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Abstract 

Optical remote sensing sensors have been acquiring the data of earth’s surface for the past 

few decades. These sensors are broadly classified in terms of spectral bands as panchromatic, 

multispectral and hyperspectral. Multispectral sensors acquires the data in fewer number of 

bands with broad bandwidth which is useful for classification of major Land Use Land Cover 

(LULC) classes. Because of the coarser bandwidth multispectral sensor cannot be used for 

detailed LULC studies. Innovation and up gradation of technology has given birth to 

hyperspectral sensors which emerged out to be a vibrant tool for detailed studies. These 

sensors acquired data which are contiguous and spectrally rich, thus enabling the 

identification of the features which are spectrally similar. But, acquisition of data from 

hyperspectral sensor is difficult and expensive as it requires sensitive detectors, large storage 

capacity and fast data processors. As overall cost are of critical importance for any earth 

observation system, so there is a need to simulate Hyperspectral Remote Sensing (HRS) data 

using available Multispectral Remote Sensing (MRS) data. 

The present study focuses on simulation of HRS data utilizing MRS data using spectral 

reconstruction approach. Spectral reconstruction approach is a sensor independent technique 

which makes use of inheritance information of atmospherically corrected MRS data and 

normalized ground spectra for simulation of HRS data. In the present study, EO-1 ALI, 

Landsat 8 OLI, Resourcesat-2 LISS III and LISS IV datasets were used for simulation of HRS 

data and 70, 34, 38, 23 spectral bands with 10 nm bandwidth respectively were simulated.  

The simulated HRS data were validated using visual interpretation, statistical, spectral 

separability and classification approaches. Simulated HRS data from EO-1 ALI and Landsat-

8 OLI has shown high correlation with EO-1 Hyperion data along with comparable and high 

SNR values. Simulated HRS results from LISS III and LISS IV have also produced high SNR 

values indicating satisfactory simulation. Spectral separability analysis was carried out for all 

the hyperspectral datasets (EO-1 Hyperion and simulated from MRS data) using Spectral 

Angle Mapper (SAM), Spectral Feature Fitting (SFF) and Binary Encoding (BE) with field 

spectra resulted high scores demonstrating high quality simulated product. SAM classification 

was also performed for validation and it was observed that simulated hyperspectral data shows 

comparable results with Hyperion. The simulated results were also able to separate out 

different LULC classes in a better way than their corresponding multispectral datasets.  

The study also demonstrated the potential of simulation of the HRS data from high resolution 

Resourcesat-2 LISS IV MRS data (spatial resolution 5.8 m) which can be beneficial where 

problem of mixed pixel exists. The simulated high resolution HRS data can also be used for 

target detection related studies. 

This research also emphasizes the use of open source programming language in the 

development of HRS data simulation tool box using Spy and Numpy libraries. A tool for the 

same has been developed using Python and associated libraries which is sensor independent 

and capable of simulating the HRS data using any MRS Datasets. 

 

Keywords: Simulation, hyperspectral, multispectral, unmixing, normalization and python 
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1 Introduction 

1.1 Background 

Multispectral Remote Sensing (MRS) innovations have been mainly utilized for acquiring 

and extracting information of Land Use Land Cover (LULC) features from earth’s surface in 

the past few decades(Hossain et al., 2003). In a solitary perception, multispectral sensors 

acquire tens of spectral bands that ranges from the visible to Infra-Red (IR) i.e. 400 nm to 

2500 nm. A new era started in remote sensing when Hyperspectral Remote Sensing (HRS) 

sensors emerged as an excellent tool for gathering contiguous spectral bands with narrow 

bandwidth that ranges from visible to Short Wave Infrared (SWIR) of the Electro Magnetic 

Spectrum (EMS). This enabled extensive investigations of earth surface peculiarities that are 

constrained with coarser bandwidth collected by multispectral data. HRS deliver spectral data 

comprising of many bands in a solitary gathering and it has a wide area of applications viz. 

mineralogy, reconnaissance, horticulture, target recognition etc. (Agarwal, 2004).  

Apart from wide applications of hyperspectral data it has few limitations also(Sahoo et al., 

n.d.)(Sahoo,). Fast computers, sensitive detectors and large data storage capacities are 

required which makes the acquisition and processing cumbersome and exorbitant. Due to 

these limitations, very few number of space borne hyperspectral sensors are available till date. 

In the current scenario, only one space borne hyperspectral sensor i.e. EO-1 Hyperion with a 

spatial resolution of 30 m and narrow swath (7.5km) is available while a lot of multispectral 

sensors are providing data with similar spatial resolution around the globe over the past few 

decades(“USGS EO-1 Website - http://eo1.usgs.gov,” 2015). In Indian context also large 

number of multispectral sensors are acquiring data (LISS III, LISS IV, AWIFS) whereas  only 

one hyperspectral sensor i.e. Hyperspectral imager(HySi) with coarser resolution on board 

Indian Mini Satellite (IMS-1) is available(“Welcome to Bhuvan | ISRO’s Geoportal | Gateway 

to Indian Earth Observation,” 2015). Due to the availability of the vast multispectral datasets, 

it is indeed a requirement to simulate hyperspectral data utilizing multispectral data with a 

larger swath and high spatial resolution for detailed LULC studies. Simulated hyperspectral 

data will enable the identification and discrimination of subtle variations in the spectra of 

various features present over earth surface.  

Very few attempts were made in the past few years(Kavzoglu, 2004)(Boggione et al., 

2003)(Liu et al., 2009)(Yan et al., 2014a) for simulation hyperspectral data using 

multispectral data. The technique used for simulation was “spectral reconstruction 

approach”. This approach is sensor independent and utilizes the concept of spectral unmixing. 

Spectral unmixing is a technique for finding the proportion of LULC feature present inside a 

mixed pixel(Tseng, 2000). A pixel in any satellite image is considered to be to mixed pixel 

when it contains more than one LULC feature(Liguo et al., 2009a). The occurrence of pure 

pixel is rare in the satellite data with a spatial resolution of 30m and the probability of more 

heterogeneous features within a single pixel increases with decreasing spatial resolution. 
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Eventually a single pixel encapsulates different land cover classes. Various unmixing 

techniques have been evolved for feature identification and extracting their percentage 

contribution in the mixed pixels of satellite data(Heinz and Chang, 2001a) (Liguo et al., 

2009a). 

Spectral unmixing (Heinz and Chang, 2001b)(Settle and Drake, 1993a) highlights the relative 

abundance of materials that are containe 

d in any satellite imagery based on spectral characteristics of the materials. The reflectance at 

each pixel (or end member) of the image is the sum of weighted fraction of endmembers 

within the pixel. Spectral unmixing results are exceptionally reliant on the input end members 

and varying the end members may alter the results. The spectral reconstruction technique, 

applied by Bo Liu, represented each pixel as a linear sum of standard end members 

(vegetation, water and soil) assuming that 95.5 percent of the image comprises of these 

endmembers.  

Detailed LULC study is possible using simulated HRS data from MRS data which makes use 

of Spectral unmixing in spectral reconstruction approach when developing such hyperspectral 

sensors are difficult.  

1.2 Problem Statement and Motivation  

Data acquired from Hyperspectral sensors are contiguous and spectrally rich, thus enables 

identification of the features which are spectrally similar, whereas multispectral data fails to 

do so because of coarser spectral resolution. In spite of wider applications of HRS data very 

few number of space borne hyperspectral sensors are available. These sensors require 

sensitive detectors, high speed data processors and large data storage capability.  

Due to this high end requirement there is a need to find a low cost solution for generating 

hyperspectral data. Simulation is one of the way to generate hyperspectral datasets from 

existing multispectral datasets for investigation of the earth peculiarity in detail. Numerous 

multispectral datasets are available with good spatial resolution and can be exploited for 

simulation of hyperspectral data for detailed LULC studies. 

1.3 Research Objectives 

Main Objective 

 The main objective of the present study is to simulate hyperspectral data from 

multispectral data using spectral reconstruction technique.  

Sub-Objectives 

The sub objectives of this study are as follows: 

 Simulation of hyperspectral data from EO-1 ALI Multispectral data. 
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 Validation of Simulated hyperspectral with EO-1 Hyperion data using visual 

interpretation, statistical analysis, signal separability analysis and classification 

approaches. 

 Evaluation of the spectral reconstruction technique for simulating Hyper-spectral data 

from Landsat-8 OLI, Resourcesat- 2 LISS-III and LISS IV datasets. 

 Development of open source tool for the simulation of HRS data from MRS data. 

1.4 Research Questions 

 How spectral reconstruction technique can be utilized for simulating hyper-spectral 

data from EO-1 ALI multispectral data? 

 What are the various validation techniques for validating the simulated HRS data? 

 How this technique can be evaluated for simulating Hyperspectral data using other 

multispectral datasets? 

 How effectively simulated Hyperspectral data can be used for identification and 

discrimination of spectrally similar LULC features? 

 How open source programming language assist in developing a HRS data simulation 

tool? 

1.5 Structure of Thesis 

This thesis has been subdivided in various chapters as given below:- 

 Chapter1: Introduction. It covers the introduction to the multispectral and 

hyperspectral sensors / their advantage, disadvantage, availability of HRS and MRS 

Datasets in Indian context and its utilization in LULC mapping. The chapter also 

includes the problem statement and motivation, objectives and research questions. 

 Chapter 2: Literature Review. This section covers the review of significant studies 

taken up in this regard in the past years and couple of imperative theoretical concepts 

which have been used in this area of exploration. 

 Chapter 3: Study Area, Datasets and Tools. As the heading of this chapter indicates, 

it provide an insight of the study area, datasets and tools (software / hardware utilized 

used and developed in this research.  

 Chapter 4: Methodology. This chapter contains detail about the research methodology 

adopted for meeting the objectives of this research.  

 Chapter 5: Results and Discussion. This chapter covers the details about the results 

obtained from the study and discussion on the inference observed. 

 Chapter 6: Conclusion and Recommendations. This chapter comprises the conclusion 

of the research in brief with few recommendations for advancement. 
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2 Literature Review 

This section covers a review of significant studies taken up in the past few years and couple 

of imperative theoretical and practical concepts which have been used in this area of 

exploration. 

2.1 Multispectral vs Hyperspectral Remote Sensing 

Remote sensing (RS)(Agarwal, 2004)(“Shaw: Spectral imaging for remote sensing - Google 

Scholar,” 2015) (Shaw and Burke, 2003) refers to data capturing of earth surface objects 

without any physical contact. Various remote sensing satellites are available with unique and 

distinct characteristics which are cost effective and provides data with a global coverage of 

earth surface. These sensors are useful for various applications viz. meteorology, 

oceanography, geology, agriculture, pollution, glaciology and surveying etc. RS satellite 

sensors which are working in optical region acquires data in panchromatic, multispectral and 

hyperspectral mode. Panchromatic data is a single band data & generally available with high 

spatial resolution. On the other hand multispectral sensor operate in visible, Near Infrared 

(NIR), Mid-Infrared (MIR) and Thermal Infrared (TIR) regions of the electro-magnetic 

radiation (EMR) spectrum. It captures the data with a fewer number of bands (in 10s) and are 

useful for LULC mapping, but are unable to differentiate two spectrally similar features. With 

the evolution of technology, hyperspectral sensors came into picture which acquires data with 

100s of contiguous spectral bands with narrow bandwidth (5-10nm) in the wavelength range 

of 400-2500nm. For detailed LULC (Land Use Land Cover) study hyperspectral sensors are 

now being widely used (Harsanyi and Chang, 1994). As these datasets have ample spectral 

information which enables precise identification of spectrally similar and unique materials 

which is not conceivable with traditional multispectral data. 

2.2 Pre-processing of Multispectral and Hyperspectral Data 

Satellite sensors either multispectral or hyperspectral captures the data as radiance but records 

the information as Digital Number (DN).The storage as DN values ensures noise free 

transmission from sensor on board satellite to ground receiving station. Therefore it is 

required to convert the DN data to radiance and then to surface reflectance using radiative 

transfer model for further investigation(“Landsat_DN_to_Reflectance.pdf,” 2015). 

Conversion of multispectral data from DN to Radiance  

There are two methods for converting multispectral data from DN to Radiance i.e by utilizing 

Gain and Bias of the sensor or by using LMin and LMax of a sensor given in the header 

information of the RS data. 

Gain and Bias Method 

The Gain and Bias Method uses the following equation for the converting DN image to 

radiance(“Landsat_DN_to_Reflectance.pdf,” 2015):  

L= M*QCAL+ A      (2.1) 
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where, 

L is the cell value as radiance 

M is the multiplicative factor in (W/m2sr * µm)/DN. 

A is the additive factor in (W/m2sr * µm). 

Spectral Radiance Scaling Method 

The equation use by spectral radiance scaling method 

is(“Landsat_DN_to_Reflectance.pdf,” 2015):          

Lλ=(LMaxλ-LMinλ)/(QCALMax-QCALMin))*(QCAL-QCALMin)+LMin        (2.2) 

where, 

Lλ =  radiance 

QCAL = digital number 

LMinλ = spectral radiance scales to QCALMin  

LMaxλ = spectral radiance scales to QCALMax 

QCALMin = the minimum quantized calibrated pixel value  

QCALMax = the maximum quantized calibrated pixel value. 

Atmospheric correction of multispectral & hyperspectral data  

Earth observation systems record signals, which always get obstructed by the atmosphere. 

The atmospheric contributions to the signals recorded from sensors become more critical in 

case where surface characteristics for land use classes need to be studied. To enable qualitative 

and quantitative studies of the earth surface, atmospheric perturbations need to be removed 

from the observed signal. The process of removing atmospheric contributions is commonly 

referred as atmospheric correction(Kawishwar, 2007). 

Various atmospheric correction models have been developed in past for eliminating the effect 

of atmosphere on satellite images(Strobl et al., 2000)(Markelin, 2013). Some of them are Fast 

Line-of-Sight Atmospheric Analysis of Spectral Hypercube (FLAASH) developed on 

Moderate Resolution Atmospheric Radiance and Transmittance Model (MODTRAN), 

Atmosphere REMoval Program (ATREM), developed by ATCPRO on 5S Code (Simulation 

of the Satellite Signal in the Solar Spectrum) and ATmospheric Correction for Hyperspectral 

data (HATCH) based on 6S code (Second Simulation of the Satellite Signal in the Solar 

Spectrum)(Kawishwar, 2007). 

Kruse, 2004(Kruse, 2004) has evaluated three atmospheric correction models ATREM, 

ACORN and FLAASH for getting surface reflectance data. ATREM (Atmospheric REMoval 

program) provides a basic level of atmospheric correction, however, is no longer being used. 

ACORN (Atmospheric CORrection Now) provides basic correction with enhancements for 

liquid water determination and some control over MODTRAN with additional multispectral 
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correction capabilities. However, Lu et al., 2002 had found FLAASH as best method for 

atmospheric correction of multispectral & hyperspectral data(Yuan and Niu, 2008). It is a 

more sophisticated algorithm based on MODTRAN that can compensate for atmospheric 

correction effects more accurately. 

2.3 Data simulation 

The simulation of remote sensing images is necessary for many chores, such as the definition 

of future earth observation systems, optimization of instrument parameters and for 

development and testing of complex data processing algorithms(Boggione et al., 2003)(Yan 

et al., 2014a). Therefore, it has a wide application in RS domain. SENSOR (Software 

Environment for the Simulation of Optical Remote sensing systems) is a tool for the 

simulation of hyperspectral remote sensing systems which is developed by German Aerospace 

Centre (DLR), Germany(Börner et al., 2001). The tool incorporate full model of the sensor 

hardware, the observed scene and the atmosphere which is in between sensor and the earth. 

The simulator is capable of  

 Describing  the geometrical relations between scene, sun, and the remote sensing 

system using a ray tracing algorithms  

 Simulation environment by considering the radiometry  

 Optical and an electronic sensor model for the generation of digital images. 

G.A. Boggione (Börner et al., 2001) endeavoured to simulate high resolution panchromatic 

image from the coarser resolution multispectral images. In his work he revealed the potential 

of simulation approach for simulating ETM+ panchromatic bands by linearly combining 

ETM+ multispectral bands. This method takes into account the spectral overlapping between 

the simulated band and the MRS bands that can be linearly combined. Initially, the spectral 

MRS bands were transformed to a smaller grid size of 15 meters, then the same bands were 

linearly combined to improve the effective spatial resolution. The result of linear combination 

simulated a panchromatic image with better visual quality and good spatial resolution. 

Hyperspectral Data simulation from Multispectral data 

Many attempts using various algorithms were made in the past few years(Yan et al., 

2014a)(Boggione et al., 2003) (Zhang et al., 2006a) (Schott et al., 2010)(Kavzoglu, 2004)(Yan 

et al., 2014a) to simulate the multispectral data using hyperspectral data whereas very few 

algorithms have been developed for simulating hyperspectral data from multispectral data. 

Zhang (Zhang et al., 2006)had proposed a spectral reconstruction Universal Pattern 

Decomposition Method (UPDM) for simulating multispectral data from Hyperspectral data.. 

However, similar spectral reconstruction approach was also applied by Bo Liu and Lei YAN 

(Liu et al., 2009) (Yan et al., 2014a)where they have simulated hyperspectral bands using EO-

1 Advance Land Imager (ALI) multispectral data. The results of simulated HRS image were 

validated by comparing it with EO-1 hyperion data by applying visual interpretation, 

statistical & classification approaches. 
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Normalization of Ground Spectra  

Normalization of the spectra collected from ground based spectroradiometer(Schläpfer et al., 

1999) (Schläpfer et al., 1999)is done to compare the spectral signature of two different spectra 

from two different sensor having different spectral characteristics e.g. MRS and HRS sensors. 

For normalization of ground spectra, spectral response function (SRF)(“Spectral Response 

Functions,” 2015)(Trishchenko et al., 2002) of the sensor is convolve with the ground spectra 

(simulation and correction of smile effect). Result of the normalization enables the use of 

same ground spectra for comparing the temporal data and different of different sensors. 

For HRS data simulation normalized ground spectra was required and was one of the input 

for spectral unmixing and for generating the weighted fractional coefficients from 

multispectral data. 

Spectral Unmixing 

For simulation of hyperspectral data from multispectral data unmixing of multispectral data 

is required. Pixels in the RS data represents more than one LULC class are referred as mixed 

pixels and pixel representing only one feature is considered as pure pixel. Spectral unmixing 

is one of the technique used to identify the individual constituent materials present in the 

mixture, as well as the proportions in which they appear. Nirmal Keshava  surveyed different 

types of unmixing technique and their characteristics to reveal the similarities and differences 

between algorithms(Keshava, 2003).  

Spectral unmixing can be broadly classifies into two types i.e. linear and nonlinear(Parra et 

al., 1999). Linear unmixing model states that - “The reflected radiation conveys with the same 

proportions the characteristics of the associated materials if the total surface area is divided 

proportionally according to the fractional abundances of the constituent substances”(Tseng, 

2000). Linear Mixture Model (LMM) is used in the area where features are organized 

proportionally within a pixel. It follows the linear equations for finding out the fractional 

coefficients in any RS image. Whereas, nonlinear unmixing model is used where the 

substances covering the area are not organized proportionally on the surface. As a result, 

occurrence radiation can encounter reflections with various substances, and the total range of 

reflected radiation might no more maintain the linear proportion. Therefore, for solving out 

such problem we assume that each pixel in an image can be expressed as a nonlinear 

combination of spectral pattern. Unlike LMM, nonlinear unmixing model utilize nonlinear 

equations for finding out the fractional coefficients in any RS image. 

J. J. Settle a & N. A. Drake(Settle and Drake, 1993a) demonstrated the use of least square 

linear unmixing model for estimating  the relative proportion of ground cover components in 

a mixed pixel. The result of LMM were compared with maximum likelihood and it was 

observed that LMM is faster and accurate classification technique for estimation of ground 

cover information. It also provides a knowledge of the error on each fractional proportion 

which is not obtained by using maximum likelihood classification technique. 
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Yi-Hsing TSENG (Tseng, 2000) used the two different linear spectral unmixing technique 

i.e. least squares (LS) unmixing and the Matched filter (MF) unmixing for the classification 

of hyperspectral images. It was observed that MF unmixing method proved itself to be an 

effective technique in classifying a hyperspectral image and provided a 90% classification 

accuracy whereas the LS unmixing technique did not show promising results. However, it 

was also explored that applying the LS unmixing to the Minimum Noise Fraction (MNF) 

transformed images the classification accuracy can be improved up to 20%. 

Daniel C. Heinz(Heinz and Chang, 2001a)(Heinz and Chang, 2001) used the fully constrained 

least squares linear spectral mixture analysis method for material quantification in 

hyperspectral image. It is basically a least squares approach that simultaneously imposes two 

constraints, the ASC (abundance sum-to-one constraint) and the ANC (abundance non 

negativity constraint), on the linear mixture model. 

Fabio Maselli(Maselli, 1998)proposed an advanced linear spectral unmixing technique which 

overcomes the drawback i.e. number of spectral components must be less or equal to the scene 

dimensionality (the so-called “condition of identifiability”). In this approach it is stated that 

if many spectral end-members are available, a subset with a prefixed number of end-members, 

that optimally decompose the candidate pixel, are first selected by a procedure based on the 

Gramm–Schmidt orthogonalization process. This procedure has been tested in different 

environmental situations and it was proved that the reduction in the residual error by this 

method is much higher (up to 70–80%) and the abundance images produced are more accurate 

estimates of the real components. 

The least square linear spectral unmixing techniques can efficiently distinguish the spectral 

signature of different feature and hence are able to find the contribution of each class in a 

single pixel. 

Linear unmixing model is mathematically represented (Settle and Drake, 1993a)as: 

Pi =  ∑ (𝑹𝒊𝒋. 𝑭𝒋) + 𝑬𝒏
𝒋=𝟏            (2.3) 

  

where, i= Number of bands (1 to m); 

j= Number of End member( 1 to n); 

Pi= Reflectance value of ith pixel in remote sensing image 

Rij=Ground spectra of the jth component  

Fj= fraction of coefficient to the jth component within the pixel. 

Ei= Error for the jth spectral band. 

The solution to the linear spectral unmixing problem requires the following conditions: 

∑ 𝑭𝒋 = 𝟏𝒏
𝒋=𝟏  and   Fj  ≥ 0,      for j=1,…..n    (2.4) 
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PDM (Pattern Decomposition Method) 

K. Muramatsu (Muramatsu et al., 2000)(Daigo et al., 2004) (Pattern decomposition method 

in the albedo space for Landsat TM and MRS data analysis) developed a sensor dependent 

Pattern Decomposition Method  (PDM) for reducing the dimensionality of the RS data sets 

based on spectral unmixing approach. In this method, the spectral response patterns for each 

pixel in an image are decomposed into three components using three standard spectral patterns 

of vegetation, water and soil normalized to unity. K. MURAMATSU applied this technique 

to thee satellite images obtained from Landsat Thematic Mapper, where 94% of the six 

dimensional data are effectively transformed into three-dimensional components. 

However, similar technique was applied by M. Daigo(Daigo et al., 2004) for hyper-multi-

spectral data analysis a concept of supplementary spectral patterns was introduced for the 

study of specific ground objects including three standard features (vegetation, water and soil). 

PDM technique was applied to the ground samples i.e. set of continuous spectral reflectance 

data in the wavelength range from 350 nm to 2500 nm and were decomposed into four 

standard pattern components (three standard pattern component viz. vegetation, water & soil 

and one supplementary component).  

Further a new revised Vegetation Index (VI) was proposed as a simple function of the pattern 

decomposition coefficients including standard pattern and supplementary vegetation pattern 

for examining the wilted leaf of vegetation. 

UPDM (Universal Pattern Decomposition Method) 

LIFU ZHANG(Zhang et al., 2006) developed UPDM (Universal Pattern Decomposition 

Method) to obtain sensor- independent pattern coefficients for reflectance data. In this 

method, the spectral response patterns of vegetation, water and soil were normalized with the 

Spectral Response Function (SRF) of Landsat/ETM +, Terra/MODIS and ADEOS-

II/GLI(“USGS EO-1 Website - http://eo1.usgs.gov,” 2015). 
The normalized ground spectra for each pixel in an image was decomposed into 1260 bands 

with 1 nm spacing using linear unmixing technique.  

The sensor- independent UPDM technique is used for simulation of various datasets. Once 

the data is simulated, there is requirement to validate the simulated result using various 

methods like spectral separability analysis and classification.    

2.4 Spectral Separability Analysis 

Spectral separability analysis is used to identify materials based on their spectral 

characteristics. It uses technique such as such as Binary Encoding (BE), Spectral Angle 

Mapper (SAM) and Spectral Feature Fitting (SFF) to quantify the match of an unknown 

spectrum to the materials in a ground spectra/spectral library. A collection of spectra 

measured in the field or laboratory for materials (minerals, vegetation types, etc.) that are 

often used as a baseline, or “true” spectra, for identification of materials from remote sensing 

imagery(“Hyperspectral Analysis: SAM and SFF Tutorial (Using ENVI) | Exelis VIS Docs 

Center,” 2015). 
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Binary encoding (BE) 

The binary encoding technique encodes the data and endmember spectra into zeros and ones, 

based on whether a band falls below or above the spectrum mean, respectively. An exclusive 

OR function compares each encoded reference spectrum with the encoded data spectra. 

The output of the spectral separability analysis is weighted score for each of the materials in 

the input spectral library. The highest score indicates the closest match and indicates higher 

confidence in the spectral similarity. It is possible that similar materials may have relatively 

high scores, but unrelated materials should have low scores(“Hyperspectral Analysis: 

SAM and SFF Tutorial (Using ENVI) | Exelis VIS Docs Center,” 2015). 

Spectral Angle Mapper (SAM) 

The technique determines the spectral similarity between two spectra by calculating the angle 

between the spectra and treating them as vectors in a space with dimensionality equal to the 

number of bands shown in Figure 1. This techniques is relatively insensitive to illumination 

and albedo effects.  

SAM compares the angle between the endmembers spectrum vector and each pixel vector in 

n-D space. Smaller angles represent closer matches to the reference spectrum. Pixels further 

away than the specified maximum angle threshold in radians are not classified(“Hyperspectral 

Analysis: SAM and SFF Tutorial (Using ENVI) | Exelis VIS Docs Center,” 2015). 

 

Figure 1: Spectral angle Mapper 

SAM (“Hyperspectral Analysis: SAM and SFF Tutorial (Using ENVI) | Exelis VIS Docs 

Center,” 2015) determined the similarity by applying following equation: 
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( Eqn 2.5) 

Here,  

nb : the number of bands in the image,  

t: pixel spectrum, 

r: reference spectrum and alpha: spectral angle 

 

Spectral Feature Fitting (SFF) 

Spectral Feature Fitting (SFF) is an absorption-feature-based method for matching image 

spectra to reference endmembers. Spectral feature fitting requires that reference endmembers 

be selected from either the image or a spectral library, that both the reference and unknown 

spectra have the continuum removed, and that each reference endmember spectrum be scaled 

to match the unknown spectrum.  A “scale” image is produced for each endmember selected 

for analysis by first subtracting the continuum-removed spectra from one, thus inverting them 

and making the continuum zero.  A single multiplicative scaling factor is then determined that 

makes the reference spectrum match the unknown spectrum.  Assuming reasonable spectral 

ranges have been selected, a large scaling factor is equivalent to deep spectral feature, while 

a small scaling factor indicates a weak spectral feature.  A least-square-fit is then calculated 

band-by-band between each reference endmember and the unknown spectrum. The total root-

mean-square (RMS) error is used to form an RMS image for each endmember(“Hyperspectral 

Analysis: SAM and SFF Tutorial (Using ENVI) | Exelis VIS Docs Center,” 2015).  

Classification 

Various classification techniques have been discovered for the classification of the remote 

sensing images. One of the technique widely used for multispectral and hyperspectral image 

classification is Spectral Angle Mapper(SAM) (Roberts et al., 1998). This technique has been 

used for spectral separabiltiy analysis as well. SAM is an automated method for directly 

comparing image spectra to a known spectra (usually determined in a lab or in the field with 

a spectrometer) or an endmember. This method treats both spectra (the image spectra and 

reference spectra) as vectors and calculates the spectral angle between them. This method is 

insensitive to illumination since the SAM algorithm uses only the vector direction and not the 

vector length. 

H. Lumme (Lumme, 2004)done the comparative analysis of SAM, Maximum Likelihood and 

Spectral Correlation Mapper (SCM) method for classifying soil and vegetation using field 

spectra. Where it was found that the overall accuracy of the Maximum Likelihood 

classification was 91 percent, but the results deteriorated under varying illumination. 
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Whereas, SAM and SCM were faster and they led to better classification results in poor 

illumination also.  

2.5 Python Programming language 

Free and open source tools offer excellent implementation and tool development for data 

processing and visualisation.  Python is a general-purpose interpreted, interactive, object-

oriented, and high-level programming language invented by Guido van Rossum during 1985- 

1990. It is an open source programming language which provides environment for 

implementing application specific algorithms. It is released under the Python Software 

Foundation License and is available for download free of charge under Linux, Mac OSX and 

Windows XP/Vista/7/8(“Welcome to Python.org,” 2015).  

It is a high level programming language allowing access to advanced data structures, 2-D and 

3-D graphical functions. It is widely used for mathematical computation, simulation, 2-D & 

3-D visualization, optimization, statistical analysis, signal and application development. 

Python supports multiple paradigms, including object-oriented, imperative and functional 

programming or procedural styles.(“Welcome to Spectral Python (SPy) — Spectral Python 

0.16.0 documentation,” 2015)(“Welcome to Python.org,” 2015). It has a large and 

comprehensive standard library available for variety of applications and software 

development. 

Spectral Python (Spy) 

Spectral Python (Spy)(“Welcome to Spectral Python (SPy) — Spectral Python 0.16.0 

documentation,” 2015) is a python module for hyperspectral data handling. It is freely 

available and released under the General Public License, GNU Spy incorporates functions for 

reading, visualizing, analyzing, manipulating and classification for HRS data. 

Spy is not a self-sufficient library, it need certain dependencies and supporting libraries. These 

dependencies includes Python 2.6+ or 3.3 +, NumPy, Pillow or Python Imaging Library (PIL), 

wxPython, matplotlib, Ipython and PyOpenGL. 

  

http://www.scilab.org/download
http://www.scilab.org/scilab/features/scilab/optimization
http://www.scilab.org/scilab/features/scilab/statistics
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3  Study Area and Materials Used 

3.1 Study Area 

The study area selected is the city of Rishikesh and its surrounding area (Longitude 30° 07’ 

and Latitude 78° 19') in Uttarakhand state of India (Figure 2). The area lies in the foothills of 

the Himalayas at mean altitude of 390 meters above mean sea level and has an undulating 

terrain covering a part of Rajaji national park, Ganga river and range of Shivaliks. Forest, 

urban, water body, grassland and cropland are the prominent LULC classes present in the 

study area.  

To the northwest of the study area Chandrabhaga seasonal river lies which drains into the 

Ganges in the north east during the monsoon. The Ganga which flows from north east finally 

meets Pashulok Barrage situated in south of Rishikesh. Because of the presence of Ganga 

river the southern part of the study area is dominated with urban, grassland & cropland. The 

major urban classes includes commercial and residential area. 

The western part of the study area is dominated by a forest area viz. ‘Barkot Forest Range’ 

and it also contains scrubs and cropland. The major classes of forest are Tectonagrandis 

(Teak) & Shorea robusta (Sal) and of cropland are wheat/rice & sugarcane.  

 

Figure 2 Study Area 

3.2 Materials used  

To achieve the objective in present study the following satellite data products, ancillary data, 

software and field surveyed data have been used.  
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Data sets used  

The study has utilized following satellite datasets  

Table 1: Data sets used 

S.No Satellite /Sensor Acquisition Date Resolution (m) 

1 EO-1 Hyperion 27 November 2009 30 

2 EO-1 ALI   27 November 2009 30 

3 Landsat-8 OLI 7th December  2013 30 

4 Resourcesat-2 LISS III 26th November 2013 23.5 

5 Resourcesat-2 LISS IV 31st March 2014 5.8 

 

 EO-1 Hyperion data 

Hyperion is an EO-1 (Earth Observation-1) sensor which was developed under NASA’s new 

millennium program in November, 2000. The Hyperspectral Imager (Hyperion) instrument 

provides high quality calibrated data that can support evaluation of hyperspectral technology 

for Earth observing missions. Hyperion is a push broom imaging instrument. Each image 

taken in this configuration captures the spectrum of a line 30m along-track by 7.5Km wide 

perpendicular to the satellite motion. There are 242 unique spectral channels collected with a 

complete spectrum covering from 357 - 2576 nm. The Level 1 Radiometric product has a total 

of 242 bands but only 198 bands are calibrated. Because of an overlap between the VNIR and 

SWIR focal planes, there are only 196 unique channels. Calibrated channels are 8-57 for the 

VNIR, and 77-224 for the SWIR. The reason for not calibrating all 242 channels is mainly 

due to the detector’s low responsively. The bands which are not calibrated are set to zero in 

those channels. The digital values of the Level-1 product are 16-bit radiances and are stored 

as a 16-bit signed integer.(“USGS EO-1 Website - http://eo1.usgs.gov,” 2015)  

Table 2: Specification of EO-1 Hyperion 

Sensor altitude 705 Kms No. of rows 256 

Spatial resolution 30 metres No. of columns 3128 

Radiometric Resolution 16 bits VNIR 0.45-1.35 µm 

Swath 7.5 Kms SWIR 1.40-2.48 µm 

IFOV (mrad) 0.043   

 

 EO-1 ALI satellite data  

The Advanced Land Imager (ALI) Multispectral (MS) instrument is the primary instrument 

in the first EO-1 (Earth Observation-1) satellite. The ALI employs novel wide-angle optics 

and a highly integrated multispectral and panchromatic spectrometer. Operating in a push 
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broom fashion with swath width of 37 km at an orbit of 705 km. It has nine MS bands plus a 

Panchromatic (Pan) band, three more than ETM+, but does not have the thermal band. The 

spatial resolution of the MS bands is the same as that of ETM+ (30 m) but it is better in the 

Pan band (10 m versus 15 m). (“USGS EO-1 Website - http://eo1.usgs.gov,” 2015) 

Table 3: Specification of EO-1 ALI 

Band Wavelength(µm) Ground Sample Distance(m) 

PAN 0.48 - 0.69 10 

MS - 1' 0.433 - 0.453 30 

MS - 1 0.45 - 0.515 30 

MS - 2 0.525 - 0.605 30 

MS - 3 0.63 - 0.69 30 

MS - 4 0.775 - 0.805 30 

MS - 4' 0.845 - 0.89 30 

MS - 5' 1.2 - 1.3 30 

MS - 5 1.55 - 1.75 30 

MS - 7 2.08 - 2.35 30 

 

 Landsat - 8 (OLI) satellite data 

Landsat 8 carries two instruments: The Operational Land Imager (OLI) sensor includes 

refined heritage bands, along with three new bands: a deep blue band for coastal/aerosol 

studies, a SWIR band for cirrus detection, and a Quality Assessment band. The Thermal 

Infrared Sensor (TIRS) sensor provides two thermal bands. These sensors (with swath of 185 

km) provide improved signal-to-noise (SNR) radiometric performance quantized over a 12-

bit dynamic range. Improved signal to noise performance enable better characterization of 

land cover state and condition. Products are delivered as 16-bit images (scaled to 55,000 grey 

levels).The specification of the dataset is given in table 4(“Landsat 8,” 2015):  

Table 4: Specification of Landsat 8 OLI 

Bands Description Spectral Range (µm) Instrument Resolution 

OLI band 1 coastal blue 0.43–0.45 OLI 30 m 

OLI band 2 blue 0.45–0.51 OLI 30 m 
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OLI band 3 green 0.53–0.59 OLI 30 m 

OLI band 4 red 0.64–0.67 OLI 30 m 

OLI band 5 near infrared 0.85–0.88 OLI 30 m 

OLI band 6 SWIR-1 1.57–1.65 OLI 30 m 

OLI band 7 SWIR-2 2.11–2.29 OLI 30 m 

OLI band 8 panchromatic 0.50–0.68 OLI 15 m 

OLI band 9 cirrus 1.36–1.38 OLI 30 m 

 

 Resourcesat -2 LISS III and LISS IV 

The Linear Imaging Self Scanner instrument is the primary instrument on the Resourcesat-2 

satellite launched by Indian Space Research Organization (ISRO) in the year 2011. The 

satellite operates in a circular, sun-synchronous, near polar orbit with an inclination of 98.69 

deg, at an altitude of 817 Km. The satellite takes 101.35 minutes to complete one revolution 

around the earth and completes about 14 orbits per day. The entire earth is covered by 341 

orbits during a 24 day cycle.(“Welcome to Bhuvan | ISRO’s Geoportal | Gateway to Indian 

Earth Observation,” 2015)(“Resourcesat-2_Handbook.pdf,” 2015). The three instruments on-

board Resourcesat- 2 are LISS III, LISS IV & AWiFS. The specifications of LISS III & LISS 

IV are given in table 5. 

Table 5: Specification of  LISS III and LISS IV of Resoursat-2 

Specification LISS III LISS IV 

No. of Bands 4 1 (Mono), 3 MX 

Spectral Range (µ) B2 0.52 – 0.59 

B3 0.62 – 0.68 

B4 0.77 – 0.86 

B5 1.55 – 1.70 

B2 0.52 – 0.59 

B3 0.62 – 0.68 

B4 0.77 – 0.86 

B3-default band for mono 

Resolution (m) 23.5 5.8 

Swath (Km) 140 70 

Quantisation 10 10 

Instruments used  

 Spectro radiometer (SVC HR 1024) 

 Handheld GPS 
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Software used 

 ENVI 5.0 – For data pre-processing 

 Python- For implementing complex algorithms for HRS data simulation 

 Excel- For calculations and analysis. 

Other data sets used 

SRF (spectral response function) of the following data sets are used for atmospheric correction 

and simulation: 

• EO-1 ALI 

• EO-1 Hyperion 

• Landsat-8 OLI 

• RS- 2 LISS III & LISS IV 

 

 

Figure 3: SRF of EO-1 ALI 

  

Figure 4: SRF of Landsat 8 OLI Figure 4: SRF of Landsat 8 OLI 
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4 Methodology 

The chapter presents the methodological approach followed for the simulation of HRS data 

from MRS data using spectral reconstruction technique. The research has been divided four 

phases:- 

 Data pre-processing 

 Field data collection 

 Simulation of hyperspectral data 

 Development of open source software for HRS data Simulation. 

 A detailed description of the methods adopted for the present study is enlightened in the block 

diagram (Figure 5)  

 

Figure 5: Project Methodology 

4.1 Data Pre-processing 

Data pre-processing of MRS and HRS data includes radiometric and atmospheric correction. 

Detailed description of the pre -processing steps are explained in the section below. 

Multispectral Data Pre-processing 

Multispectral data pre-processing includes following steps demonstrated in Figure 6: 
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Figure 6: Methodology for MRS data Pre-processing 

 DN to radiance Conversion 

The sensor receives radiance energy but stores the information in digital form for the noise 

free transmission from sensor to ground station. Hence it is required to convert the data back 

to the radiance. Gain bias and spectral radiance scaling method are the two methods which 

uses the header information to transform the DN data into radiance. The equations used for 

converting the DN data to radiance are: 

 Gain bias Method (Equation 2.1) 

 Spectral Radiance Scaling Method (Equation 2.2) 

In the present study, Gain and bias method (“Landsat_DN_to_Reflectance.pdf,” 2015)is used 

to convert DN of EO-1 ALI data to radiance whereas for converting Landsat 8 OLI & 

Resourcesat-2 LISS –III and LISS IV DN data spectral radiance scaling method is used. 

The calibration coefficients for each sensor can be obtained from the metadata file. The 

calibration coefficient’s for EO-1 ALI, Landsat-8 OLI and Resourcesat-2 LISS III & LISS IV 

is given in the table 6- table 9. 

Table 6:Calibration coefficients for EO-1 ALI 

Band Multiplicative calibration coefficient, 

M  (W/m2sr * µm)/DN. 

Additive calibration coefficient ,  

A (W/m2sr * µm) 

PAN 0.024 -2.2 

MS - 1' 0.045 -3.4 

MS - 1 0.043 -4.4 

MS - 2 0.028 -1.9 

MS - 3 0.018 -1.3 

MS - 4 0.011 -0.85 

MS - 4' 0.0091 -0.65 

MS - 5' 0.0083 -1.3 

MS - 5 0.0028 -0.6 

MS - 7 0.00091 -0.21 
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Table 7: Calibration coefficients for Landsat 8 OLI 

Band QCalMax QCalMin LMinλ LMaxλ 

1 Costal aerosol 65535 1 783.06348 64.66564 

2 Blue 65535 1 801.86658 66.21840 

3 Green 65535 1 738.91321 61.01969 

4 Red 65535 1 623.09320 51.45524 

5 NIR 65535 1 381.30197 31.48804 

 7SWIR 1 65535 1 31.96155 -2.63940 

8 SWIR 2 65535 1 705.17004 58.23317 
 

Table 8: Calibration coefficients for Resourcesat-2 LISS III 

Band (µm) QCalMax QCalMin LMaxλ LMinλ 

B2 0.52 – 0.59 1024 0 52.00 0 

B3 0.62 – 0.68 1024 0 47.00 0 

B4 0.77 – 0.86 1024 0 31.50 0 

B5 1.55 – 1.70 1024 0 7.50 0 

 

Table 9: Calibration coefficients for RS 2 LISS IV 

Band (µm) QCalMax QCalMin LMaxλ LMinλ 

B2 0.52 – 0.59 1024 0 52.00 0 

B3 0.62 – 0.68 1024 0 47.00 0 

B4 0.77 – 0.86 1024 0 31.50 0 

 

The acquired dataset from different sensors have a different swath. Therefore, common area 

covered is taken by sub-setting the datasets (EO-1 ALI, Landsat 8 OLI, Resourcesat-2 LISS 

III and LISS IV). 

 Atmospheric correction 

To remove the adverse effects of atmosphere FLAASH atmospheric correction method is used 

for transforming the radiance data to surface reflectance. FLAASH is a sophisticated 

algorithm based on MODTRAN and incorporated in ENVI software developed by EXELIS. 

Input parameter FLAASH takes into account are scaling factor, average elevation of the study 

area, scene centre coordinates, sensor type, flight date and time, and information about aerosol 

distribution, visibility, and water vapour conditions(Strobl et al., 2000)(Kruse, 2004). 

The input parameters used by the FLAASH atmospheric correction module are in table 10. 
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Table 10:Input parameter used for the atmospheric correction of Multispectral datasets 

FLAASH 

Parameters 

EO-1 ALI Landsat 8 OLI LISS III LISS IV 

Scene Centre 

Latitude 

30º05´37.32´´E 30º05´37.32´´E 30º05´37.32´´E 30º05´37.32´´E 

Scene Centre 

Longitude 

78º16´13.44´´E 78º16´13.44´´E 78º16´13.44´´E 78º16´13.44´´E 

Scaling Factor   40(VNIR) & 

80(SWIR) 

10 1 1 

Pixel Size 30 M 30 M 23.5 M 5.8 M 

Sensor Type Unknown MSI Unknown MSI Unknown MSI Unknown MSI 

Flight Date 27th November 

2009 

7th December 

2013 

26th  November 

2013 

31th March 

2014 

Average Flight 

Time 

5:9:55 5:20:00 5:42:14 5:37:00 

Sensor Altitude 705km 705km 817km 817km 

Ground 

Elevation 

0.360km 0.360km 0.360km 0.360km 

Atmospheric 

Model 

MLS MLS MLS MLS 

Initial 

Visibility 

40km 40km 40km 40km 

Water 

Retrieval 

No No No No 

Aerosol Model Rural Urban Urban Urban 

Aerosol 

Retrieval 

None None None None 

Initial visibility 40km 40km 40km 40km 

Hyperspectral Data Pre processing  

The figure 7 gives over all methodology for HRS data pre-processing: 

 

Figure 7: Methodology for HRS data Pre-processing 
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In this study EO-1 Hyperion data is required for validation of the results obtained. The EO-1 

Hyperion dataset suffers from abnormal pixels and striping which needs to be preprocessed 

to rectify these anomalies prior to the atmospheric correction. The pre-processing steps 

required for correcting EO-1 Hyperion data are as follows: 

 Identification and removal of bad bands 

The Hyperion level 1 radiometrically corrected (L1R) product comprise of the 242 bands out 

of which 198 are non-zero. This is because of the substantial water assimilation and spectral 

cover between the two spectrometers set in the VNIR and SWIR regions. Some of the bands 

contain noise, negative values or no information (Table 10). This needs to be rectified before 

proceeding further. For the data used in the study a total of 132 bands are left after removal 

of bands with no information, negative values and noise. The details of the bands found noisy 

is depicted in table 11. 

Table 11:Band containing no information 

Bad bands 9,57,79,98,100,134,183,182,220,56,219,216,200,199,198,191,19

2,190,189,188,184,183,56 

 Identification and removal of bad columns 

There are numerous reasons for the irregular pixels, some of them are due to sensor related 

errors. The Hyperion framework secures information in the push broom mode, in which there 

is a separate detector to accumulate data for every column in the image it produces. One of 

the reason for data stripping is that the locators are not aligned appropriately.  Some of the 

bands of the dataset used in the study are affected with bad column table 12. The bad column 

were recognized and replaced by taking the average DN value of the adjacent column in order 

to avoid imposing severe change in the spectra.  

Table 12:Identified Bands with bad columns 

No of Bands Bad column number 

12,13,14,15,16,17,18 114,113  

27 47  

53 25  

55 13,17,20,32,37,39  

54 25,13  

83 224,245,252,256  

94,95,97,99 91,130,191  

100 129,130,131 

116 137  

119 239  

152,153 136  

162,163 147   

200,201 6,7,8 
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It is observed that some bad pixel having negative values are randomly distributed in the data 

set which are difficult to identify manually. For removing those bad pixels in the dataset a 

3x3 and 5x5 filter Figure 8 is designed which is convolved with the image in the nested loop 

condition. 

 

Figure 8: Kernel  used for bad pixel removal 

 Atmospheric correction of EO-1 Hyperion data 

After the correction of sensor related error which existed in the L1R (Level 1 radiometrically 

corrected) Hyperion data, atmospheric correction is carried out to get the surface reflectance. 

FLAASH model is used for atmospheric correction of EO-1 Hyperion data. The input 

parameters used by FLAASH(San and Suzen, 2010)(Kruse, 2004)(Yuan and Niu, 2008) for 

correction of EO-1 Hyperion data are in table 13: 

Table 13: Input parameter used for the atmospheric correction of EO-1 Hyperion data 

Parameter Value 

Scene Centre Latitude 230 40’ 33.60” 

Scene Centre Longitude 78º15´48.59´´E 

Scaling factor 400 VNIR and 800 SWIR 

Sensor Type Hyperion 

Flight Date Nov 27th  2009 

Average Flight Time 5:2:00 

Sensor Altitude 705km 

Ground Elevation 0.390km 

Atmospheric Model MLS 

Water Retrieval Yes (1135m) 

Aerosol Model Urban 

Aerosol Retrieval None 

Initial visibility 40km 

Spectral Policing Yes (9 bands) 

Wavelength Recalibration No 

Geometric Correction 

All the multispectral dataset were co-registered with respect to LISS IV data. The 

atmospherically corrected EO-1 Hyperion data was then co-registered using EO-1 ALI data 

by identifying sufficient and uniformly distributed GCPs.  
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4.2 Field Data Collection 

GPS locations and Spectral data collection 

Ground spectra of different features were collected within the study area using spectro-

radiometer along with respective GPS coordinate (using hand held GPS) and photographs. 

The data acquired by spectro-radiometer is in the wavelength range of 350-2500nm. These 

ground spectra includes major forest classes such as Sal (Shorea robusta), Teak (Tectona 

grandis), Acasia, Mango (Mangifers indica), Lantana, Grass land, Curry leaves, cropland, 

urban features (cemented roof, road, bricks), water body and sand etc. depicted in  Figure 9 
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Figure 9: Ground spectra collected using HR1024 spectro radiometer 

A spectral library was created using the ground spectra of various LULC features Figure 10.  
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4.3 HRS Data Simulation  

HRS data simulation has been carried out in following three steps. 

 Normalization of ground spectra 

 Estimation of weighted fractional coefficient image from MRS data. 

 Simulation of HRS data. 

Normalization of ground spectra 

Ground spectra is generally collected in the contiguous wavelength range of 400 nm to 2500 

nm. But different sensor MRS  & HRS acquire data in different wavelength and have different 

spectral bandwidth. In order to compare the spectral signature of two different sensor 

normalization is to be carried out. 

Normalization is the process in which ground spectra with fine spectral resolution is convolve 

with the Spectral Response Function (SRF) of the sensor. In this study, ground spectra of 

vegetation, water, dry riverbed and cropland collected from field is convolved with the SRF 

of each sensor (EO-1 ALI, LS-8 OLI, Resourcesat-2 LISS III & LISS IV). The normalized 

spectra of these features serves as one of the input required for HRS data simulation 

Estimation of weighted fractional coefficient’s from MRS data  

In this study, linear unmixing method is used for estimating the abundance of ground spectra 

present in each pixel of the image. Linear unmixing method takes normalized ground spectra 

and atmospherically corrected data for estimating the weighted fractional coefficients images. 

Figure 10: Spectral library 
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In LMM, each pixel of the MRS data is assumed to be a linear mixture of normalized ground 

spectra in the image. 

𝑷𝒊 =  ∑ (𝑹𝒊𝒋. 𝑭𝒋)
𝒏
𝒋=𝟏   from eqn. (2.3)  

where, i= Number of bands (1 to m); 

j= Number of end member( 1 to n); 

Pi= Reflectance value of ith pixel in remote sensing image 

Rij=Field spectra of the jth component (Vegetation, Water, Dry riverbed etc) 

Fj= fraction of coefficient to the jth component within the pixel. 

In the matrix form the linear unmixing equation (equation 2.3) can be represented as 

P= RF      (4.1) 
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For multispectral sensor equation (4.1) can be represented as 

PM= RMFM    (4.2) 

Where, suffix M denotes multispectral sensor. 

Using least square method FM can be computed as 

    FM= (RM
T RM)-1RT

MPM     (4.3) 

In the present study, linear unmixing is applied to MRS (EO-1 ALI, Landsat-8 OLI, 

Resourcesat-2 LISS III & LISS IV) data for estimating the fractional coefficients of each 

ground spectra present in the image. In case of EO-1 ALI, Landsat-8 OLI, Resourcesat-2 LISS 

III & LISS IV data, normalized spectra of vegetation, water, dry riverbed & cropland is used. 

But for Resourcesat-2 LISS IV data only 3 normalized spectra i.e. vegetation, water & dry 

riverbed is used. This is because LISS IV have only three bands and according to the principle 

of matrix dimensionality if the number of unknown variable is more than number of equations 

then the system becomes inconsistent and gives no solution. 

Simulation of HRS data 

The inputs required for HRS simulation is fractional coefficient image of MRS data. The 

normalized ground spectra of feature such to SRF of EO-1 Hyperion sensor. The bands are 
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reconstructed by applying spectral reconstruction technique by using these two inputs. The 

equations used for reconstruction is depicted below: 

PH= RHFH                          (4.4) 

As we know that  

FM= (PM
T PM)-1PT

MRM    (4.5) 

Here by replacing FM with FH we get 

PH= RH (PM
T PM)-1PT

MRMFH    (4.6) 

Here subscript H denotes Hyperspectral sensor. 

4.4 Development of open source software for HRS data simulation 

Python programming language is used for the development of the open source software for 

HRS data simulation. It is a high level language which gives environment for implementing 

application specific algorithms. Python has a large and wide-ranging of standard library 

available for variety of applications and software development. In the present study, Spectral 

python (Spy)(“Welcome to Spectral Python (SPy) — Spectral Python 0.16.0 documentation,” 

2015) and PyQt library(“Installing PyQt4 — PyQt 4.11.4 Reference Guide,” 2015) is used for 

the development of HRS data simulation software. 

Figure 11 demonstrate the overall flow of the tool development life cycle for the simulation 

of HRS data. The lifecycle is broadly divided into two modules. The first module deals with 

estimating the fractional coefficient image/unmixing coefficient image of the each ground 

spectra used. While the second module i.e. HRS data simulation module deals with HRS data 

simulation. 

 

Figure 11: Methodology for software development 
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Module for Unmixing 

Spectral Unmixing module is basically used for finding out the abundance of the ground 

spectra present in MRS data. The input required for this module are MRS data and normalized 

ground spectra with SRF of input MRS sensors data. Data reading of the multispectral image 

and normalized spectra of MRS are accomplished using Spy & Numpy libraries. MRS image 

is transformed to 3D matrix using Spy Library. After that least square method is carried out 

to find out the weighted fraction coefficients for MRS image of each ground spectra taken. 

GUI of linear unmixing module is depicted in Figure 12. 

 

Figure 12: GUI of Unmixing Module 

Module for HRS data simulation 

This module deals with simulation of HRS data. The input required by this module are 

fractional coefficient image of MRS data and normalized ground spectra which is normalized 

to SRF of HRS sensors which are read using these Spy and Numpy libraries. Fractional 

coefficient image is transformed to 3D matrix using Spy Library. After that spectral 

reconstruction method is applied to reconstruct the HRS bands. The GUI of HRS data 

simulation module is depicted in Figure 13. 
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Figure 13: GUI of HRS data Simulation Module 

4.5 Validation 

Once the hyperspectral data is simulated from multispectral data, the validation is carried out 

using different approaches like visual interpretation, statistical analysis (correlation, spectral 

separability analysis etc.) and classification. The details of these techniques is depicted in 

table 14 

Table 14: Validation of the simulated HRS data 

S. No Validation Method Approach 

1. Visual Interpretation Comparative analysis of different LULC features and 

their spectra 

2. Statistical Analysis  SNR calculation 

 Spectral band to band correlation 

 Spectral separability analysis  

3. Classification  Spectral Angle Mapper (SAM) 

Note: Validation of HRS data from EO-1 ALI & Landsat 8 OLI is done using all the three 

approaches depicted in table 14. In case of HRS data simulated from Resourcesat 2 LISS III 

& LISS IV, spatial resolution is different whereas for finding band to band correlation, spatial 

resolution should be same. Therefore, validation of Resourcesat 2 LISS III & LISS IV cannot 

be done using correlation method.  
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5 Results and Discussion 

This chapter includes detailed discussion of the results obtained as per the steps in 

methodology for simulating hyperspectral data. It also consists information about validating 

the results using visual interpretation, statistical analysis and classification. The software 

developed for simulation of HRS data using MRS data as a part of this project is also discussed 

in this chapter. 

5.1 Atmospheric correction  

FLAASH Atmospheric correction model is used for the correction of EO-1 ALI, Landsat 8 

OLI, Resourcesat-2 LISS III & LISS IV and EO-1 Hyperion data. Results of the spectral 

profiles before and after atmospheric correction of the datasets were compared by considering 

the atmospheric absorption and diagnostic absorption feature. (Figure 14 to Figure 18). The 

spectra of vegetation, water and dry river bed was observed and they have shown significant 

improvement in the spectral profile after atmospheric correction. The results obtained for the 

three features after atmospheric correction are explained below in terms of their spectral 

profile.  

Vegetation: The spectral diagnostic absorption is highlighted in the red band due to the 

chlorophyll content present in the leaves. In NIR wavelengths the internal structure of healthy 

leaves which acts as diffuse reflector has been observed as more reflection in NIR.  

Dry Riverbed: The radiation incident upon sandy features like dry riverbed, urban etc. is 

reflects high in optical EMR region. Therefore dry riverbed is showing strong reflectance 

nature in all the bands of the datasets after correction. 

Water: Majority of the radiation incident upon water is absorbed or transmitted in NIR region 

which is clearly observed in the resultant spectra.  
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Figure 14: ALI before and after correction 

 

Figure 15: OLI before and after correction 
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Figure 16: LISS III before and after correction 

 

Figure 17: LISS IV before and after correction 
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Figure 18: Hyperion before and after correction 

5.2 Estimated weighted fractional coefficients  

Weighted fractional coefficient images generated for each multispectral datasets (EO-1 ALI, 

Landsat 8 OLI, Resourcesat-2 LISS III & LISS IV) after linear unmixing are shown in Figure 

19 to Figure 22. Each pixel in the fractional coefficient image is showing its abundance of 

each end member (vegetation, water, urban & agriculture). The abundance value ranges from 

zero to one. The pixels appearing brightest in the image corresponds to 1 i.e. showing 

maximum abundance whereas the pixel appearing darkest correspond to ground spectra which 

is submissive or doesn’t contribute any abundance in the pixel. 
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Figure 19: Weighted Fractional Coefficient of EO-1 ALI MRS data 
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Figure 20 : Fractional coefficients of Landsat 8 OLI 
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Figure 21: Fractional Coefficient image of LISS III 
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Figure 22: Fractional coefficient of LISS IV 
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5.3 Simulated hyperspectral data 

Spectral reconstruction approach is used for the simulation of hyperspectral data from 

multispectral data. The simulated hyperspectral data from each multispectral (EO-1 ALI, 

Landsat 8 OLI, Resourcesat-2 LISS III & LISS IV) datasets are discussed below. 

Simulated HRS data from EO-1 ALI MRS data 

In total 70 spectral bands are simulated from EO-1 ALI data in the common wavelength range 

as of EO-1 Hyperion data. The simulated HRS data is compared with EO-1 Hyperion data 

and it is observed that most of the bands appears same while preserving tone, texture and 

shape. It is also found that the spectra of randomly selected features are retaining the 

diagnostic absorption characteristics. Figure 23 shows the standard False Colour Composite 

(FCC) and spectra of various features of the EO-1 Hyperion data and the simulated HRS from 

EO-1 ALI data.  

Simulated HRS data from Landsat-8 OLI MRS data 

In case of HRS data simulation from Landsat 8 OLI data a total of 34 bands have been 

simulated. Visually simulated bands are appearing similar while preserving its image 

characteristics like texture, shape except tone. Spectral signature of randomly selected 

features from both the images (Hyperion & simulated) are showing similar characteristics. 

Figure 24 shows the standard FCC and spectra of various features of EO-1 Hyperion data and 

the simulated HRS data from OLI data. 

Simulated HRS data from Resourcsat-2 LISS III MRS data 

Over all 38 spectral bands has been simulated from Resourcsat-2 LISS III MRS data with 

spatial resolution of 23.5m. Tone, texture, shape in the simulated HRS image are well-

preserved. Figure 25 shows the standard FCC and spectra of three features of LISS III MRS 

data and simulated HRS from Resourcesat-2 LISS III data. 

Simulated HRS data from Resourcsat-2 LISS IV MRS data  

Twenty three spectral bands with spatial resolution of 5.8 meters are simulated from LISS IV 

MRS data. Tone, texture, shape of the feature in the simulated HRS data are preserved. It is 

observed that spectra generated from the simulated HRS data is satisfactory for various 

studies. Figure 26 shows the standard FCC and spectra of some features of the simulated HRS 

data from Resourcesat-2 LISS IV.
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Figure 23: Simulated HRS data from ALI MRS data 
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Figure 24: Simulated HRS data Landsat 8 OLI MRS Data 
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Figure 25: Simulated HRS from Resourcesat-2 LISS III MRS Data 
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Figure 26: Simulated HRS from Resourcesat-2 LISS IV MRS Data
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Statistical approach 

 Correlation 

Correlation between EO-1 Hyperion and simulated HRS data from EO-1 ALI & Landsat-8 

OLI data is calculated for validation of results. 

 It is observed that most of the simulated spectral bands demonstrated very high correlation 

indicating good simulation of the hyperspectral bands. The values of correlation coefficients 

for each simulated band (from EO-1 ALI & Landsat-8 OLI) with EO-1 Hyperion band is 

given in table (15-16).  

Table 15: Correlation between Simulated HRS & EO-1 Hyperion Data 

Bands Correlation Bands Correlation Bands Correlation 

1 0.84 26 0.92 51 0.92 

2 0.84 27 0.92 52 0.92 

3 0.87 28 0.92 53 0.92 

4 0.89 29 0.92 54 0.92 

5 0.89 30 0.92 55 0.90 

6 0.90 31 0.92 56 0.90 

7 0.90 32 0.93 57 0.90 

8 0.91 33 0.92 58 0.89 

9 0.90 34 0.92 59 0.89 

10 0.91 35 0.92 60 0.91 

11 0.91 36 0.92 61 0.91 

12 0.91 37 0.92 62 0.90 

13 0.91 38 0.92 63 0.91 

14 0.91 39 0.92 64 0.91 

15 0.91 40 0.92 65 0.91 

16 0.91 41 0.92 66 0.91 

17 0.91 42 0.92 67 0.90 

18 0.91 43 0.92 68 0.89 

19 0.91 44 0.92 69 0.90 

20 0.91 45 0.92 70 0.89 

21 0.91 46 0.92   

22 0.91 47 0.92   

23 0.91 48 0.92   

24 0.91 49 0.92   

25 0.91 50 0.92   
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Figure 27: Band to Band Correlation between EO-1 Hyperion and Simulated HRS from ALI 

Table 16: Simulated HRS from Landsat 8 OLI & EO-1 Hyperion Data 

Bands Correlat

ion 

Bands Correlation Bands Correlation Bands Correlation 

1 0.81 11 0.90 21 0.86 31 0.88 

2 0.82 12 0.89 22 0.86 32 0.87 

3 0.84 13 0.89 23 0.87 33 0.87 

4 0.86 14 0.89 24 0.87 34 0.86 

5 0.87 15 0.89 25 0.86   

6 0.88 16 0.88 26 0.86   

7 0.88 17 0.92 27 0.88   

8 0.89 18 0.92 28 0.88   

9 0.90 19 0.92 29 0.88   

10 0.90 20 0.92 30 0.89   
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Figure 28: band to band correlation between EO-1 Hyperion and simulated HRS from Landsat 8 OLI 

Figure 29 shows the band no. 8 (538nm) of EO-1 Hyperion and simulated HRS (from EO-1 

ALI) data. Both the bands are appearing similar due to high correlation value i.e.0.91. 

 

Figure 29:  Band number 8 of EO-1 Hyperion & simulated HRS from ( ALI) 
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 Signal to Noise Ratio 

Signal to noise ratio is used to characterize quality of signal detected of a measuring system 

(e.g. camera or any electronic sensor). It is expressed as the ratio of the mean signal over 

standard deviation of a target of interest. The standard approaches for calculation SNR is by 

using a 50% albedo target or define targets that are of interest. The mean and standard 

deviation of the brighter and darker pixel is calculated by taking ROI from the area of 

interested. Then ratio of mean to standard deviation is done to obtained signal to noise ratio. 

table 17- table 20 shows the SNR of EO-1 Hyperion and simulated HRS from EO-1 ALI data. 

A quick  

Table 17: SNR of Simulated HRS from ALI and EO-1 Hyperion 

Bands SNR 

(Hyperion) 

SNR 

(Simulated HRS  

from ALI) 

Band

s 

SNR 

(Hyperion) 

SNR 

(Simulated HRS  

from ALI) 

1 1.77 1.68 36 1.62 1.74 

2 1.80 1.66 37 1.61 1.74 

3 1.69 1.63 38 1.59 1.73 

4 1.60 1.59 39 1.60 1.72 

5 1.64 1.60 40 1.58 1.72 

6 1.59 1.57 41 1.57 1.70 

7 1.58 1.55 42 1.61 1.72 

8 1.57 1.52 43 1.57 1.71 

9 1.55 1.53 44 1.61 1.72 

10 1.53 1.52 45 1.58 1.72 

11 1.55 1.53 46 1.60 1.71 

12 1.57 1.54 47 1.63 1.70 

13 1.54 1.55 48 1.57 1.71 

14 1.54 1.64 49 1.61 1.72 

15 1.53 1.65 50 1.62 1.71 

16 1.53 1.65 51 1.62 1.70 

17 1.52 1.69 52 1.63 1.72 

18 1.54 1.69 53 1.57 1.73 

19 1.54 1.70 54 1.61 1.72 

20 1.52 1.57 55 1.62 1.82 

21 1.53 1.56 56 1.81 1.78 

22 1.53 1.56 57 1.80 1.77 

23 1.50 1.56 58 1.82 1.79 
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24 1.51 1.55 59 1.79 1.81 

25 1.50 1.54 60 1.78 1.81 

26 1.62 1.57 61 1.82 1.80 

27 1.49 1.60 62 1.81 1.82 

28 1.51 1.59 63 1.80 1.79 

29 1.54 1.58 64 1.82 1.78 

30 1.52 1.59 65 1.80 1.82 

31 1.49 1.57 66 1.82 1.82 

32 1.47 1.56 67 1.79 1.79 

33 1.52 1.54 68 1.78 1.80 

34 1.56 1.56 69 1.80 1.80 

35 1.52 1.57 70 1.82 1.80 

Figure 30 shows the comparison between SNR of EO-1 Hyperion & Simulated HRS from 

EO-1 ALI data. Bands from 1 to 12 of simulated HRS data have low SNR values whereas 

bands from 38 to 70 have high SNR values which demonstrates acceptable simulation of HRS 

bands. 

 

Figure 30: SNR between EO-1 Hyperion Vs Simulated HRS from EO-1 ALI 

Table18 shows the SNR values of EO-1 Hyperion and simulated HRS from Landsat- 8 OLI 

data. Here, most of the bands in simulated HRS data are demonstrating high SNR values for 

all the simulated bands in comparison to EO-1 Hyperion shown in Figure 31. . Simulated HRS 
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results from Resourcesat-2 LISS III and LISS IV have also produced high SNR values (Table 

19-20) indicating satisfactory simulation. 

 

 

Table 18: SNR of simulated HRS from Landsat 8 OLI and EO-1 Hyperion 

Bands SNR 

(Hyperion) 

SNR 

(Simulated HRS 

from OLI) 

Bands SNR 

(Hyperion) 

SNR 

(Simulated HRS 

from OLI) 

1 2.27 2.1 18 2.84 2.77 

2 2.34 2.34 19 2.85 2.85 

3 2.30 2.30 20 2.82 2.82 

4 2.30 2.30 21 2.79 2.79 

5 2.31 2.31 22 2.86 2.86 

6 2.28 2.28 23 2.83 2.83 

7 2.29 2.29 24 2.86 2.86 

8 2.33 2.33 25 2.93 2.93 

9 2.33 2.33 26 2.99 2.99 

10 2.32 2.32 27 2.84 2.84 

11 2.32 2.32 28 2.85 2.85 

12 2.33 2.33 29 2.99 2.99 

13 2.35 2.35 30 2.89 2.89 

14 2.48 2.48 31 2.82 2.82 

15 2.50 2.50 32 2.89 2.89 

16 2.51 2.51 33 2.85 2.85 

17 2.81 2.81 34 2.80 2.80 
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Figure 31: SNR between EO-1 Hyperion vs simulated HRS from OLI 

 

Table 19: SNR of simulated SNR from RESOURCESAT- 2 LISS III 

Bands SNR Bands SNR 

1 1.31 20 1.51 

2 1.36 21 1.47 

3 1.35 22 1.47 

4 1.35 23 1.48 

5 1.35 24 1.36 

6 1.33 25 1.35 

7 1.33 26 1.40 

8 1.35 27 1.36 

9 1.31 28 1.32 

10 1.33 29 1.35 

11 1.32 30 1.41 

12 1.30 31 1.38 
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19 1.52 38 1.38 

Table 20: SNR of simulated SNR from RESOURCESAT- 2 LISS IV 

Band SNR Band SNR 

1 1.41 13 1.43 

2 1.41 14 1.44 

3 1.41 15 1.47 

4 1.41 16 1.47 

5 1.41 17 1.47 

6 1.41 18 1.47 

7 1.41 19 1.47 

8 1.43 20 1.47 

9 1.43 21 1.47 

10 1.43 22 1.47 

11 1.43 23 1.47 

12 1.43   

 

Spectral separability analysis 

In the present study, spectral separability analysis is carried out to find out similarity between 

image spectra of hyperspectral data (EO-1 Hyperion and simulated HRS data from MRS data) 

and field spectra of various LULC features. Equal weightage of 0.33 was given while 

performing spectral separability analysis using SAM, SFF and BE for spectral matching. 

Ground spectra at two different locations for two different features (Sal and Curry Leaves) 

were collected and used for the spectral separability analysis Figure 32 (point no. 1 is 

dominated by SAL forest whereas point no. 2 is mixed vegetation dominated by curry leaves). 

Table 21: Satellite data XY Location and latitude longitude of selected features 

Data LULC Features XY Lat,  Long 

EO-1 Hyperion Sal 

Curry Leaves (Curry 

Patta) 

X: 620 Y:1079 

 

X: 646 Y:1023 

30° 07’ 19.76’’,78° 16’ 0.91’’ 

 

30° 08’14.88’’ 78° 16’27.81’’ 

EO-1 ALI 

Simulated HRS 

Sal 

Curry Leaves (Curry 

Patta) 

X: 620 Y:1079 

 

X: 646 Y:1023 

30° 07’ 19.76’’,78° 16’ 0.91’’ 

 

30° 08’14.88’’ 78° 16’27.81’’ 

Landsat 8 OLI 

Simulated HRS 

Sal 

Curry Leaves (Curry 

Patta) 

X: 646 Y:1023 

 

X: 646 Y:1023 

30° 07’ 19.76’’,78° 16’ 0.91’’ 

 

30° 08’14.88’’ 78° 16’27.81’’ 

Simulated HRS 

(LISS III) 

Sal 

Curry Leaves (Curry 

Patta) 

X: 6068 Y:2107 

 

X: 6096 Y:2036 

30° 07’ 19.76’’,78° 16’ 0.91’’ 

 

30° 08’14.88’’ 78° 16’27.81’’ 

Simulated HRS 

(LISS IV) 

Sal 

Curry Leaves (Curry 

Patta) 

X: 801 Y:711 

 

X: 918Y:400 

30° 07’ 19.76’’,78° 16’ 0.91’’ 

 

30° 08’14.88’’ 78° 16’27.81’’ 



Simulation of Hyperspectral Data from Multispectral Data Using Spectral Reconstruction Approach 
 

P a g e  52 | 92 

 

 

 

Figure 32: Ground Truth Locations 

The results of the spectral separability analysis for all the hyperspectral datasets (EO-1 

Hyperion and simulated) is illustrated in figure 33-37 .The results comprise of overall and 

individual score for SAM, SFF & BE techniques. The observations are as follows: 

 The overall score for Sal and curry leaves is similar for Hyperion, simulated HRS data 

from ALI and OLI whereas the scores are at higher end for LISS-III and LISS IV.  

 EO-1 Hyperion data 
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Figure 33: Separability score of EO-1 Hyperion 

 Simulated HRS (EO-1 ALI):  

 

 

 

 
Figure 34: Separability score for simulated HRS from EO-1 ALI 

 Simulated HRS (Landsat 8 OLI Data): 
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Figure 35: Separability score for simulated HRS from Landsat 8 OLI 

 Simulated HRS (Resourcesat -2 LISS III): 

 
 

 

 
Figure 36: Separability score for simulated HRS from LISS III 

 Simulated HRS (Resourcesats-2 LISS IV): 
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Figure 37: Separability score for simulated HRS from LISS IV 

5.4 Classification and accuracy assessment 

Table 22: Accuracy assessment of all classified results 

Spectral Angle Mapper technique has been used for classifying all the multispectral and their 

corresponding simulated hyperspectral datasets along with Hyperion data for cross validation. 

The classification results are shown from Figure 38 to 46. The classified output of EO-1 

hyperion data (Figure 38) is able to classify all major LULC classes (Vegetation, water body, 

urban, dry riverbed, cropland etc.) along with different vegetation species (Shorea robusta, 

Tectona grandis, Scrub etc.). The results were cross validated with ground samples and high 

level of accuracy is obtained for all the classes. The classified output obtained from simulated 

HRS (EO-1 ALI) data (Figure 40) is also able to classify the spectrally similar vegetation 

species and major LULC classes, the accuracy assessment results are also satisfactory and 

acceptable. The classified results of corresponding EO1 ALI MRS data (Figure 39) are 

inferior, moreover some of the classes like Shorea robusta, Tectona grandis and scrubs are 

misclassified at some places, This can be attributed to the coarser spectral resolution. 

Spatial 

resolution 

Classified Map Overall 

Accuracy 

Kappa 

Coefficient 

30 m EO-1 Hyperion 84.82 0.829 

Simulated HRS (from 

EO-1ALI) data 

74.35 0.717 

EO-1 ALI MRS data 58.91 0.522 

Simulated HRS (from 

Landsat-8 OLI) data 

69.82 0.6631 

Landsat-8 OLI MRS 

data 

62.97 0.5854 

23.5 m Simulated HRS (from 

Resourcesat-2 LISS 

III) data 

69.42 0.6412 

Resourcesat-2 LISS 

III MRS data 

65.70 0.6034 

5.8 m Simulated HRS (from 

Resourcesat-2 LISS 

IV) data 

79.48% 0.7259 

 

Resourcesat-2 LISS 

IV MRS data 

63.98% 0.5336 
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Similarly the classified outputs of simulated HRS data from others MRS data like Landsat 8 

OLI (Figure 42), Resourcesat 2 LISS III (Figure 44) and Resourcesat 2 LISS IV (Figure 46) 

are also able to classify major LULC classes with improved accuracy from their 

corresponding MRS data. Classification results obtained from Multispectral data of Landsat 

8 OLI (Figure 41), Resourcesat 2 LISS III (Figure 43) and Resourcesat 2 LISS IV (Figure 45) 

are not able to classify spectrally similar features e.g. (scrubs, mixed forest, cropland) due to 

their coarser bandwidth. 

The classified outputs were further subjected to accuracy assessment and the results are shown 

in Table 22.  

Following points are observed from the classification and accuracy assessment results: 

 Overall accuracy and kappa coefficient of all the classified products obtained from 

simulated HRS data is improved as compared to their corresponding classified 

products derived from multispectral data. 

 The extent of misclassification which was observed in the classified MRS products is 

reduced significantly in the classified products of simulated HRS data. 

 Majority of LULC classes like urban, forest and cropland etc. have shown improved 

classification results in the classified products generated from simulated data. 

 The classified output obtained from the simulated products are able to discriminate 

LULC classes of similar nature e.g. mixed urban vs. dense urban etc. which is 

limitation of products generated from multispectral dataset.  
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Figure 38: Classified EO-1 Hyperion data 
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Figure 39: Classified EO-1 ALI data 
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Figure 40: Classified simulated HRS data (from EO-1 ALI) 
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Figure 41: Classified Landsat 8 OLI 
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Figure 42: Classified HRS from OLI 
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Figure 43: Classified Simulated HRS data (from Resourcesat 2 LISS III) 
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Figure 44: Classified Resourcesat-2 LISS IV data 
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Figure 45: Classified Simulated HRS from LISS IV 
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Figure 46: Classified Simulated HRS from Resourcesat 2 LISS IV 
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Accuracy Assessment: 

 EO-1 Hyperion 

Table 23: Accuracy Assessment EO-1 Hyperion 

 

 EO-1 ALI 

Table 24 : Accuracy assessment of EO-1 ALI 

Class Producer’s Accuracy User’s Accuracy 
Dry Riverbed 98.68 75 

Waterbody 100 100 
Dense Urban 59.77 45.61 
Mixed Urban 5.32 7.04 

Grassland 100 75.68 
Open Forest 40.22 90.24 

Shorea robusta  100 38.68 
Tectonagrandis Plantation 19.24 65.52 

Scrubs 37.56 98.67 
Mixed Forest 91.91 61.27 

Cropland 57.8 80.77 

Overall Accuracy 58.91%  

Kappa 0.522  
 

Class Producer’s Accuracy User’s Accuracy 

Dry Riverbed 93.55 98.31 

Waterbody 100 100 

Dense Urban 98.59 89.74 

Mixed Urban 34.92 88 

Grassland 100 73.04 

Open Forest 77.78 79.03 

Shorea robusta  100 78.85 

Tectonagrandis Plantation 55.74 100 

Scrubs 89.47 100 

Mixed Forest 99.34 74.75 

Cropland 91.53 90 

Overall Accuracy 84.82%  

Kappa 0.8296  
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 Simulated HRS from EO-1 ALI 

Table 25:  Accuracy Assessment of HRS simulated from ALI 

Class Producer’s Accuracy User’s Accuracy 

Dry Riverbed 86.76 86.76 

Waterbody 100 100 

Dense Urban 82.35 76.36 

Mixed Urban 27.27 68.18 

Grassland 96.43 77.14 

Open Forest 85.71 76.92 

Shorea robusta  92.31 70.59 

Tectonagrandis Plantation 28.09 96.15 

Scrubs 53.66 73.33 

Mixed Forest 100 53.68 

Cropland 85.11 86.96 

Overall Accuracy 74.35%  

Kappa 0.717  

 

Table 26:  Accuracy Assessment of Landsat 8 OLI 

 Landsat-8 OLI 

 

Class Producer’s Accuracy User’s Accuracy 

Dry Riverbed 71.89 59.64 

Waterbody 95.21 87.42 

Dense Urban 47.21 83.2 

Mixed Urban 48 54.14 

Grassland 93.58 84.71 

Open Forest 69.7 69.7 

Shorea robusta 89.47 80.63 

Tectonagrandis Plantation 75.18 88.03 

Scrubs 64.29 17.53 

Mixed Forest 28.9 62.5 

Cropland 50.93 36.18 

Overall Accuracy 62.97%  

Kappa 0.5854  
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 Simulated HRS from Landsat 8 OLI  

 Table 27: Accuracy Assessment of HRS simulated from Landsat 8 OLI data 

 

 Resourcesat-2 LISS III 

Table 28:  Accuracy Assessment of classified LISS III MRS Data 

Class Producer’s Accuracy User’s Accuracy 

Dry Riverbed 76.92 54.05 

Waterbody 68.82 100 

Dense Urban 59.62 65.46 

Mixed Urban 94.12 40 

Grassland 100 91.18 

Open Forest 55.56 40.54 

Shorea robusta  87.5 86.34 

Tectonagrandis Plantation 72.88 90.53 

Scrubs 63.6 85.25 

Mixed Forest 67.28 59.59 

Cropland 94.87 81.67 

Overall Accuracy 65.70%  

Kappa 0.6034  

 

 

Class Producer’s Accuracy User’s Accuracy 
Dry Riverbed 96.4 64.73 

Waterbody 100 100 
Dense Urban 55.63 76.07 
Mixed Urban 19.35 69.77 

Grassland 78.03 58.86 
Open Forest 55.56 40.54 

Shorea robusta 96.38 71.51 
Tectonagrandis Plantation 72.88 90.53 

Scrubs 65.59 46.92 
Mixed Forest 70.04 80.5 

Cropland 77.08 78.72 
Overall Accuracy 69.82%  

Kappa 0.6631  
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 Simulated HRS from Resourcesat-2 LISS III 

Table 29 :  Accuracy Assessment of HRS simulated from LISS III data 

 

 Resourcesat 2 LISS IV data 

Table 30: Accuracy assessment of LISS IV MRS data 

Class Producer’s Accuracy User’s Accuracy 
Dry Riverbed 79.34 100 

Waterbody 100 54.08 
Dense Urban 98.81 36.4 
Mixed Urban 56.59 65.92 

Grassland 86.01 86.01 
Open Forest 63.16 63.16 

Shorea robusta  91.22 33.5 
Tectonagrandis Plantation 27.43 40.88 

Scrubs 85.11 50 
Mixed Forest 56.59 65.92 

Cropland 0 0 

Overall Accuracy 63.98%  

Kappa 0.5336  
 

Class Producer’s  Accuracy User’s Accuracy 

Dry Riverbed 77.31 62.16 

Waterbody 100 88.98 

Dense Urban 31.96 38.75 

Mixed Urban 35.85 82.61 

Grassland 91.74 95.24 

Open Forest 79.49 91.18 

Shorea robusta  93.6 71.74 

Tectonagrandis Plantation 45.41 94 

Scrubs 32.89 80.43 

Mixed Forest 79.43 41.48 

Cropland 84.62 78.57 

Overall Accuracy 69.42%  

Kappa 0.6412  



Simulation of Hyperspectral Data from Multispectral Data Using Spectral Reconstruction Approach 
 

P a g e  70 | 92 

 

 

 Simulated HRS from Resourcesat-2  LISS IV data 

Table 31: Accuracy Assessment of HRS simulated from LISS IV MRS data 

Class Producer’s Accuracy User’s Accuracy 

Dry Riverbed 93.84 99.51 

Waterbody 99.5 88.63 

Dense Urban 87.72 47.17 

Mixed Urban 88.74 75.71 

Grassland 77.11 81.72 

Open Forest 21.43 57.78 

Shorea robusta  51.55 25.97 

Tectonagrandis Plantation 36.6 45.51 

Scrubs 63.64 29.91 

Mixed Forest 51.43 18.75 

Cropland 51.55 25.97 

Overall Accuracy 79.48%  

Kappa 0.7259  

 Comparative analysis of Accuracy Assessment 

Figure 47 shows the comparison of user’s as well as producer’s accuracy for each class of 

EO-1 ALI, Hyperion and Simulated HRS from ALI  classified data. Major classes in 

simulated (EO-1 ALI) and hyperion have shown comparable results. The accuracy obtained 

from simulated HRS data from all other multispectral data (Landsat 8 OLI, Resourcesat 2 

LISS III & LISS IV) have shown improved results as compared to corresponding MRS data 

as shown in Figure 48- 50 . 

  
Figure 47: Users and Producers Accuracy 
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Figure 48: Users and Producers Accuracy 

 

  
Figure 49: Users and Producers Accuracy 

 

  
Figure 50: Users and Producers Accuracy 
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6 Conclusion and Future Recommendation: 

6.1 Conclusion 

This chapter illustrated the summary of the objectives accomplished in this project work with 

the scope of future advancement. The work carried out involves simulation of HRS data from 

available multispectral datasets using spectral reconstruction approach for detailed LULC 

studies. The research also demonstrated the potential of simulation of the HRS data from high 

resolution MRS data (RS-2 LISS IV). This will be beneficial in the cases were problem of 

mixed pixel exists because of the coarser resolution of the HRS datasets. The simulated high 

resolution HRS data can be used for target detection related studies. 

Research also emphasis on use of open source programming language in the development of 

HRS data simulation tool box using Spy and Numpy libraries. The developed tool is a sensor 

independent which is capable of simulating the HRS data using any MRS Datasets. 

The conclusions of the research work are presented below:  

 Spectral reconstruction technique emerged out to be an effective method for HRS 

data simulation as it does not require any sensor dependent parameters. This 

technique effectively make use of inherent information of MRS data and normalized 

ground spectra for reconstruction of contiguous spectral narrow bands. 

 HRS data simulation from EO-1 ALI, Landsat-8 OLI, LISS III and LISS-IV resulted 

in 70, 38, 34 and 23 spectral bands with 10 nm bandwidth. 

 HRS simulated results are validated using visual interpretation, statistical, spectral 

separability and classification techniques. Validation of simulated HRS data 

contribute conclusive results which emphasises on superiority of the spectral 

reconstruction technique for HRS data simulation.  Simulated HRS data from ALI 

and OLI has shown high spectral correlation with Hyperion data along with 

comparable SNR values. Simulated HRS results from LISS III and LISS IV have also 

produced high SNR values indicating satisfactory simulation.  

 Spectral separability analysis for all the hyperspectral datasets (EO-1 Hyperion and 

simulated) with field spectra is carried out.  The overall score was found to be similar 

for Hyperion, simulated HRS data from ALI and OLI whereas the scores are at higher 

end for LISS-III and LISS IV.  

 One of the validation was performed using the SAM classification and it was 

observed that simulated hyperspectral data shows comparable results with Hyperion. 

The simulated results are able to separate out different LULC classes in a better way 

than their corresponding multispectral datasets. Apart from this the accuracy 

assessment results are also improved. 

 Open source programming language Python emerged to be vibrant tool for 

implementing application specific algorithm. It provides access to libraries such as: 

Spectral python, Numpy & PyQt which has shown significant contribution in 

implementation of HRS data simulation algorithm and in development of open source 

tool for HRS data simulation. 
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6.2 Future recommendation 

 Linear unmixing is the intermediate step required in simulation of HRS data. It 

contributes significant result only in case if the features in the mixed pixels are 

organised proportionally. But in case if the substances comprising the medium are 

not organized proportionally, then incident radiation may experience reflection with 

multiple feature which can destroy the conditions of linear unmixing. In such cases 

nonlinear unmixing technique can be used in which the features in a mixed pixels are 

not organized in a proportionally. This can significantly improve the HRS data 

simulation results. 

 Very high spatial resolution data like Worldview-3 can also be tested using same 

algorithm for HRS data simulation. 

 Customized package can be made using python for simulation of HRS data. The 

customized package should be developed in such a way that it can be used as add on 

plugin in different Satellite image processing tools available in the market. 

  

  



Simulation of Hyperspectral Data from Multispectral Data Using Spectral Reconstruction Approach 
 

P a g e  74 | 92 

 

References 

 Agarwal, S., 2004. Principles of remote sensing. Satell. Remote Sens. GIS Appl. 

Agric. Meteorol. 23. 

 Boggione, G.A., Pires, E.G., Santos, P.A., Fonseca, L.M.G., 2003. Simulation of a 

panchromatic band by spectral combination of multispectral ETM+ bands. Proc 

ISRSE. 

 Börner, A., Wiest, L., Keller, P., Reulke, R., Richter, R., Schaepman, M., Schläpfer, 

D., 2001. SENSOR: a tool for the simulation of hyperspectral remote sensing 

systems. ISPRS J. Photogramm. Remote Sens. 55, 299–312. 

 Daigo, M., Ono†, A., Urabe‡, R., Fujiwara, N., 2004. Pattern decomposition method 

for hyper-multi-spectral data analysis. Int. J. Remote Sens. 25, 1153–1166. 

doi:10.1080/0143116031000139872 

 Harsanyi, J.C., Chang, C.-I., 1994. Hyperspectral image classification and 

dimensionality reduction: an orthogonal subspace projection approach. Geosci. 

Remote Sens. IEEE Trans. On 32, 779–785. 

 Heinz, D.C., Chang, C.-I., 2001a. Fully constrained least squares linear spectral 

mixture analysis method for material quantification in hyperspectral imagery. Geosci. 

Remote Sens. IEEE Trans. On 39, 529–545. 

 Heinz, D.C., Chang, C.-I., 2001b. Fully constrained least squares linear spectral 

mixture analysis method for material quantification in hyperspectral imagery. Geosci. 

Remote Sens. IEEE Trans. On 39, 529–545. 

 Hossain, M., Ahadi, A.W., Kamal, G.M., 2003. Introduction to remote sensing. 

Afghan. Inf. Manag. Serv. AIMS Intern. Capacity Build. Initiat. U. N. Dev. 

Programme. 

 Hyperspectral Analysis: SAM and SFF Tutorial (Using ENVI) | Exelis VIS Docs 

Center [WWW Document], 2015. URL http://www.exelisvis.com/docs/Whole-

Pixel_Hyperspectral_Analysis_Tutorial.html (accessed 6.15.15). 

 Installing PyQt4 — PyQt 4.11.4 Reference Guide [WWW Document], 2015. URL 

http://pyqt.sourceforge.net/Docs/PyQt4/installation.html 



Simulation of Hyperspectral Data from Multispectral Data Using Spectral Reconstruction Approach 
 

P a g e  75 | 92 

 

 Kavzoglu, T., 2004. Simulating Landsat ETM+ imagery using DAIS 7915 

hyperspectral scanner data. Int. J. Remote Sens. 25, 5049–5067. 

doi:10.1080/01431160410001720199 

 Kawishwar, P., 2007. Atmospheric Correction Models for Retrievals of Calibrated 

Spectral Profiles from Hyperion EO-1 Data. Int. Inst. Geo-Inf. Sci. Earth Obs. Master 

Thesis Enschede Neth. 

 Keshava, N., 2003. A survey of spectral unmixing algorithms. Linc. Lab. J. 14, 55–

78. 

 Kruse, F.A., 2004. Comparison of ATREM, ACORN, and FLAASH atmospheric 

corrections using low-altitude AVIRIS data of Boulder, CO, in: 13th JPL Airborne 

Geoscience Workshop. Jet Propulsion Laboratory Pasadena, CA. 

 Landsat 8 [WWW Document], 2015. URL http://landsat.usgs.gov/landsat8.php 

(accessed 6.15.15). 

 Landsat_DN_to_Reflectance.pdf [WWW Document], 2015. URL 

http://www.yale.edu/ceo/Documentation/Landsat_DN_to_Reflectance.pdf (accessed 

6.15.15). 

 Liguo, W., Jing, Z., Luqun, D., 2009a. Spectral Unmixing Technique Based on 

Flexibly Selected Endmembers. IEEE, pp. 148–151. doi:10.1109/CSIE.2009.989 

 Liu, B., Zhang, L., Zhang, X., Zhang, B., Tong, Q., 2009. Simulation of EO-1 

Hyperion Data from ALI Multispectral Data Based on the Spectral Reconstruction 

Approach. Sensors 9, 3090–3108. doi:10.3390/s90403090 

 Lumme, J.H., 2004. Classification of vegetation and soil using imaging spectrometer 

data, in: Geoscience and Remote Sensing Symposium. p. 83. 

 Markelin, L., 2013. Radiometric calibration, validation and correction of 

multispectral photogrammetric imagery. Finnish Geodetic Institute. 

 Maselli, F., 1998. Multiclass spectral decomposition of remotely sensed scenes by 

selective pixel unmixing. Geosci. Remote Sens. IEEE Trans. On 36, 1809–1820. 

 Muramatsu, K., Furumi, S., Fujiwara, N., Hayashi, A., Daigo, M., Ochiai, F., 2000. 

Pattern decomposition method in the albedo space for Landsat TM and MSS data 

analysis. Int. J. Remote Sens. 21, 99–119. doi:10.1080/014311600211019 

 Parra, L.C., Spence, C., Sajda, P., Ziehe, A., Müller, K.-R., 1999. Unmixing 

Hyperspectral Data., in: NIPS. Citeseer, pp. 942–948. 



Simulation of Hyperspectral Data from Multispectral Data Using Spectral Reconstruction Approach 
 

P a g e  76 | 92 

 

 Resourcesat-2_Handbook.pdf [WWW Document], 2015. URL 

http://bhuvan.nrsc.gov.in/bhuvan/PDF/Resourcesat-2_Handbook.pdf (accessed 

6.15.15). 

 Roberts, D.A., Gardner, M., Church, R., Ustin, S., Scheer, G., Green, R.O., 1998. 

Mapping chaparral in the Santa Monica Mountains using multiple endmember 

spectral mixture models. Remote Sens. Environ. 65, 267–279. 

 Sahoo, R., n.d. HYPERSPECTRAL REMOTE SENSING. 

 Sahoo, R.N., Pargal, S., Pradhan, S., Krishna, G., Gupta, V.K., n.d. Processing of 

Hyperspectral Remote Sensing Data. 

 San, B.T., Suzen, M.L., 2010. EVALUATION OF DIFFERENT ATMOSPHERIC 

CORRECTION ALGORITHMS FOR EO-1 HYPERION IMAGER. 

 Schläpfer, D., Boerner, A., Schaepman, M., 1999. The potential of spectral 

resampling techniques for the simulation of APEX imagery based on AVIRIS data, 

in: Summaries of the Eighth JPL Airborne Earth Science Workshop, JPL, Pasadena 

(CA). pp. 377–384. 

 Schott, J., Raqueno, R.V., Raqueno, N.G., Brown, S.D., 2010. A Synthetic 

Sensor/Image Simulation Tool to Support the Landsat Data Continuity 

Mission(LDCM), in: ASPRS 2010 Annual Conference. San Diego, California. 

 Settle, J.J., Drake, N.A., 1993a. Linear mixing and the estimation of ground cover 

proportions. Int. J. Remote Sens. 14, 1159–1177. doi:10.1080/01431169308904402 

 Shaw, G.A., Burke, H.K., 2003. Spectral imaging for remote sensing. Linc. Lab. J. 

14, 3–28. 

 Shaw: Spectral imaging for remote sensing - Google Scholar [WWW Document], 

2015. URL 

https://scholar.google.co.in/scholar?cluster=8610137779696503739&hl=en&as_sdt

=0,5&sciodt=0,5 (accessed 6.15.15). 

 Spectral Response Functions [WWW Document], 2015. URL 

http://www.eoc.csiro.au/hswww/oz_pi/specresp.htm (accessed 6.15.15). 

 Strobl, J., Blaschke, T., Griesebner, G., AGIT-Symposium (Eds.), 2000. Angewandte 

geographische Informationsverarbeitung XII: Beiträge zum AGIT-Symposium 

Salzburg 2000 ; [vom 5. bis 7. Juli 2000]. Herbert Wichmann Verlag, Heidelberg. 



Simulation of Hyperspectral Data from Multispectral Data Using Spectral Reconstruction Approach 
 

P a g e  77 | 92 

 

 Trishchenko, A.P., Cihlar, J., Li, Z., 2002. Effects of spectral response function on 

surface reflectance and NDVI measured with moderate resolution satellite sensors. 

Remote Sens. Environ. 81, 1–18. 

 Tseng, Y.-H., 2000. Spectral unmixing for the classification of hyperspectral images. 

Int. Arch. Photogramm. REMOTE Sens. 33, 1532–1538. 

 USGS EO-1 Website - http://eo1.usgs.gov [WWW Document], 2015. URL 

http://eo1.usgs.gov/sensors/hyperion (accessed 6.15.15). 

 Welcome to Bhuvan | ISRO’s Geoportal | Gateway to Indian Earth Observation 

[WWW Document], 2015. URL http://bhuvan.nrsc.gov.in/bhuvan_links.php# 

(accessed 6.15.15). 

 Welcome to Python.org [WWW Document], 2015. URL https://www.python.org/ 

 Welcome to Spectral Python (SPy) — Spectral Python 0.16.0 documentation [WWW 

Document], 2015. URL http://www.spectralpython.net/ 

 Yan, L., Liu, S., Liu, H., Jing, X., Cheng, C., Wang, H., 2014a. Two inverse 

processes: Spectral reconstruction and pixel unmixing, in: Earth Observation and 

Remote Sensing Applications (EORSA), 2014 3rd International Workshop on. IEEE, 

pp. 462–469. 

 Yuan, J., Niu, Z., 2008. Evaluation of atmospheric correction using FLAASH, in: 

Earth Observation and Remote Sensing Applications, 2008. EORSA 2008. 

International Workshop on. IEEE, pp. 1–6. 

 Zhang, L., Furumi, S., Muramatsu, K., Fujiwara, N., Daigo, M., Zhang, L., 2006. 

Sensor-independent analysis method for hyperspectral data based on the pattern 

decomposition method. Int. J. Remote Sens. 27, 4899–4910. 

 


