) & 

Precipitation (mm) 

Present CGCM2 CSIRO-MK2 HADCM3 

 Temp. Prec. Temp. Prec. Temp. Prec. Temp. Prec. 

Lower Western Ghats 18.38 2708 19.8 2742 20 2790 20.0 2861 

Vindhyan Plateau 25.44 924 27.2 1071 27.4 1023 27.4 1018 

North East India 22.64 1862 24.1 1883 24.7 1852 24.8 2133 

Himalayan Foothills 14.87 1882 16.9 1948 17.2 1921 16.7 2054 

Eastern Ghats 23.2 1329 24.5 1408 25.1 1419 25.4 1504 
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Table 5:Comparison of climate models in terms of temperature and precipitation values for B2a 

Scenario 

 

 Overall, all three models predict rise in temperature and precipitation levels by the 

year 2050. The two climate models viz., CGCM2, and CSIRO-MK2 are more inter-

correlated whereas HadCM3 tends to slightly differ, showing lower correlation with the 

above two models. A2a projections predict the rise in temperature and precipitation more 

than that of B2a projection for three climate models. 

5.3.2 Effects of Thresholding Techniques on Prediction of Potential Invasion Range 

 Table 6, table 7 and table 8 show the different thresholding techniques (fractional 

predicted area, training omission and test omission rate) along with AUC of the model for 

15 most noxious species. The thresholding technique was chosen based on results pointing 

to lower threshold values i.e. greater fractional predicted area, and the omission error 

nearing 0 values. The fractional predicted area and the AUC values were found higher for 

the minimum training presence method as well as the omission error was very low as 

compared to other techniques. 

Table 6: FIS associated values using minimum training presence technique 

B2 Scenario, 

Temperature  

(ºC ), Precipitation (mm) 

Present CGCM2 CSIRO-MK2 HADCM3 

 Temp

. 

Prec. Temp. Prec. Temp. Prec. Temp. Prec. 

Lower Western Ghats 18.38 2708 19.5 2716 19.6 2770 19.6 2802 

Vindhyan Plateau 25.44 924 27.1 1033 26.7 1049 26.7 994 

North East India 22.64 1862 24.1 1836 24.1 1860 24.3 2008 

Himalayan Foothills 14.87 1882 16.7 1932 16.4 1966 16.3 2002 

Eastern Ghats 23.2 1329 24.2 1516 24.4 1407 24.8 1539 

                                       Minimum Training Presence 

FIS Fractional 

Predicted Area 

Training 

Omission Rate 

Test Omission 

Rate 

AUC 

Ageratum conyzoides 0.910 0.000 0.000 0.899 

Bidenspilosa 0.472 0.000 0.125 0.944 

Cassia occidentalis 0.572 0.000 0.000 0.951 

Cassia tora 0.911 0.000 0.000 0.881 

Chromolaenaodorata 0.529 0.000 0.000 0.917 

Cyprus rotundus 0.837 0.000 0.016 0.918 

Ecliptaprostrata 0.670 0.000 0.000 0.909 

Eupatorium 

adenophorum 

0.026 0.000 0.000 0.994 

Euphorbia hirta 0.698 0.000 0.024 0.896 

Hyptissuaveolens 0.702 0.000 0.013 0.918 

Lantana camara 0.854 0.000 0.000 0.901 

Mikaniacordata 0.230 0.000 0.000 0.981 

Mimosa pudica 0.399 0.000 0.022 0.946 

Partheniumhysterophorus 0.606 0.000 0.000 0.946 

Prosopisjuliflora 0.505 0.000 0.026 0.943 
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Table 7: FIS associated values using 10 percentile training presence technique 

 

Table 8: FIS with associated values using Fixed cumulative value 1 technique 

 

5.3.3 Forest-Nonforest Change Scenario 

Fig. 11 shows the forest-nonforest map of India for the year 2001, 2006, 2011 and 

simulated map for 2050. Table 9 shows the forest-nonforest change occurred between year 

10 Percentile Training Presence  

FIS Fractional 

Predicted Area 

Training 

Omission 

Rate 

Test Omission 

Rate 

AUC 

Ageratum conyzoides 0.280 0.009 0.118 0.890 

Bidenspilosa 0.149 0.086 0.321 0.950 

Cassia occidentalis 0.198 0.009 0.133 0.945 

Cassia tora 0.314 0.100 0.105 0.863 

Chromolaenaodorata 0.159 0.100 0.140 0.924 

Cyprus rotundus 0.200 0.100 0.159 0.923 

Ecliptaprostrata 0.249 0.098 0.250 0.921 

Eupatorium 

adenophorum 

0.029 0.053 0.000 0.941 

Euphorbia hirta 0.287 0.099 0.145 0.865 

Hyptissuaveolens 0.218 0.099 0.103 0.904 

Lantana camara 0.354 0.100 0.090 0.847 

Mikaniacordata 0.031 0.099 0.296 0.970 

Mimosa pudica 0.133 0.097 0.203 0.918 

Partheniumhysterophorus 0.200 0.093 0.057 0.943 

Prosopisjuliflora 0.117 0.098 0.212 0.920 

Fixed Cumulative Value 1 

FIS Fractional 

Predicted Area 

Training 

Omission Rate 

Test Omission 

Rate 

AUC 

Ageratum conyzoides 0.752 0.004 0.007 0.894 

Bidenspilosa 0.677 0.000 0.000 0.901 

Cassia occidentalis 0.653 0.000 0.000 0.956 

Cassia tora 0.291 0.100 0.120 0.870 

Chromolaenaodorata 0.464 0.003 0.010 0.914 

Cyprus rotundus 0.583 0.002 0.014 0.909 

Ecliptaprostrata 0.755 0.000 0.000 0.847 

Eupatorium adenophorum 0.403 0.000 0.000 0.961 

Euphorbia hirta 0.664 0.002 0.007 0.874 

Hyptissuaveolens 0.500 0.006 0.015 0.915 

Lantana camara 0.691 0.006 0.013 0.838 

Mikaniacordata 0.223 0.000 0.028 0.972 

Mimosa pudica 0.549 0.000 0.020 0.911 

Partheniumhysterophorus 0.671 0.000 0.000 0.936 

Prosopisjuliflora 0.573 0.000 0.000 0.937 
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2001 and year 2006 and between year 2006 and year 2011. Different date forest-nonforest 

maps are based on MODIS 250 m LULC layers. The forest-nonforest scenario for the year 

2050 was simulated using ANN in Land Change Modeller module in IDRISI Taiga 

software. The model training accuracy for the year 2011 based on forest-nonforest for the 

year 2001 and year 2006 was found 93% which indicate very good model prediction. The 

trained ANN model was used to simulate forest-nonforest scenario for the year 2050.  

Table 9: Forest-Nonforest area in 2001, 2006 and 2011 and predicted area for 2050 

 

 

Figure 11: Forest-Nonforest maps of India for year 2001, 2006, 2011(MODIS) and 2050 (simulated) 

 

5.3.4 Potential InvasionRange of FIS in 2050 A2a & B2a Scenarios 

 This section presents the potential invasion range of 15 most noxious FIS 

predicted for the year 2050 (A2a and B2a scenarios) using MaxEnT.  

5.3.4.1 Ageratum conyzoides (Dochunti) 

 

Under A2a and B2a scenarios climate ensemble predicted prominent increase in the 

suitable area in North-East under A2a scenario and in Himalayas under B2a scenario. The 

area transforming from non-suitable to suitable under A2a scenario was 1, 09,733 km2 and 

from suitable to non-suitable was 1, 38,389km2. Under B2a scenario the area transforming 

from non-suitable to suitable was 1, 11,999 km2 and from suitable to non-suitable under B2a 

scenario was 1, 29, 252km2. A loss of habitat for the FIS in Deccan Peninsula both for A2a 

and B2a scenario was observed. Fig. 12 shows the current and future potential distribution 

of Ageratum conyzoides. 

Classes (Area in 

Km2) 

2001 2006 2011 2050 

Forest /Grassland  7, 25,926 11, 45,922 12, 03,626 11,82,675 

Non-Forest 19, 95,535 21, 57,840  21, 00,136 21, 21,087 

Total area 33, 03,762 33, 03,762 33, 03,762 33, 03,762 

(a) (b) (c) (d) 
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Figure 12: Area predicted suitable for Ageratum conyzoides in (a) current & ensemble A2a (b) B2a 

(c) 

5.3.4.2 Bidenspilosa (Black jack) 

 

An increase in the suitable habitat in Himalaya and semi-arid regions and loss in 

habitat in north-east India was predicted by the climate ensemble under A2a scenario. 

However, under B2a scenario ensemble predicted increase in the suitable habitat in 

Himalaya and semi-arid regions. The area transformed from non-suitable to suitable under 

A2a scenario was 1, 80, 941km2 from suitable to non-suitable was 96, 046 km2. Under B2a 

scenario the predicted area transformed from non-suitable to suitable was 1, 69,737 km2 and 

from suitable to non-suitable was 97, 840 km2. Fig. 13 shows the current and future 

potential distribution of Bidens pilosa. 

Figure 13: Area predicted suitable for Bidenspilosa in (a)current, ensemble A2a (b) B2a (c) 

5.3.4.3 Cassia occidentalis(Coffee weed) 

Under both the scenarios climate ensemble predicted an increase in the suitable area 

in Indo-Gangetic Plains, Deserts and Deccan Peninsula. The shift from suitable to non-

suitable habitat was predicted in North-East, Western Himalayas, Eastern Himalayas, 

Central, Eastern and Southern Highlands of Deccan Peninsula under A2a scenario and 

Western Himalayas, Eastern Himalayas, Semi-Arid and North-East and Central, Eastern and 

Southern Highlands of Deccan Plateau under B2a scenario. Fig. 14 shows the current and 

future potential distribution of Cassia occidentalis. 

(a) (b) (c) 

(a) (b) (c) 
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Figure 14: Area predicted suitable for Cassia occidentalis in (a) current, ensemble A2a (b) B2a (c) 

 

5.3.4.4 Cassia tora(Coffee pod) 

 

Indo-Gangetic Plains, North-East, and Deserts were predicted with a decrease in the 

habitat area while Deccan Peninsula with increase in habitat under A2a scenario. Deserts, 

Indo-Gangetic Plains and Central Deccan peninsula on the other hand showed a predicted 

increase in habitat under B2ascenario.  The area transformed from non-suitable to suitable 

under A2a scenario was 3, 74, 137km2 and from suitable to non-suitable was 1, 99,965 km2. 

Under B2a scenario the area transformed from non-suitable to suitable was 1, 00,115 km2 

and from suitable to non-suitable was 1, 20,855 km2 respectively. Fig.15 shows the current 

and future potential distribution of Cassia tora. 

 

Figure 15: Area predicted suitable for Cassia tora in (a) current, ensemble A2a (b) B2a (c) 

 

5.3.4.5 Chromolaenaodorata(Siam weed) 

 

Decrease in the suitable area under both the scenarios was only predicted in Semi-

Arid regions. The area transformed from non-suitable to suitable under A2a scenario was 

65, 312 km2 and from suitable to non-suitable was 1, 02,074 km2. Under B2a scenario the 

area transformed from non-suitable to suitable was 74, 441 km2. Similarly the area 

(a) (b) (c) 

(a) (b) (c) 
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transformed from suitable to non-suitable was 1, 03,722 km2. Fig. 16 shows the current and 

future potential distribution of Chromolaenaodorata 

 

Figure 16: Area predicted suitable for Chromolaenaodorata in (a) current, ensemble A2a (b) B2a (c) 

5.3.4.6 Cyperusrotundus(Nut grass) 

 

Under A2a and B2ascenario climate ensemble predicted shift from non-suitable to 

suitable habitats in Deccan Peninsula including Eastern Highland and Chota Nagpur Plateau 

and the Southern Highlands of Deccan Peninsula, East Himalayas and North-East regions. 

Habitat reduction is noticed in Deccan Peninsula, North-East and some parts of Himalayas. 

Fig. 17 shows the current and future potential distribution of Cyperusrotundus. 

 

Figure 17: Area predicted suitable for Cyperusrotundus in (a) current, ensemble A2a (b) B2a (c) 

5.3.4.7 Eclipta prostrate (Bhringraj) 

Under A2a scenario climate ensemble predicted a decrease in habitat area in Indo-

Gangetic and North-East regions of the country. Under B2a scenario it predicted a decrease 

in habitat area in Semi-Arid and Deccan Peninsula regions of the country. The area 

transformed from non-suitable to suitable under A2a scenario was 1, 22,321 km2. Similarly 

the area transformed from suitable to non-suitable was 2, 70,752 km2. Under B2a scenario 

the area transformed from non-suitable to suitable was 1, 65,447 km2 and from suitable to 

non-suitable was 2, 17,000 km2. Fig. 18 shows the current and future potential distribution. 

(a) (b) (c) 

(a) 
(b) (c) 



33 
 

 

Figure 18:  Area predicted suitable for Ecliptaprostrata in (a) current, ensemble A2a (b) B2a (c) 

5.3.4.8 Eupatorium adenophorum(Crofton weed) 

A shift from non-suitable to suitable habitat in North West, West and East 

Himalayas along with North East with an area change of 14, 732 km2 was predicted under 

A2a scenario. Change from suitable to non-suitable habitat was predicted in North West 

Himalayas and North East with an area change of 9018 km2. Under B2a scenario shift from 

non-suitable to suitable habitat in Deccan Peninsula, Deserts, Himalayas, Western Ghats, 

Deserts and Semi-Arid with an area change of   1, 11,552 km2 is observed. Change from 

suitable to non-suitable habitat was predicted in Deserts, Semi-Arid regions, Deccan 

Peninsula, Gangetic Plains North-West Himalayas. Area changed is 1, 75, 457 km2. Fig. 19 

shows the current and future potential distribution of Eupatorium adenophorum.  

 

Figure 19: Area predicted suitable for Eupatorium adenophorum (a) current, ensemble A2a (b) B2a 

(c) 

5.3.4.9 Euphorbia hirta(Asthma weed) 

Under A2a scenario climate ensemble predicted decrease in the suitable area in 

Indo-Gangetic-regions and Himalayas and an increase in North-East and Deserts. Under 

B2a scenario it predicted a decrease in the suitable area in Indo-Gangetic-regions. The area 

transformed from non-suitable to suitable under A2a scenario was 1, 19, 069 km2 and from 

suitable to non-suitable was 1, 72, 250 km2 while under B2a as 1, 11,552 km2 and 1, 75, 457 

(a) (b) (c) 

(a) (b) (c) 
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km2 respectively. Fig. 20 shows the current and future potential distribution of Euphorbia 

hirta. 

 

Figure 20: Area predicted suitable for Euphorbia hirtain (a) current, ensemble A2a (b) B2a (c) 

5.3.4.10 Hyptissuaveolens(Vilayatitulsi) 

A prominent decrease in the suitable area in Indo-Gangetic regions and Deccan 

Peninsula was predicted under both the climate change scenarios. The predicted area of 

transformation from non-suitable to suitable under A2a scenario was 57,433 km2. Similarly 

the area transformed from suitable to non-suitable was predicted as1, 72, 250 km2. Under 

B2a scenario the area transformed from non-suitable to suitable was 64, 434 km2 and from 

suitable to non-suitable was 1, 62,188 km2. Fig. 21 shows the current and future potential 

distribution of Hyptissuaveolens. 

 

Figure 21: Area predicted suitable for Hyptissuaveolens in (a) current, ensemble A2a (b) B2a (c) 

5.3.4.11 Lantana camara(Wild sage) 

Under A2a scenario climate ensemble predicted a shift from non-suitable to suitable 

habitat in Deccan Peninsula, Semi- Arid and Himalaya. Area changed was predicted as 72, 

437 km2. Change from suitable to non-suitable was predicted in Deccan Peninsula, Semi-

Arid, Himalaya, and Western Ghats. Predicted area changed was 1, 69,156 km2. Under B2a 

scenario it predicted a shift from non-suitable to suitable habitat in Deccan Peninsula, Semi- 

Arid, North-East, Himalaya along with North-East. Area changed was 1, 11,399 km2. 

(a) (b) (c) 

(a) (b) (c) 
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Change from suitable to non-suitable habitat is shown in Deccan Peninsula, Semi-Arid, 

North-East, Himalaya, and Western Ghats with an area change of 1, 64, 750 km2 Fig. 22 

shows the current and future potential distribution of Lantana camara. 

 

Figure 22: Area predicted suitable for Lantana camara in (a) current, ensemble A2a (b) B2a (c) 

 

 

5.3.4.12 Mikaniacordata(Heartleaf hempvine) 

Under A2a and B2a scenario the climate ensemble predicted a prominent increase in 

the suitable area in Himalayas and some parts of North-East. The area transformed from 

non-suitable to suitable under A2a scenario is 23, 332 km2 and from suitable to non-suitable 

is 19, 253 km2. Similarly, under B2a scenario as 26, 233 km2 and 22, 365 km2 respectively. 

Fig. 23 shows the current and future potential distribution of Mikaniacordata. 

 

Figure 23: Area predicted suitable for Mikaniacordata in (a) current, ensemble A2a (b) B2a (c) 

5.3.4.13 Mimosa pudica(Touch me not) 

A decrease in suitable habitat was predicted in semi-Arid regions, Deccan Peninsula 

and Indo-Gangetic Plains under A2a scenario by the climate ensemble. Whereas, under B2a 

scenario it predicted a decrease in Indo-Gangetic plains and Deccan Peninsula. The area 

transformed from non-suitable to suitable under A2a scenario was predicted to be 1, 07,047 

(a) (b) (c) 

(a) (b) (c) 
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km2 and from suitable to non-suitable as 1, 11,709 km2 and under B2a as 1, 08, 757 km2 and 

1, 32, 729 km2respectively. Fig. 24 shows the current and future potential distribution. 

 

Figure 24: Area predicted suitable for Mimosa pudica in (a) current, ensemble A2a (b) B2a (c) 

 

 

5.3.4.14 Partheniumhysterophorus(Congress grass) 

Under A2a scenario climate ensemble predicted a decrease in the suitable habitat in 

Semi-Arid and Deccan Peninsula, while increase in Central Deccan Peninsula. Under B2a it 

predicted decrease in the suitable area in Semi-Arid regions and Deccan Peninsula. The area 

transformed from non-suitable to suitable under A2a scenario was 97, 799 km2 and from 

suitable to non-suitable was 91, 251 km2. Similarly under B2a scenario the area transformed 

was 1, 22, 092 km2 and 1, 32, 729 km2 respectively. Fig. 25 shows the current and future 

potential distribution of Partheniumhysterophorus. 

 

Figure 25: Area predicted suitable Partheniumhysterophorus (a) current, ensemble A2a(b) B2a(c) 

5.3.4.15 Prosopisjuliflora(Vilayati babul) 

The climate ensemble predicted a decrease in the suitable area in Semi-Arid regions 

and some parts of Deccan Peninsula under A2a scenario. Under B2a scenario it predicted a 

decrease in the suitable area in Semi-Arid regions. The area transformed from non-suitable 

to suitable under A2a scenario was predicted as 60, 867 km2 and from suitable to non-

(a) (c) 

(a) (b) (c) 

(b) 
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suitable as 64, 435 km2. Similarly under B2a scenario the area transformed was predicted as 

63, 232 km2 and 76, 687 km2. Fig. 26 shows the current and future potential distribution. 

Figure 26: Area predicted suitable for Prosopisjuliflora in (a) current, ensemble A2a (b) B2a (c) 

The area suitable for the occurrence of selected FIS is shown in table for 2050 A2a and B2a 

scenarios is represented in table 10 and table 11.  

Table 10: Area predicted suitable for FIS 2050 A2a scenario 

FIS  Present CGCM2 CSIRO-mk2 HADCM3 Ensemble 

Ageratum conyzoides 5, 83,877 5,92,778 6,10,366 5, 92, 133 5,90,134 

Bidenspilosa 3, 83,442 4,52,506 4,40,203 5, 10, 987 5,06,950 

Cassia occidentalis 4, 22,865 4,94,294 4,89,137 4, 25, 887 4,59,445 

Cassia tora 7, 05,124 7,21,814 7,52,508 8, 22, 767 8,02,282 

Chromolaenaodorata 3, 76,690 3,69,805 4,48,542 3, 20, 223 3,50,331 

Cyprus rotundus 4, 59, 064 4,24,192 4,04,948 4, 30, 224 4,12,900 

Ecliptaprostrata 6, 96,822 6,39,425 4,27,766 5, 20, 667 5,48,551 

Eupatorium 

adenophorum 

30, 431 36,665 34,353 48, 567 42,765 

Euphorbia hirta 7, 46,851 6,74,669 7,19,510 6, 75, 778 6,95,185 

Hyptissuaveolens 5, 46,851 4,07,891 4,28,233 3, 90, 678 3,96,204 

Lantana camara 9, 03,341 9,10,110 9,37,191 9, 05, 346 9,06,784 

Mikaniacordata 85,210 90,164 95,884 87, 327 88,845 

Mimosa pudica 3, 41,484 3,34,446 3,30,545 3, 10, 674 3,22,671 

Partheniumhysterophorus 2, 03,749 2,00,753 2,27,040 2, 00, 000 2,00,083 

Prosopisjuliflora 3, 36,045 3,37576 3,31,908 3, 30, 234 3,32,556 

 

Table 11: Area predicted suitable for FIS 2050 B2a scenario 

FIS  Present CGCM2 CSIRO-

mk2 

HADCM3 Ensemble 

Ageratum conyzoides 5, 83,877 5,97,071 6,33,482 6, 22, 567 6,05,408 

Bidenspilosa 3, 83,442 4,02,084 4,72,405 4, 56, 234 4,55,611 

Cassia occidentalis 4, 22,865 4,27,325 4,90,767 5, 09, 213 4,95,977 

Cassia tora 7, 05,124 7,37,423 7,58,567 7, 78, 998 7,73,970 

Chromolaenaodorata 3, 76,690 3,77,916 3,82,671 3, 42, 231 3,52,943 

Cyprus rotundus 4, 59, 064 4,11,895 4,38,059 4, 06, 657 4,07,112 

Ecliptaprostrata 6, 96,822 5,83,979 4,66,667 6, 66, 547 6,45,447 

(a) (b) (c) 
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Eupatorium 

adenophorum 

30, 431 48,893 41,023 38, 756 34,681 

Euphorbia hirta 7, 46,851 6,52,566 7,55,766 7, 39, 354 6,84,955 

Hyptissuaveolens 5, 46,851 4,00,440 4,17,573 3, 67, 254 3,85,944 

Lantana camara 9, 03,341 9,10,980 9,23,429 9, 56, 398 9,48,032 

Mikaniacordata 85,210 92,985 89,602 89, 992 88,713 

Mimosa pudica 3, 41,484 3,17,324 3,30,178 3, 40, 876 3,34,905 

Partheniumhysterophorus 2, 03,749 1,88,241 2,15,915 2, 70, 765 2,50,794 

Prosopisjuliflora 3, 36,045 3,24,085 3,36,321 3, 20, 097 3,22,653 

 

5.4 Model Validation for A2a and B2a climate change scenarios 

For the purpose of evaluation/validation of the model results, the AUC and TSS 

values for each of the models were considered (table 12, table 13). The AUC and TSS 

values for majority of the species were considerably high, therefore it means that MaxENT 

model shows perfect fit and provides unbiased predictions. 

 

Table 12: AUC/TSS scores for CGCM2, CSIRO-mk2, HADCM3 climate models for A2a scenario 

 A2a 

CGCM2 CSIRO-mk2 HADCM3 

S.No.  FIS AUC TSS AUC TSS AUC TSS 

1 Ageratum conyzoides 0.899 0.675 0.903 0.661 0.905 0.651 

2 Bidenspilosa 0.942 0.719 0.946 0.691 0.940 0.720 

3 Cassia occidentalis 0.952 0.727 0.949 0.720 0.945 0.708 

4 Cassia tora 0.875 0.677 0.871 0.672 0.874 0.685 

5 Chromolaenaodorata 0.932 0.789 0.928 0.786 0.931 0.795 

6 Cyprus rotundus 0.927 0.714 0.932 0.735 0.931 0.732 

7 Ecliptaprostrata 0.906 0.591 0.910 0.567 0.922 0.588 

8 Eupatorium adenophorum 0.986 0.751 0.994 0.784 0.996 0.786 

9 Euphorbia hirta 0.899 0.678 0.920 0.657 0.897 0.691 

10 Hyptissuaveolens 0.926 0.742 0.923 0.725 0.926 0.758 

11 Lantana camara 0.878 0.699 0.863 0.635 0.855 0.654 

12 Mikaniacordata 0.983 0.817 0.985 0.852 0.988 0.859 

13 Mimosa pudica 0.951 0.780 0.950 0.689 0.948 0.691 

14 Partheniumhysterophorus 0.953 0.705 0.962 0.684 0.963 0.692 

15 Prosopisjuliflora 0.948 0.785 0.946 0.726 0.948 0.765 

 

Table 13: AUC/TSS scores for CGCM2, CSIRO-mk2, HADCM3 climate models for B2a scenario 

 B2a 

CGCM2 CSIRO-mk2 HADCM3 

S.No.  FIS AUC TSS AUC TSS AUC TSS 

1 Ageratum conyzoides 0.903 0.715 0.899 0.691 0.895 0.682 

2 Bidenspilosa 0.951 0.681 0.943 0.713 0.944 0.689 

3 Cassia occidentalis 0.946 0.762 0.950 0.7351 0.949 0.732 

4 Cassia tora 0.875 0.684 0.870 0.678 0.872 0.673 
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5 Chromolaenaodorata 0.931 0.751 0.918 0.791 0.920 0.795 

6 Cyprus rotundus 0.931 0.702 0.931 0.713 0.935 0.737 

7 Ecliptaprostrata 0.907 0.631 0.920 0.642 0.909 0.612 

8 Eupatorium adenophorum 0.997 0.742 0.996 0.754 0.995 0.821 

9 Euphorbia hirta 0.899 0.667 0.897 0.668 0.902 0.666 

10 Hyptissuaveolens 0.929 0.703 0.926 0.743 0.906 0.724 

11 Lantana camara 0.871 0.654 0.862 0.675 0.864 0.593 

12 Mikaniacordata 0.985 0.823 0.983 0.812 0.984 0.845 

13 Mimosa pudica 0.952 0.801 0.947 0.809 0.950 0.821 

14 Partheniumhysterophorus 0.960 0.712 0.951 0.703 0.958 0.732 

15 Prosopisjuliflora 0.950 0.723 0.939 0.713 0.944 0.709 

 

5.5 FIS Range Shift 

 Table 14, 15 and Fig. 25, 26 represents the change (increase or decrease) in the 

range of FIS in each of the forest type class. Whereas Table 16, 17 and Fig. 27, 28 makes 

representation for 10 biogeographic zones of the country under A2a and B2a climate change 

scenarios respectively.  

It is observed that under A2a scenario majority of the FIS showed increase in 

potential distribution ranges than reported under B2a scenario. As A2a scenario considers an 

unrestricted rise in CO2 emissions, high population growth, increase in energy levels and 

slow technological changes leading to more harsh conditions for the native species to 

survive and compete. This would give opportunities for the invasive species to invade into 

newer ecosystems and show increase in the distribution ranges. On the contrary B2a 

scenario reflects moderate increase in CO2 emissions and growing trend towards 

environmental protection and social equity giving fewer opportunities for the invasive 

species to increase in their potential distribution range as compared to A2a scenario.
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Table 14: Range shift of 15 FIS with in different forest types in A2a scenario 

FIS  Area (km2) 

evergreen 

broad leaf 

forest 

deciduous 

needle leaf 

forest 

deciduous 

broad leaf 

forest 

Mixed 

forest 

close 

shrubland 

open 

shrubland 

woody 

grassland 

savannah grasslands 

Ageratum conyzoides 2281 0 1736 4953 172 -202 11903 28 -349 

Bidenspilosa -5347 3 -413 23 -114 -441 -8059 -67 76 

Cassia occidentalis 5215 3 1598 8137 234 6459 30558 42 2323 

Cassia tora -12880 4 5660 16658 528 -13365 77357 136 49 

Chromolaenaodorata 12691 0 -34 -405 72 292 2908 96 107 

Cyperusrotundus 1197 1 853 5132 108 4531 15834 12 1451 

Ecliptaprostrata 5054 0 2134 2746 283 5360 22271 270 1198 

Eupatorium 

adenophorum 

70 2 -2 -2827 7 10 -626 -4 334 

Euphorbia hirta -2135 -1 1030 611 103 -827 9406 -4 571 

Hyptissuaveolens 610 1 711 4402 222 1079 21711 77 1212 

Lantana camara 4709 4 1603 4188 145 2591 22690 116 1670 

Mikaniacordata -378 0 22 220 5 -32 -1486 7 -75 

Mimosa pudica 3921 0 791 2915 72 311 6771 125 56 

Partheniumhysterophorus 254 0 -325 -2448 11 523 -823 1 -403 

Prosopisjuliflora 3 2 105 34 10 1410 -402 -31 477 

 

 

 

Table 15: Range shift of 15 FIS with in different forest types in B2a scenario 
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FIS  Area (km2) 

evergreen 

broad leaf 

forest 

deciduous 

needle 

leaf forest 

deciduous 

broad 

leaf forest 

Mixed 

forest 

close 

shrubland 

open 

shrubland 

woody 

grassland 

savannah grasslands 

Ageratum conyzoides 2474 -1 1263 -1848 36 -518 1629 -39 -704 

Bidenspilosa 7896 -4 -700 -12644 -132 -1206 -11327 -22 -2139 

Cassia occidentalis 5084 2 2073 9218 325 10615 39036 145 2914 

Cassia tora 433 -4 -126 -58 -22 -1645 4727 43 -63 

Chromolaenaodorata 9580 0 13 -782 27 99 5045 79 22 

Cyperusrotundus 1735 0 1193 6673 95 3849 18567 13 1536 

Ecliptaprostrata 1002 4 1848 2637 260 131 9003 103 1005 

Eupatorium 

adenophorum 

1091 1 5 -63 18 13 793 -2 371 

Euphorbia hirta -265 0 626 1409 57 37 6303 -2 613 

Hyptissuaveolens 623 -1 516 4138 150 1187 22376 76 1021 

Lantana camara 591 3 1343 9 101 2469 17438 77 1871 

Mikaniacordata 780 0 21 393 -8 -111 -160 -1 -230 

Mimosa pudica 4098 -3 -417 1063 4 347 1907 62 -36 

Partheniumhysterophorus 185 -1 -1368 -9431 -103 739 -9737 -22 -1052 

Prosopisjuliflora 2 0 105 261 7 5423 -523 -21 558 
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Figure 27: Range shift of 15 FIS with in different forest types in A2a scenario 
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Figure 28: Range shift of 15 FIS with in different forest types in B2a scenario 
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Table 16: Range shift of 15 FIS with in different Bio-geographic zones in A2a scenario 

 

 

 

 

 

FIS Area (km2) 

Trans-

Himalayas 

Himalaya Semi-

Arid 

Gangetic 

Plains 

Desert North-

East 

Deccan 

Peninsula 

Coasts Islands Western 

Ghats 

Ageratum conyzoides 0 4666 4969 -369 -1257 2086 12678 -53 -586 5100 

Bidenspilosa 8 2229 4755 -230 0 -160 36712 0 1 3011 

Cassia occidentalis 90 3229 3755 -130 0 160 38712 0 0 7011 

Cassia tora 66 1456 -22442 15649 30559 31810 -79434 189 93 -3505 

Chromolaenaodorata 0 1343 0 -4687 0 -10059 -6477 26 -239 -16977 

Cyperusrotundus 0 2617 14578 2129 4901 312 42818 0 12 5 

Ecliptaprostrata 293 -5263 -60773 -4571 -6917 -7940 -54444 -502 3849 -7476 

Eupatorium adenophorum 0 6281 439 3139 0 1321 0 0 0 0 

Euphorbia hirta 0 -978 3992 5323 -1049 -6841 50362 -15 -10 -493 

Hyptissuaveolens 0 -840 -21456 -2715 -1 -1725 -57000 0 4 -108 

Lantana camara 0 3546 10503 -86 -160 4431 40534 0 4 2765 

Mikaniacordata 0 882 0 -242 0 2620 -29 0 0 0 

Mimosa pudica 0 190 -3373 -2668 -3 -3556 -2111 -65 -86 -7227 

Partheniumhysterophorus 175 4630 -8270 -1251 169 -307 -1334 4 0 -456 

Prosopisjuliflora 0 -121 -6475 1923 5465 -87 -4230 0 0 -38 
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Table 17: Range shift of 15 FIS with in different Bio-geographic zones in B2a scenario 

FIS Area (km2) 

Trans-

Himalayas 

Himalaya Semi-

Arid 

Gangetic 

Plains 

Desert North-

East 

Deccan 

Peninsula 

Coasts Islands Western 

Ghats 

Ageratum conyzoides 0 2728 188 427 -3 -1156 17338 60 230 -2827 

Bidenspilosa 221 21105 16887 713 0 -19426 48920 0 13 -348 

Cassia occidentalis 430 4736 38741 5309 15865 9992 96136 165 54 2513 

Cassia tora 0 -3983 -16491 -703 2731 -971 193 0 69 -1821 

Chromolaenaodorata 0 863 0 -4370 0 -7709 2251 0 -128 -15103 

Cyperusrotundus 0 2448 12574 3330 3703 4838 42761 1 10 0 

Ecliptaprostrata 681 -8363 -63981 10885 998 1404 15118 -367 1319 -5944 

Eupatorium adenophorum 0 -126 -27 1963 0 -3515 -173 0 0 -5 

Euphorbia hirta 0 -690 -19742 -5563 2068 955 -40925 15 10 1977 

Hyptissuaveolens 0 -844 -25661 -2165 -1 -934 -65055 0 0 -193 

Lantana camara 0 8796 39461 1584 17 7353 88504 0 7 10406 

Mikaniacordata 0 483 0 62 0 2547 -29 0 0 0 

Mimosa pudica 0 3898 -3550 -1395 -3 -6934 7663 117 -33 -7144 

Partheniumhysterophorus 156 6666 -7136 458 -70 -414 44735 0 0 36 

Prosopisjuliflora 0 -539 -13049 2564 -698 -87 -375 0 0 117 
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Figure 29: Range shift of 15 FIS with in different Bio-geographic zones in A2a scenario 
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Figure 30: Range shift of 15 FIS with in different Bio-geographic zones in B2a scenario 
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5.6 Discussion 

Over last few decades, the rapid spread of invasive has drawn the attention of 

researchers and resource managers. The knowledge about the geographical areas which 

could be infested by the large number of potential invasive species is critically required. 

Therefore, it becomes essential to model and identify the hotspots of plant invasion to carry 

out pre-emptive management of the regions that are under severe threat of invasion or 

susceptible to establishment in future under projected climate change. The invasion hotspots 

are not often not easy to identify due to the lack of occurrence data on invasive species 

across the country. 

The results demonstrated the hotspots with more than 75 species found together are 

located in semi-arid regions and northern eastern part of Deccan Peninsula biogeographic 

zones. The species in the region are resistant to high temperature and precipitation and are 

predicted to show increase in their potential suitable habitat. 

It is evident that change in the climatic conditions might change the distribution 

patterns of existing invasives. This study has tried to predict possible shift in the 

geographical range of selected most noxious FIS using projected climate change scenarios. 

Various available atmosphere-ocean global circulation models (AOGCMs) have varying 

impact on the projected species range. The three widely used AOGCMS namely: CGCM2, 

CSIRO-mk2 and HADCM3 averaged from 2040 to 2069 (‘2050’) were used. These global 

models however showed differences in their climatic parameters such temperature and 

precipitation for Indian regions. It was observed that out of the three models the predictions 

were similar in case of CGCM2 and CSIRO-mk2 than HADCM3 under climate change 

scenarios. To overcome the contradictions in predictions of species range using different 

climate models, ensemble method was used. It integrated multiple climate models 

highlighting the regions of agreement based on AUC weights to provide more realistic 

predictions. It was observed that FIS such as Eclipta prostrate, Euphorbia hirta, 

Cyperusrotundus and Hyptis suaveolens were predicted with reduction in their potential 

habitat while the other FIS were predicted to increase in their potential habitat under climate 

change scenarios. The study revealed that along with climate change, the landscape 

heterogeneity including forest-nonforest change helped in refining the future potential range 

shift of FIS. The percentage contribution of forest-nonforest change in the model predictions 

for future varied from 10 % to 35%. 

Not all FIS were considered for range shift analysis, 15 most noxious and 

aggressive species were considered based on literature survey and consultation. The range 

shift information generated for these FIS under future climate scenarios using ensemble 

forecast projections would be useful for the forest managers and policy makers in selecting 

the sites for urgent monitoring and designing local, regional and national level integrated 

management strategies for biodiversity conservation. The study also identified FIS species 

that can show significant reduction in their potential geographic distribution creating 

opportunities for ecosystem restoration. Under A2a scenario the species that were predicted 

to show maximum change in their habitat (increase or decrease) included Hyptissuaveolens, 

Bidenspilosa, Lantana camara, Euphorbia hirta, Cassia tora and Cassia occidentalis, 

Ecliptaprostrata and Chromolaena odorata. However under B2a scenario the species 
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predicted with maximum change in their habitat included Bidenspilosa, Hyptissuaveolens, 

Cassia occidentalis, Cassia tora, Ageratum conyzoides, Euphorbia hirta and 

Ecliptaprostrata. 

While dealing at national level, it becomes essential to target the ecosystems and 

regions that have varying ecoclimatic structure and that would be most affected by the 

invasion process. The future range shift was therefore studied for the forested ecosystems 

and the biogeographic zones across the country. It was observed that the maximum range 

shift for the species under A2a and B2a scenario took place in evergreen broad leaf, 

deciduous broad leaf, mixed forest, woody grasslands and open shrublands with a canopy 

closure ranging between 0 and 50%. On the other hand the biogeographic zones that 

encountered maximum range shift of the species included Deccan Peninsula, Western 

Ghats, Himalaya, semi-arid and the regions of North-East India. The information generated 

emphasises to adopt more strict conservation practices in the vulnerable forest types and 

biogeographic zones for protecting and restoring the native diversity. 

Apart from the merits of the study there are few limitations of the study too. The 

study considered climate, landscape heterogeneity and topography i.e. the abiotic factors as 

the variables for the prediction of potential distribution of invasives. The SDMs does not 

take into consideration, the biotic interactions and the dispersal mechanism (Gaston and 

Fuller, 2009). It was assumed the species to be in dynamic equilibrium with the 

environment which might not be true for the recently introduced invasive species into newer 

ecosystems (Bellard et al., 2013). The presence of suitable potential environment does not 

lead to immediate establishment of any new invader, although the SDMs fail to incorporate 

it and might lead to over predictions. 

The present thesis has addressed the following research questions: 

1. What is the levels of uncertainty associated climatic data models, and thresholding 

techniques used for predicting invasion? 

 

Most of the global climate models differ from each other due to difference 

in their assumptions and the interpolation techniques. It was observed that in Indian 

context, CGCM2 and CSIRO-mk2 climate models are highly correlated while show 

less correlation with HADCM3. The predictions of HADCM3 model therefore 

slightly differs from the other two models. Apart from the uncertainties in the 

climate models yet another uncertainty arises about appropriate inference based on a 

suitable thresholding technique for MaxEnT model. Taking into consideration 

relative commission and omission errors, the technique was adopted for the methods 

that resulted in lower threshold values i.e. wide distribution of habitat and close to 

zero omission error. Comparatively the fractional predicted area and the AUC 

values for “minimum training presence” was higher as well as omission error was 

very low as compared to the results obtained from the other techniques. Therefore, 

this technique was considered more relevant to incorporate least uncertainty in the 

prediction. 
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2. Does an ensemble overcome the predictive uncertainties of future climate change 

projections? 

To overcome the contradictions between the predictions of different climate 

models, a consensus method was used. It integrated the results of multiple 

individual climate models highlighting the regions of agreement based on weights. 

Therefore, while the ensemble model combined different model predictions they 

provided a more realistic species distribution simulation. However, it was noticed 

that ensemble maps did not significantly outperformed any single model 

predictions. The extent to which an ensemble model might outperform a single 

model is still under debate (Marmion et al. 2009).It is clear that the ensembling 

helps in overcoming the predictive accuracy of individual model. Although, the use 

of extremely less correlated model should be avoided to prevent over prediction.  

3. Does inclusion of landscape heterogeneity and soil characteristics help SDM in 

improving prediction of potential spread of invasive? 

 

It was observed that variation in soil type at order level plays less to 

moderate role in improving the predictive accuracy of the model. Forest-nonforest 

change and forest density on the other hand showed high contribution in predicting 

the potential spread of the selected invasive species marked with high AUC values. 

The species included Ageratum conyzoides, Bidenspilosa, Chromolaenaodorata, 

Eupatorium adenophorum, Hyptissauveolens, Lantana camara, Mikaniacordataand 

Partheniumhysterophorus.While for the remaining species it showed moderate 

contribution. These results were drawn using the jack-knife method. Therefore, it is 

analysed that landscape heterogeneity plays an important role while soil 

characteristics play less role in improving the prediction of potential spread of 

invasives. 

 

 

 

 

 

 

 

 

 



51 
 

Chapter 6 - CONCLUSION& RECOMMENDATIONS 

 

6.1 Conclusion 

Species distribution modelling is becoming an increasingly important tool in the 

field of conservation biology. Species distribution models provide a much better 

approximation of the invasive species distribution over currently largely unknown 

geographic limits. In this thesis, the hotspot of potential invasion derived through MaxEnT 

model is effective in considering the bias resulting due to false absence as a result of under 

sampling. Further, MaxEnT was used to obtain potential distribution of the selected noxious 

species invading various parts of the country under current and future climate projections. 

The outcomes of the study comprise the knowledge on the current potential distribution of 

hotspots of species and as well as ensemble potential invasion maps for the future climatic 

projections.  The shift in the geographic range of the noxious invasive species in each of the 

biogeographic zones and forest type gives valuable information to prioritize pre-response 

and surveillance strategies. 

We found out that change in climate regimes have profound impact on the 

ecosystems, creating suitable environment for the invasive species to establish and spread. 

The species range shift in future therefore is closely associated with the climate change and 

is adequately significant. The projected climate change can alter the potential habitats of the 

species forcing them to acquire new areas or shrink in their existing habitats. Through this 

study we provide a new picture of present and future invasion highlighting the response of 

the invasive species in different forest types and biogeographic regions. The information can 

be used by the policy makers and the land managers for preparation of appropriate 

eradication and management strategies to check future loss of biodiversity. 

6.2 Recommendations: 

The following recommendations are proposed from the present study: 

 

 The current and future potential distribution maps of the most noxious FIS in India, 

produced in the following study can be used at regional or local level by the forest 

departments and resource managers for devising conservation strategies. 

 The results from the study gives useful inputs to the Ministry of Environment, 

Forest and Climate Change (MoEF) to take up the eradication of few invasive 

species more seriously based on their future potential spread and consider them 

seriously while formulating the management plans. 

 The potential distribution of various FIS should be validated with the actual 

distribution on ground; this would be helpful for the forest officers to arrest the loss 

of biodiversity and therefore take necessary eradication measures. 

 The species occurrence database should be made rich with more number of species 

occurrence points since the SDM’s highly depends upon the sample size and their 

spatial occurrence. 
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Appendix-1 

 

Selected species description 

 Sno Species Family Habit Nativity 

1 Acacia farnesiana Mimosacceae Tree Trop. South America 

2 Acanthospermumhispidum Asteraceae Herb Brazil 

3 Achyranthesaspera Asteraceae Herb Brazil 

4 Ageratum conyzoides Asteraceae Herb Trop. America 

5 Ageratum houstonianum Asteraceae Herb Trop. America 

6 AlternantherapungensKunth Amaranthaceae Herb Trop. America 

7 Argemonemexicana Papaveraceae Herb 

Trop. Central & South 

America 

8 Asclepiascurassavica Asclepiadaceae Herb Trop. America 

9 Asphodelustenuifolius Liliaceae Herb Trop. America 

10 Bidenspilosa Asteraceae Herb Trop. America 

11 Blainvilleaacmella Asteraceae Herb Trop. America 

12 Blumeaeriantha Asteraceae Herb Trop. America 

13 Blumeaobliqua Asteraceae Herb Trop. America 

14 Borassusflabellifer Asteraceae Herb Trop. Africa 

15 Cardaminehirsuta Brassicaceae Herb Trop. America 

16 Cardaminetrichocarpa Brassicaceae Herb Trop. America 

17 Cassia absus Caesalpiniaceae Herb Trop. America 

18 Cassia alata Caesalpiniaceae Shrub West Indies 

19 Cassia obtusifolia Caesalpiniaceae Herb Trop. America 

20 Cassia pumila Caesalpiniaceae Herb Trop. South America 

21 Cassia tora Caesalpiniaceae Herb Trop. South America 

22 Cassia uniflora Caesalpiniaceae Herb Trop. South America 

23 Catharanthuspusillus Apocynaceae Herb Trop. America 

24 Celosia argentea Amaranthaceae Herb Trop. Africa 

25 Chamaesycehirta Euphorbiaceae Herb Trop. America 

26 Chloris barbata Poaceae Herb Trop. America 

27 Chromolaenaodorata Asteraceae Herb Trop. America 

28 Cleome monophylla Cleomaceae Herb Trop. Africa 

29 Cleome rutidosperma Cleomaceae Herb Trop. America 

30 Cleome viscosa Cleomaceae Herb Trop. America 

31 Corchorusaestuans Tiliaceae Herb Trop. America 

32 Corchorustridens Tiliaceae Herb Trop. Africa 

33 Corchorustrilocularis Tiliaceae Herb Trop. Africa 

34 Crotalaria retusa Papilionaceae Herb Trop. America 

35 Croton bonplandianum Euphorbiaceae Herb Temperate South America 

36 Cuscutachinensis Cuscutaceae Herb Mediterranean 

37 Cyperusdifformis Cyperaceae Herb Trop. America 

38 Cyperusiria Cyperaceae Herb Trop. America 

39 Cyperusrotundus Cyperaceae Herb Trop. America 

40 Cytisusscoparius Papilionaceae Herb Europe 

41 Daturainnoxia Solanaceae Shrub Trop. America 

42 Dicomatomentosa Asteraceae Herb Trop. Africa 

43 Digeramuricata Amaranthaceae Herb SW Asia 

44 Echinochloacrusgalli Poaceae Herb Trop. South America 

45 Echinopsechinatus Asteraceae Herb Afghanistan 

46 Ecliptaprostrata Asteraceae Herb Trop. America 
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47 Eupatorium adenophorum Asteraceae Herb Trop. America 

48 Euphorbia cyathophora Euphorbiaceae Herb Trop. America 

49 Galinosogaparviflora Asteraceae Herb Trop. America 

50 Hyptissuaveolens Lamiaceae Herb Trop. America 

51 Impatiens balsamina Balsaminaceae Herb Trop. America 

52 Indigoferaastragalina Papilionaceae Herb Trop. America 

53 Indigoferaglandulosa Papilionaceae Herb Trop. America 

54 Indigoferalinnaei Papilionaceae Herb Trop. Africa 

55 Ipomoea carnea Convolvulaceae Shrub Trop. America 

56 Ipomoea hederifolia Convolvulaceae Herb Trop. America 

57 Ipomoea pes-tigridis Convolvulaceae Herb Trop. East Africa 

58 Lagasceamollis Asteraceae Herb Trop. Central America 

59 Lantana camara Verbenaceae Herb Trop. America 

60 Leucaenaleucocephala Mimosacceae Herb Trop. America 

61 Ludwigiaadscendens Onagraceae Herb Trop. America 

62 Ludwigiaperennis Onagraceae Herb Trop. Africa 

63 Malvastrumcoromandelianum Malvaceae Herb Trop. America 

64 Martyniaannua Pedaliaceae Herb Trop. America 

65 Mecardoniaprocumbens Scrophulariaceae Herb Trop. North America 

66 Melilotus alba Papilionaceae Herb Europe 

67 Melochiacorchorifolia Sterculiaceae Herb Trop. America 

68 Merremiaaegyptia Convolvulaceae Herb Trop. America 

69 Mikaniamicrantha Asteraceae Climber Trop. America 

70 Mimosa pudica Mimosacceae Herb Brazil 

71 Mirabilis jalapa Nyctaginaceae Herb Peru 

72 Ocimumamericanum Lamiaceae Herb Trop. America 

73 Opuntiastricta Cactaceae Herb Trop. America 

74 Oxalis corniculata Oxalidaceae Herb Europe 

75 Partheniumhysterophorus Asteraceae Herb Trop. North America 

76 Passiflorafoetida Passifloraceae Herb Trop. South America 

77 Pedalium murex Pedaliaceae Herb Trop. America 

78 Peristrophepaniculata Acanthaceae Herb Trop. America 

79 Phyllanthustenellus Euphorbiaceae Herb Mascarene Islands 

80 Physalisangulata Solanaceae Herb Trop. America 

81 Portulacaoleracea Portulacaceae Herb Trop. South America 

82 Portulacaquadrifida Portulacaceae Herb Trop. America 

83 Prosopisjuliflora Mimosacceae Shrub Mexico 

84 Ruelliatuberosa Acanthaceae Herb Trop. America 

85 Saccharumspontaneum Poaceae Herb Trop. West Asia 

86 Salviniamolesta Salviniaceae Herb Brazil 

87 Scopariadulcis Scrophulariaceae Herb Trop. America 

88 Sesbaniabispinosa Papilionaceae Shrub Trop. America 

89 Solanumamericanum Solanaceae Herb Trop. America 

90 Solanumseaforthianum Solanaceae Climber Brazil 

91 Solanumtorvum Solanaceae Shrub West Indies 

92 Solanumviarum Solanaceae Herb Trop. America 

93 Sonchus asper Asteraceae Herb Mediterranean 

94 Sonchusoleraceus Asteraceae Herb Mediterranean 

95 Spermacocehispida Rubiaceae Herb Trop. America 

96 Stachytarphetajamaicensis Verbenaceae Herb Trop. America 

97 Synadeniumgrantii Euphorbiaceae Shrub Trop. America 

98 Tribulusterrestris Zygophyllaceae Herb Trop. America 

99 Tridaxprocumbens Asteraceae Herb Trop. Central America 

100 Triumfettarhomboidea Tiliaceae Herb Trop. America 
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101 Turneraulmifolia Turneraceae Herb Trop. America 

102 Urenalobata Malvaceae Shrub Trop. Africa 

103 Waltheriaindica Sterculiaceae Herb Trop. America 

104 Xanthium strumarium Asteraceae Herb Trop. America 

105 Youngia japonica Asteraceae Herb Trop. South America 
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Appendix-2 

Ecological specifications of the selected 15 most noxious invasive plant species for modelling under future scenario 

 

S.no. Species Habit Family Nativity Habitat Effected Climate 

       

1. Lantana camara 

(2706) 
Shrub Verbenaceae 

 

Trop. America 

 

Open unshaded situations- Wetlands, rain 

forest edges, forest recovering from fire, 

margins of the intact rain forests 

 

Tropical and Sub Tropical, less 

encountered in the temperate regions 

2. Chromolaenaodorata 

(1437) 
Herb Asteraceae 

 

Trop. America 

 

forests (annual rainfall 1500mm), grassland 

and arid bush veld (annual rainfall less than 

500mm) 

 

Tropical and Sub tropical, not suitable 

for Semi Arid and temperate climate 

 

3. Ageratum  conyzoides 

(982) 
Herb Asteraceae 

 

Trop. America 

 

natural forests agricultural areas, , planted 

forests, range/grasslands, riparian zones, 

ruderal/disturbed, scrub/shrublands, water 

courses, wetlands 

 

Suitable in Tropical and Sub Tropical 

climate 

4. Hyptissauveolens 

(840) 
Herb Lamiaceae 

 

Trop. America 

 

Scrubland, non marine, plain, wasteland, 

woodland 

 

 

Tropical and sub tropical 

5. Prosopisjuliflora 

(624) 
Shrub Mimosacceae 

 

Mexico saline and alkaline lands, eroded hills and 

ravines, along river beds, and dry and 

degraded wastelands, often where rainfall is 

low and variable 

 

Arid and Semi Arid climatic conditions 

6. Partheniumhysterophorous 

(186) 

Herb Asteraceae 

 

Trop. North 

America 

 

agricultural areas, range/grasslands, 

ruderal/disturbed, scrub/shrublands, urban 

areas, seasonal floodplains 

 

Semi-arid, subtropical, tropical and 

warmer  temperate regions 

7. Eupatorium adenophorum Shrub Asteraceae Trop. America Degraded slopes, disturbed areas, near Temeprate regions 



62 
  

(88)  urban regions. 

 

 

 

 

 

8. Cassiatora 

(1787) 
Herb Caesalpinaceae Trop. South 

America 

wasteland , degraded forest rainy season 

weed 

 

 

Tropical and Sub tropical climate 

 

9. Cassia occidentalis 

(146) 
Herb Caesalpinaceae Trop. South 

America 

Roadsides, waste areas, disturbed sites, 

pastures, grasslands, open woodlands 

 

Tropical, Sub tropical and Semi arid 

 

 

10. Bidenspilosa 

(106) 
Herb Asteraceae 

 

Trop.  

America 

 Herb Trop. America 
 

natural forests, planted forests, 

range/grasslands, riparian zones,  

agricultural areas, ruderal/disturbed, 

scrub/shrublands, urban areas, wetlands 

 

Tropical, Sub tropical and Temperate 

climatic conditions 

11. Mimosa pudica 

(528) 
Shrub Mimosacceae 

 

Trop. North 

America 

 

Wetlands and around dams and waterways, 

moist situations such as flood plains and 

river banks 

Mostly tropical, also sometimes found 

in moist situations such as 

floodplains and river banks 

 

12. Mikaniacordata 

(72) 

Vine, 

climber 

Asteraceae Trop. America natural forests, planted forests, agricultural 

areas, coastland, riparian zones, 

ruderal/disturbed, scrub/shrublands, urban 

areas, wetlands 

 

Tropical and sub tropical climatic 

conditions 

13. Cyperusrotundus 

(761) 
Herb Cyperaceae 

 

Trop. America 

 

open, disturbed habitats to an elevation of 

about 1800 m. 

Tropical, Sub tropical and temperate 

climatic conditions 

 

14. Ecliptaprostrate 

(66) 
Herb Asteraceae 

 

Trop. America 

 

Poorly drained wet areas, saline conditions, 

along streams, in drains and canals of 

irrigated lowland rice paddies, in waste 

areas, and in upland fields. 

 

Moisttemperate, warm temperate and 

tropical areas 

15. Euphorbia hirta 

(920) 

Herb Euphorbiaceae Trop. America Margins of rainforest, Eucalypt forest, vine 

forest, various types of woodland and in 

wooded grassland. 

Tropical and Sub Tropical climatic 

conditions 
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Appendix-3 

List of Bioclimatic variables with their associated codes 

 

Bioclimatic Codes Bioclimatic Variables 

BIO1 Annual Mean Temperature 

BIO2 Mean Diurnal Temperature 

BIO3 Isothermality 

BIO4 Temperature Seasonality 

BIO5 Maximum Temperature of Warmest Quarter 

BIO6 Minimum Temperature of Coldest Month 

BIO7 Temperature Annual Range 

BIO8 Mean Temperature of Wettest Quarter  

BIO9 Mean Temperature of Driest Quarter 

BIO10 Mean Temperature of Warmest Quarter 

BIO11 Mean Temperature of Coldest Quarter 

BIO12 Annual Precipitation 

BIO13 Precipitation of Wettest Quarter 

BIO14 Precipitation of Driest Quarter 

BIO15 Precipitation Seasonality 

BIO16 Precipitation of Wettest Quarter 

BIO17 Precipitation of Driest Quarter 

BIO18 Precipitation of Warmest Quarter 

BIO19 Precipitation of Coldest Quarter 
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  bio_1 bio_2 bio_3 bio_4 bio_5 bio_6 bio_7 bio_8 bio_9 bio_10 bio_11 bio_12 bio_13 bio_14 bio_15 bio_16 bio_17 bio_18 bio_19 

bio_1       -    
             

-0.01  

       

0.39  

                 

-0.60  

 

0.91 

        

0.95  

 

 -0.36  

        

0.94  

       

0.88  

          

0.96  

 

 0.88  

        

0.20  

        

0.27  

 

 -0.34  

          

0.28  

 

 0.65  

              

-0.36  

 

 -0.01  

 

-0.08  

bio_2       -              -    
                  
-0.20  

       
0.51  

 
 0.28  

 
 -0.26  

        
0.73  

        
0.10  

               
-0.01  

          
0.15  
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Pearson’s correlation coefficient for different bio-climatic variables 
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