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Abstract 
 

Hyperion sensor is a hyperspectral imager on-board of EO-1 satellite. The product is 
distributed by USGS, and the level one product, which is only radiometrically corrected, is 
available. The EO-1 satellite was launched on November 21, 2001. 

 
Hyperspectral imaging sensors have been used for more than a decade to aid in the 

detection and identification of diverse surface targets, topographical and geological features but 
the datasets are not immune to the effects of the intervening atmosphere. Various atmospheric 
constituents attenuate the incident and up-welling reflectance and finally degrade the signal 
corresponding to the feature being sensed. Thus, if this atmospheric attenuation could be 
identified and corrected for by using existing radiative transfer models, better understanding of 
the earth features should be possible. 

 
The present study concentrate on the retrieval of reflectance image from the level one 

radiometrically corrected data two study areas, Udaipur (Rajasthan) and Jamda-Koira valley in 
Keonjhar district (Orissa). In this study, two atmospheric correction models have been used. 
FLAASH and ATCOR2 atmospheric correction models have been used to retrieve reflectance 
image from the radiance data. Preprocessing of the dataset need to be done before applying 
atmospheric correction on the dataset. Spectral subsettings of noise prone bands have been 
successfully done which leaves 196 unique bands from 242 bands of the hyperion dataset. Local 
destriping of the affected bands have been done using a 3*3 local mean filter. Atmospheric 
correction on the preprocessed image have retrieved reflectance image which have been validated 
using the statistical parameters Spectral Angle Mapper (SAM) and Normalized Euclidean 
Distance (NED). These statistical parameters were applied by taking the field spectra of 
geological samples generated from the Analytical Spectral Device (ASD) as the reference spectra. 
These statistical parameters indicated that the FLAASH model have outperformed the ATCOR2 
model. Hence the FLAASH derived reflectance image has been further used for the spectral 
analysis and the mineral abundance mapping.  

 
The mineral abundance mapping using the spectral analysis of the reflectance image 

involves the endmember collection using the N-Dimensional visualizer tool in ENVI software. 
Four endmembers were collected from the Udaipur study area and they are Kaolinite, 
Montmorillonite, Pyrophyllite and Fe rich Chlorite (Chamosite). Similarly for the Orissa study 
area, Hematite, minetailings and alluvium were selected as the endmembers after understanding 
the geology and analysis of the reflectance image. Various mapping techniques were applied to 
generate the final classified mineral abundance image. Linear Spectral Unmixing, Mixture Tune 
Matched Filtering, Spectral Feature Fitting, Spectral Angle Mapper and band absorption depth 
analysis were applied in this regard. In both the study areas, Linear spectral unmixing and 
Mixture Tune Matched Filtering gave good results in mapping the endmembers. In other 
techniques such as the Spectral Angle Mapper (SAM) and Spectral feature fitting have given 
intermixing of endmembers in both the study areas. Hence it can be concluded that an integrated 
approach of different mapping techniques will yield a better mapping of the endmembers. Band 
absorption analysis have not given good results due to lack of spectral quality in the SWIR 
portion of the Hyperion dataset.  
 
Keywords: ATCOR, Endmembers, FLAASH, Hyperion, Linear Spectral Unmixing, Mixture 
Tuned Matched Filtering, Spectral Angle Mapper. 
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Chapter 1 

 
1.1 Introduction 

The materials of the mineral kingdom are wrested from the earth for man’s necessities 
and comfort. Their search has given rise to voyages of discovery and settlement of new lands; 
their ownership has resulted in industrial development and in commercial or political supremacy 
or has caused strife or war. Their quest necessities a knowledge of their occurrence, distribution 
and mode of origin. The development of the industrial nations has coincided with the utilization 
of their mineral resources and that those countries lacking them tended to become agricultural and 
handicraft nations. The energy of coal and the solidity of metals spelled industrial growth and, in 
turn, industrial might, and other nations came to regard mineral self-sufficiency as one of the 
chief goals of economic nationalism.  It is startling to realize that the insatiable demand for 
minerals to sustain modern industrialized economic life has caused the world to dig and consume 
more minerals within the period embracing the two World Wars than in all previous history. This 
made deep inroads into the storehouse of mineral resources-inroads heightened by war demands-
and former bountiful supplies now show serious depletion. There is an important fact that needs 
to be realized. The more we manufacture, the greater are the inroads upon the very basis of nearly 
all manufacturing, and the greater the depletion of unrenewable mineral resources. This alarming 
consumption of mineral resources and the exhaustion of known reserves mean that new supplies 
must be discovered if industrial development is to persist unimpaired. With waning discoveries, 
search must be directed to less obvious occurrences, of which vast numbers must still lie hidden 
within the earth (Bateman 1988). These requirements followed by the new technologies have 
certainly helped us to look for the mineral resources. The modern technology has helped us to use 
various kinds of methods for mineral exploration. One of the most common techniques that are 
very much useful in mineral exploration prospecting is the Remote Sensing.  

The term remote sensing can be defined as the science of acquiring, processing, and 
interpreting images that record the interaction between the electromagnetic energy and matter 
(Sabins, 1996). A physical quantity (light) emanates from a screen, which is a source of radiation. 
The radiated light passes over a distance, and thus is "remote" to some extent, until it encounters 
and is captured by a sensor (your eyes). Each eye sends a signal to a processor (your brain) which 
records the data and interprets this into information. Several of the human senses gather their 
awareness of the external world almost entirely by perceiving a variety of signals, either emitted 
or reflected, actively or passively, from objects that transmit this information in waves or pulses. 
Thus, one hears disturbances in the atmosphere carried as sound waves, experiences sensations 
such as heat (either through direct contact or as radiant energy), reacts to chemical signals from 
food through taste and smell, is cognizant of certain material properties such as roughness 
through touch, and recognizes shapes, colors, and relative positions of exterior objects and classes 
of materials by means of seeing visible light issuing from them. In the previous sentence, all 
sensations that are not received through direct contact are remotely sensed (source: http://www 
.crisp.nus.edu.sg/~research /tutorial/e ye.htm). 

In other words, remote sensing involves the acquisition and measurement of 
data/information on some property(ies) of a phenomenon, object, or material by a recording 
device not in physical, intimate contact with the feature(s) under surveillance; techniques involve 
amazing knowledge pertinent to environments by measuring force fields, electromagnetic 
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radiation, or acoustic energy employing cameras, radiometers and scanners, lasers, radio 
frequency receivers, radar systems, sonar, thermal devices, seismographs, magnetometers, 
gravimeters, scintillometers, and other instruments (IIRS, 2005). Remote Sensing can be thought 
of as the “eyes” of such systems providing repeated synoptic (even global) visions of earth 
resources from an aerial or space vantage point. (source:http://www.gisdevelopment. 
net/tutorials/tuman008.htm) 

The basic components of an ideal remote sensing are as follows. 

 A uniform energy source. 
 A non-interfering atmosphere. 
 A series of unique energy-matter interactions at the earth’s surface. 
 A super sensor. 
 A real time data processing and supply system. 
 Multiple data users. 

In any approach to applying remote sensing, not only must the right mixes of data 
acquisition and data interpretation techniques be chosen, but the right mix of remote sensing and 
“conventional” techniques must also be identified. Remote Sensing is a tool best applied in 
concert with others; it is not an end in itself. In this regard, remote sensing data are currently 
being used extensively in computer based GIS. The GIS environment permits the synthesis, 
analysis and communication of virtually unlimited sources and types of biophysical and socio-
economic data–as long as they can be geographically referenced (Georgiadou et al., 2004). 

 
The three most common methods of measuring the reflectance of a material are by (a) 

using hand-held spectrometer, (b) using aircraft mounted sensors or by (c) using spacecraft 
mounted sensor over the earth surface.  Typically, hyperspectral spaceborne imaging 
spectrometers have been developed to measure the solar reflected upwelling radiance spectrum 
from 350 nm to 2560 nm at 5 to 10 nm resolution. Reflectance data in each spectral channel are 
pictorially represented as an image composed of discreet elements – pixels. Hyperspectral 
imagers collect data in contiguous narrow bands (up to several hundred bands) in the 
electromagnetic spectrum. They produce vast quantities of data because of the number of bands 
simultaneously imaged. Hyperspectral data provide unique capabilities to discern physical and 
chemical properties of Earth surface features not possible using current broad-band multi-spectral 
satellites. High spectral resolution allows identification of materials in the scene, while high 
spatial resolution locates those materials (Gross and Schott, 1998). Hence, hyperspectral data 
have enormous potential in target detection, high quality mapping, material mapping and 
identification. 

One of the most promising and advanced remote sensing technique which is meant solely 
for mineral exploration is hyperspectral remote sensing or otherwise known as imaging 
spectrometry. Imaging spectroscopy is a relatively new technology that is currently being 
investigated by researchers and scientists with regard to the detection and identification of 
minerals, terrestrial vegetation, and man-made materials and backgrounds. Imaging spectroscopy 
has been used in the laboratory by physicists and chemists for over 100 years for identification of 
materials and their composition. Spectroscopy can be used to detect individual absorption 
features due to specific chemical bonds in a solid, liquid, or gas. Recently, with advancing 
technology, imaging spectroscopy has begun to focus on the Earth. The concept of hyperspectral 
remote sensing began in the mid-80 and to this point has been used most widely by geologists for 
the mapping of minerals. Actual detection of materials is dependent on the spectral coverage, 
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spectral resolution, and signal-to-noise of the spectrometer, the abundance of the material and the 
strength of absorption features for that material in the wavelength region measured 
(http://www.csr.utexas.edu/projects/rs/hrs/hyper.html) 

Imaging spectrometers typically acquire images in a large number of spectral bands 
(more than 100). These bands are narrow (less than 10 nm to 20 nm in width), and contiguous 
(i.e. adjacent), which enables the extraction of reflectance spectra at pixel scale. Such narrow 
spectra enable the detection of the diagnostic absorption features which are not represented or 
manifested by the multispectral sensors. When light interacts with a mineral or rock. The 
objectives of these hyperspectral imaging spectrometers are to use the molecular absorptions and 
constituent scattering characteristics expressed in the spectrum to (1) detect and identify the 
surface and atmospheric constituents present; (2) assess and measure the expressed constituent 
concentrations; (3) assign proportions to constituents in mixed spatial elements; (4) delineate 
spatial distribution of the constituents; (5) monitor changes in constituents through periodic data 
acquisitions; and (6) to validate, constrain and improve models (Pantazis et al., 1998). Imaging 
spectrometers have been designed to meet spectral, spatial, and radiometric requirements, 
enabling measurements from spaceborne imaging spectrometers in terms of the range, sampling, 
response, stability, uniformity, precision, and accuracy. Spectral remote sensing has the potential 
to provide the detailed physico-chemistry (mineralogy, chemistry, morphology) of the earth’s 
surface. This information is useful for mapping potential host rocks, alteration assemblages and 
regolith characteristics. In contrast to the older generation of low spectral resolution systems, 
such as the Landsat Thematic Mapper with only six “reflected” bands, the new generation of 
hyperspectral systems enable the identification and mapping of detailed surface mineralogy using 
“laboratory-grade” spectroscopic principles (clark.et.al., 1990). 

With the aid of hyperspectral remote sensing, an extensive range of minerals can be 
remotely mapped, including iron oxides, clays, micas, chlorites, amphiboles, talc, serpentines, 
carbonates, quartz, garnets, pyroxenes, feldspars and sulphates, as well as their physico-
chemistries such as the cation composition and long and short range order (Cudahy, 2002).There 
are many applications which can take advantage of hyperspectral remote sensing. The major 
general applications of hyperspectral remote sensing for the various application fields are as 
follows. 

 Atmosphere: water vapor, cloud properties, aerosols  
 Ecology: chlorophyll, leaf water, cellulose, pigments, lignin  
 Geology: mineral and soil types  
 Coastal Waters: chlorophyll, phytoplankton, dissolved organic materials, suspended 

sediments                       
 Snow/Ice: snow cover fraction, grain-size, melting  
 Biomass Burning: sub-pixel temperatures, smoke  
 Commercial: mineral exploration, agriculture and forest production  

Hyperspectral data (or spectra) can be thought of as points in an n-dimensional scatterplot. 
The data for a given pixel corresponds to a spectral reflectance for that given pixel. The 
distribution of the hyperspectral data in n-space can be used to estimate the number of spectral 
endmembers and their pure spectral signatures and to help understand the spectral characteristics 
of the materials, which make up that signature. 
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1.2 Atmospheric correction 

Raw calibrated imaging spectrometer data have the general appearance of the solar 
irradiance curve, with radiance decreasing towards longer wavelength, and exhibit several 
absorption bands due to scattering and absorption by gases in the atmosphere. The major 
atmospheric water-vapour bands (H2O) are centered approximately at 0.94µm, 1.14 µm, 1.38µm 
and 1.88 µm, the oxygen (O2) band at 0.76 µm, and carbon dioxide (CO2) bands near 2.01 and 
2.08 µm. Additionally, other gases in the atmosphere including ozone (O3), carbon monoxide 
(CO), nitrous oxide (N2O) and methane (CH4), produce noticeable absorption features in the 0.4 – 
2.5 µm wavelength region. The effect of the atmospheric calibration algorithm is to re-scale the 
raw radiance data provided by imaging spectrometers to reflectance by correcting for atmospheric 
influence thus shifting all spectra to nearly the same albedo. The result is a data set in which each 
pixel can be represented by a reflectance spectrum, which can be directly compared to reflectance 
spectra of rocks and minerals acquired either in the field or in the laboratory. Reflectance data 
obtained can be absolute radiant energy or apparent reflectance relative to a certain standard in 
the scene. Calibration to reflectance can be conducted to result in absolute or relative reflectance 
data. Radiation reaching the sensor can be split into four components: path radiance, reflected 
direct radiance, and reflected radiance from neighborhood. Radiative transfer RT codes model the 
atmosphere’s optical behavior given user defined boundary conditions. The inverse problem of 
atmospheric correction of imaging spectrometer data with the aim of obtaining radiance and/or 
reflectance at the ground surface can be achieved in three ways, 1. Emperical correction methods 
for apparent surface reflectance, 2. Use of RT codes to obtain apparent absolute reflectance, 3. In-
flight calibration of airborne optical sensors. 

1.2.1Atmospheric correction models 

A number of atmospheric correction models are available in read to use softwares. Some 
of the most commonly used atmospheric correction models are as follows. Atmospheric 
CORrection Now (ATCOR), Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes 
(FLAASH) developed on Moderate Resolution Atmospheric Radiance and Transmittance Model 
(MODTRAN); Atmosphere REMoval Program (ATRIM), ATCPRO and High Accuracy 
ATmospheric Correction for Hyperspectral data (HATCH) developed on 5S Code (Simulation of 
the Satellite Signal in the Solar Spectrum) and 6S code (Second Simulation of the Satellite Signal 
in the Solar Spectrum) respectively. 

The method to be used for atmospheric correction is a function of nature of problem, the 
type of remote sensing data, the amount of in situ historical atmospheric information available, 
and how accurate the bio-physical information is to be extracted from the remote sensing data 
(Jensen, 1996). To process hyperspectral image datasets, statistical based relative atmospheric 
correction methods and physics based absolute correction models are available. 

An image comprises of a series of spectral bands, the pixels of which each have a digital 
number (DN).  In a raw unprocessed image, pixel DN is a linearly transformed representation of 
at-sensor radiance for a discrete resolved area of the Earth’s surface (Lillesand and Kiefer, 1999). 
Image spectrometric studies and atmospheric correction operations, however, need at-sensor 
radiance. The radiance-to-DN procedure of image acquisition for each spectral wavelength must 
be inverted to derive radiance from DN. 
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As pixel DN is a simple linear transformation of radiance, the slope and offset of this 
linear transformation (which is specific for each spectral band, each sensor and initial calibration) 
can be used to calculate radiance L (measured in W/m2/sr/µm) using equation-2-2, and inversely 
used to calculate pixel DN using equation-2-1.  The gain and offset values are unique for each 
spectral band acquired by a particular sensor. These values change over the life span of a sensor, 
so the most recent values are used. For Hyperion, these values are made available to the user with 
the dataset. 

At sensor-reflectance involves taking into account temporal changes in solar illumination 
due to Earth-Sun geometry, as it changes with time of the year of imaging. The solar spectral 
irradiance (incident energy reaching the target) of the light reaching the atmosphere is reasonably 
well characterized; however, the spectrum of the solar radiation reaching the ground is altered 
temporally and geographically because of changing atmosphere. Such atmospheric modulation 
effects have to be accounted for in order to recover reliable reflectance spectra of materials on the 
ground. The effect of scattering on remotely sensed solar radiation reflected by the ground 
surface is most commonly given by: 
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Where  

ρp = Unitless planetary reflectance 

Lλ = Spectral radiance at the sensor's aperture 

d = Earth-Sun distance 

ESUNλ = Mean solar Exo-atmospheric irradiances 

θ = Solar zenith angle in degrees 

The following flowchart describes the various atmospheric correction techniques available for the 
retrieval of reflectance from radiance. 
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Figure 1.1 various atmospheric correction techniques 

1.2.2 Relative reflectance 

The correction methods involved in the retrieval of relative reflectance are as follows. 

1. Flat field correction 
2. Internal average relative reflectance correction 
3. Empirical line correction 

The purpose of the flat field correction is to reduce the atmospheric influence in the raw 
imaging spectrometer data and eliminate the solar irradiance drop-off, as well as any residual 
instrument effects. This is achieved by dividing the whole data set by the mean value of an area 
within the scene which is spectrally and morphologically flat, and spectrally homogeneous. The 
flat-field chosen should have a high albedo to avoid decreasing the signal-to-noise ratio. This can 
also be achieved by increasing the number of pixel spectra used to produce the flat field 
spectrum.  

The Internal Average Relative Reflectance (IARR) correction method allows the calibration 
of raw imaging spectrometer data to reflectance data when no calibration information is available. 
This procedure uses an “Average Reference Spectrum” (ARS) calculated as the average pixel 
spectrum of the entire scene. This spectrum is divided into each image radiance spectrum to 
produce a relative reflectance spectrum for each pixel.  

Conversion of raw imaging spectrometer data to reflectance data using the Empirical Line 
method requires the selection and spectral characterization of two calibration targets, thus 
assuming a priori knowledge of each site. This empirical correction uses a constant gain and 
offset for each band to force a best fit between sets of field spectra and image spectra 
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characterizing the same ground areas thus removing atmospheric effects, residual instrument 
artifacts and viewing geometry effects. 

1.2.3 Absolute reflectance 

Absolute reflectance data without a priori can be obtained using atmospheric correction 
models. These models correct for scattering and absorption in the atmosphere due to water vapor 
and mixed gases as well as for topographic effects and different illumination conditions. The 0.94 
µm and 1.1µm water absorption bands are used to calculate water vapor in the atmosphere while 
transmission spectra of the mixed gases in the 0.4 – 2.5 µm wavelength region are simulated on 
basis of the water vapor values found and the solar and observational geometry. Scattering effects 
in the atmosphere are modeled using radiative transfer codes. A typical atmospheric correction 
algorithm using RT(Radiative Transfer) codes typically models the atmosphere’s behavior on 
incident radiation through deriving transmission spectra of the main atmospheric gases and water-
vapor which is integrated with effects of atmospheric scattering from aerosols and molecules. 
User input on atmosphere condition required is the date, time and location of data take, ozone 
depth, aerosol type, visibility, elevation. This is derived from radiosonde data or meteorogical 
stations in the area to be imaged. One of the earliest absolute atmospheric correction method 
using radiative transfer approaches to simulating the atmosphere–surface system was presented 
by Turner and Spencer in 1972. During the 1980s, considerable work was done on the 
atmospheric correction of satellite imagery and improvements in modeling and computational 
capabilities led to the development of the 5S atmospheric radiation model in 1990s, which was 
used extensively for the atmospheric correction of airborne visible/infrared imaging spectrometer 
(AVIRIS) datasets. Since 1990 numerous radiative transfer models have been developed, the 
most popular amongst these is a publicly available code MODTRAN, developed by Spectral 
Science, Inc. and Air Force Research Laboratory.  The normally used RT codes are LOWTRAN, 
MODTRAN, 5S and 6S. The atmospheric correction for the reflective (VIS-SWIR) and thermal 
spectral regions are dealt separately since the influence of the sun dominates the solar reflective 
region while it can be neglected in the thermal region. The basic relation defining spectral 
radiance in the VIS-SWIR region is given by 

[ ] )()()()()(0 λρλτλτλλλ +
Π

+=
EgLL  

where, L0(λ) is the path radiance for a black body (ρ=0), Eg(λ) is the global irradiance on the 
ground, τdir(λ) is the direct atmospheric transmittance (ground to sensor), τdif(λ) is the diffuse 
atmospheric transmittance (ground to sensor), and ρ(λ) is the reflectance of a Lambert region.  

For spaceborne sensor, the following relation can be demonstrated to relate ground reflectance, ρ, 
to the DN value.  
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where E5 is the terrestrial solar irradiance, θs is the solar zenith angle, and a0 and a1 are 
atmospheric functions relating planetary albedo, ρp to ground albedo, ρ, as 
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ρp = a0 + a1xρ 

1.3 Moderate Resolution Atmospheric Transmission (MODTRAN) 
 
The Moderate Resolution Transmittance (MODTRAN) Code calculates atmospheric 

transmittance and radiance for frequencies from 0 to 200nm at moderate spectral resolution of 
0.0001 µm (1 cm-1). MODTRAN was developed for higher spectral resolution for molecular band 
parameterization, spherical refractive geometry, solar and lunar source functions, scattering 
(Rayleigh, Mie, single and multiple), and default profiles (gases, aerosols, clouds, fogs, and rain) 
(Kneizys et al., 1996). The upgraded MODTRAN4 corrects for water line parameter errors 
parameters led to a very small increase in the retrieved water column amount, from 1550 to 1570 
atm-cm, due to a ~1% change in the 1130 nm band strength (Matthew et al., 2000). 
The standard mathematical expression for spectral radiance at a sensor pixel applicable to SWIR 
through UV wavelengths, where thermal emission is negligible is expressed as: 
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Where, L* is spectral radiance at sensor, ρ is the pixel surface reflectance, ρe is an average surface 
reflectance for the pixel and the surrounding region, S is the spherical albedo of the atmosphere, 
L*a is the radiance backscattered by the atmosphere and A and B are coefficients that depend on 
atmospheric and geometric conditions. The first term in the above equation corresponds to the 
radiance from the surface that travels directly into the sensor, while the second term corresponds 
to the radiance from the surface that is scattered by the atmosphere into the sensor. The 
distinction between ρ and ρe accounts for the "adjacency effect" (spatial mixing of radiance 
among nearby pixels) that is caused by atmospheric scattering. The adjacency effect correction 
can be turned off by setting ρe = ρ. For a specified model atmosphere the values of A, B, S and 
L*a in above equation can be determined empirically from the standard MODTRAN4 outputs of 
total and direct-from-the-ground spectral radiances computed at three different surface reflectance 
values, such as 0, 0.5 and 1. The viewing and solar angles of the measurement and nominal 
values for the surface elevation, aerosol type and visible range for the scene are used. To account 
for possible variations in column water vapor across the scene these calculations are looped over 
a series of varying water profiles. The water retrieval is performed rapidly with a 2-dimensional 
look-up table (LUT) constructed from the MODTRAN4 outputs using “Delaunay triangulation” 
procedure. After the water retrieval is performed, Equation 2-4 is solved for the pixel surface 
reflectance in all of the sensor channels. A procedure analogous to the water vapor determination 
can be used to retrieve a scene elevation map. Here the MODTRAN4 calculations are looped over 
elevation rather than water vapor concentrations and an absorption band of a uniformly mixed gas 
such as O2 or CO2 is interrogated. 
 

MODTRAN4 options can be selected that control the tradeoff between accuracy and 
computational speed. These include the number of water vapor column amounts, the multiple 
scattering algorithm (Isaacs 2-stream or DISORT n-stream) (Matthew et al., 2000). The two most 
commonly used atmospheric correction models FLAASH (Line-of-Sight Atmospheric Analysis 
of Spectral Hypercubes) and ATCOR (Atmospheric Correction) were used in the present study 
which will be discussed in the later sections. 
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1.4 Mineral mapping using hyperspectral remote sensing 
One of the major applications of hyperspectral remote sensing is the mineral exploration. 

It was Goetz et al. (1982) who demonstrated that spectroscopy may aid in surface mineral 
mapping. This led to the greatest breakthrough in the application of hyperspectral remote sensing 
when Murphy (1995) for the first time succeeded in mapping jasperoid in the C mountains. 
Reflectance spectra have been used for many years to obtain compositional information of the 
earth surface. Spectral reflectance in visible and near-infrared offers a rapid and inexpensive 
technique for determining the mineralogy of samples and obtaining information on chemical 
composition. Electronic transition and charge transfer processes associated with transition metal 
ions determine largely the position of diagnostic absorption features in the visible – and near-
infrared wavelength region of the spectra of minerals (burns, 1970). In addition, vibrational 
processes in H2O and OH produce fundamental overtone absorptions (Hunt, 1971). The position, 
shape, depth, width and asymmetry of these absorption features are controlled by the particular 
crystal structure in which the absorbing species is contained and by the chemical structure of the 
mineral. Thus, variable characterizing absorption features can be directly related to the 
mineralogy of the sample. The most common electronic process revealed in the spectra of 
minerals is the crystal field effect which is the result of unfilled electron shells of transition 
elements (e.g., Fe, Cr, Co, Ni). All transition elements have identical energies in an isolated ion, 
but the energy levels are split when the atom is located in a crystal field. This splitting of the 
orbital energy enables an electron to be moved from a lower level into a higher one by absorption 
of a photon having an energy matching the energy transfers. These absorption bands are 
diagnostic of mineralogy. Some minerals exhibit two energy levels in which electrons may reside: 
a higher level called the conduction band, where electrons move freely throughout the lattice, and 
a lower energy region called the valence band, where electrons are attached to individual atoms. 
Changes in these result in absorption features in the visible portion of the electromagnetic 
wavelength spectrum. These vibration features results in absorption features at high (SWIR-MIR) 
wavelengths with deep and narrow features. Reflectance spectra of minerals are dominated in the 
visible to near-infrared wavelength range by the presence or absence of transition metal ions. The 
presence or absence of water and hydroxyl, carbonate and sulphate determine the absorption 
features in the SWIR region due to the so called vibrational process. The atmospherically 
corrected hyperspectral reflectance data enables as to map the various minerals present in the 
exposed rock surface due to these vibrational process, which is diagnostic for each mineral. This 
study attempts to map the various minerals present in the exposed rock surface in the study area. 

1.5 Problem Definition 

Geologic remote sensing has always a challenge to prove itself because of the nature of 
application in geologic fields. Present study was taken up in a challenging fashion to show the 
degree of application of geologic remote sensing in highly contrasting locations using the most 
modern technology of hyperspectral remote sensing. Mineral exploration is becoming 
increasingly difficult, especially in obtaining ground access to sensitive or remote areas. The 
multispectral sensors that are most commonly used in remote sensing systems acquire data in a 
number of relatively broad wavelength bands. The typical diagnostic absorption features, 
characterizing materials of interest in reflectance spectra, are on the order of 20 nm to 40 nm in 
width. Hence, the broadband sensors under-sample this information and do not allow to exploit 
the full spectral resolving potential available. Hyperspectral remote sensing combines imaging 
and spectroscopy in a single system which often includes large data sets and requires new 
processing methods.  
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Hyperion sensor is a hyperspectral imager on-board of EO-1 satellite. The product is 
distributed by USGS, and the level one product, which is only radiometrically corrected, is 
available. The EO-1 satellite was launched on November 21, 2001. Processing of high 
dimensional hyperspectral data is a challenging task and the computational complexity is a result 
of vast data volume in numerous spectral bands.  

 Hyperspectral imaging sensors have been used for more than a decade to aid in the 
detection and identification of diverse surface targets, topographical and geological features but 
the datasets are not immune to the effects of the intervening atmosphere. Various atmospheric 
constituents attenuate the incident and up-welling reflectance and finally degrade the signal 
corresponding to the feature being sensed. Thus, if this atmospheric attenuation could be 
identified and corrected for by using existing radiative transfer models, better understanding of 
the earth features should be possible. In absence of these models the inferences would lead to 
erroneous detection, identification and quantification of the features of interest. Thus atmospheric 
correction refers to the removal of unwanted atmospheric components of the measured radiance. 

The apparent reflectance should be derived because the data released from USGS is the 
level one, radiometrically corrected only, for spectral analysis based applications. This process is 
named atmospheric correction.  

Deriving absolute reflectance for space borne platforms is of interest to all geoscientists 
as it offers an opportunity to know the composition, spectral property of material and compare 
field measured reflectance values. Absolute reflectance is a ratio of reflected to incident flux. The 
signals received at the satellite are an integrated spectral response of the target within the 
designed spectral width of the sensor; this signal is provided to the user in form of digital 
numbers (DN). In raw unprocessed image DN values do not quantitatively correspond to the 
physical units such as radiance, reflectance or temperature. Thus, remote sensing studies which 
intend to utilize satellite data for estimation of quantitative spectral surface characteristics need to 
convert the DN to target reflectance/absolute reflectance (Pandya et al., 2002). Various 
atmospheric correction models have been in use to estimate reflectance. Existing atmospheric 
correction models can be grouped in two basic categories: statistical or empirical, and absolute or 
physics based. Most widely used statistical models like Empirical Line Method (ELM), Internal 
average relative reflectance (IARR), Flat Field Correction (FFC) works similarly, normalizing the 
hyperspectral data to an area of known flat reflectance, and convert DN to relative reflectance. 
The primary output product of all Physics based atmospheric correction models, is the surface 
reflectance. In the present study, the two of the most commonly used physics-based models used 
are ATmospheric CORrection now (ATCOR2) and Fast Line-of-Sight Atmospheric Analysis of 
Spectral Hypercubes (FLAASH), developed on MORTRAN radiative transfer code have been 
used.  
 

1.6 Research Objectives 
The main aim of the study is to map the mineral abundance in the study area using the 

hyperion data set. 
The objectives of the present study are as follows. 
1. Atmospheric Correction of the data set using two radiative transfer models (FLAASH and 

ATCOR). 
2. Laboratory spectra generation of different rock samples from the representative horizons 

using ASD spectroradiometer. 
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3. Mineral Abundance mapping using the various endmembers extracted from the image. 
4. Validation of the Hyperion image spectra with the spectra generated from the field using the 

various spectral similarity measures such as the SAM, NED. 
5. Lithological differentiation using the various classified mineral images. 
 

1.7 Research Questions 
Some of the research questions that have been addressed in the present study are as 

follows. 
1. Can the existing the pre-processing techniques used in the multispectral images sufficient for 
the efficient feature extraction in hyperspectral data? 
 
2. How good are the atmospheric correction models that have been used for the retrieval of 
reflectance in hyperspectral (Hyperion L1R) data? 
 
3.  Which among the various mapping techniques are the most efficient for the mineral mapping? 
 
4.  Can the statistical parameters like SAM (Spectral Angle Mapper) and NED (Normalised 
Euclidean Distance) be used as the validation parameters for the various atmospheric correction 
models? 
 
1.8 Outline of the report 

This thesis comprises of five chapters. The thesis commences with the abstract followed 
by the introduction and objectives of the study in Chapter 1, followed by the 
geological/geomorphologic, physiographical and climatic details of the study area and data used 
in Chapter 2. Chapter 3 deals with the methodology adopted for the present study and followed 
by results and analysis in chapter 4. The conclusions of the present study are given in chapter 5. 
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Chapter 2 
 
 

Study Area 
 
 

Two study areas have been selected for the present study. The Hyperion scenes which 
include the Udaipur city of Rajasthan and its surroundings as well as the Jamda-Koira valley of 
Keonjhar, Orissa have been the two study areas selected for the present study. Two study areas 
have been chosen for the present study keeping in mind the contrasting topography. Jamda-Koira 
valley of Keonjhar, Orissa is a densely vegetated terrain with large number of hillocks and 
dissected hills spread out throughout the valley. The Udaipur city of Rajasthan comes under the 
semi-arid terrain with negligible amount of vegetation. Geologically both the regions come under 
the Pre-Cambrian era of the geological time scale.  

 
The Aravalli range, one of the oldest mountain ranges of the world runs along the NE–

SW direction for more than 720 km, covering nearly 40,000 km2. The study area (Longitude 73° 
32′ 58″ to 73° 49′ 35″ E and Latitude 24° 08′ 18″ to 24° 59′ 53″ N) covers an area of about 750 
km2 of this main block of the Aravalli range corresponding to path and row number 146/40 
corresponding to full scene of Hyperion. The available Hyperion scene covers major parts of 
Udaipur city, and part of the Hindustan Zinc Limited-Zawar mines area, which are geologically 
part of Zawar formation of Upper Arawalli Group. The region is dry for most of the year except 
the rainy season, and exhibits semiarid climate. Monsoon winds mainly contribute to the rainfall 
in this region mainly during June–September; non-monsoon rainfall is limited and irregular. 
Annual rainfall in this region varies from 10 cm in the north-west to 90 cm in the south east. 
Water resources, vegetation, agriculture and aquifer condition in this region vary mainly due to 
variations in physiographic, geomorphic and climatic conditions.  
 
2.1 Study area 1 

Jamda-Koira valley of Orissa state is well covered by the hyperion scene. The selected 
project area includes the South-Eastern margin of the famous Iron Ore super Group syncline, 
mainly consisting of iron ore group, is bounded by latitude 210 45’ to 220 00’ N and longitude 850 

15’ to 850 30’ E occupying an area of approximately 770 sq. Km. To the north of this area are the 
main townships of Joda, Barbil, Noamundi, Bolani, Kiriburu, Meghahatuburu and so many other 
mining centers of Fe and Mn ores. Most of the above mentioned towns are connected by railway 
and roadways routes to Jamshedpur, Rourkela, Keonjhar, Chaibasa and Bhubaneshwar. The area 
under the present study is unfortunately not provided with easily motorable road except north 
eastern and north-western parts.  
 

2.1.1 Climate and Habitat  
The selected area having hills upto 800 meters height, experiences maximum temperature 

of 450 C and minimum temperature of 230 and annual rainfall ranges between 1200 to 1400 mm, 
between months of June and October. So it experiences a tropical climate. 

 
The sal trees dominate the floral cover and generally mixed vegetation predominates 

some reserved forests. Besides Sal (Sorea robusta) other plants include – Dhor, Assan, Kendu, 
Mahua, Bija, Mango, Jackfruit and Kusum etc. 
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Figure 2.1 Study area Jamda-Koira (Orissa), Hyperion (FCC 47 28 15) 

2.1.2 Physiography and Drainage 
The area in general shows ridge and valley topography. The area exhibits high altitude 

zones rangng from 400 to more than 1000 meters from mean sea level (msl). Western part 
includes the overturned limbs of the iron ore syncline forming hogback structures while eastern 
part includes residual and subdued cuesta hills of the sandstone and orthoquartzites. The main 
river is Baitarani river flowing south to north having a east meandering trend. Kundra and Suna 
are the main tributaries to feed it. River Karo also feeds Baitarani. Assemblages of smaller orders 
of drainages merging towards the north indicate general slope towards north.  
 

2.1.3 Geological Setting  
The study area holds leading position in Iron and Manganese deposits in national 

scenario, so mostly the works of various experts have been done on the gensis and association of 
Fe and Mn deposits. The stratigraphy and structure are still debatable issues. Although various 
reknowned workers have tried to establish the geology of the region, claiming the regional 
structure to be a synclinorium with NE plunge. 

 
On record Jones (1934) was the first to initiate the study in the belt, proposing the 

regional structure as a north plunging horse shoe shaped synclinorium with an overturned western 
limb. Dunn (1940) suggested three alternate stratigraphic sequences. Sarkar & Saha (1962-63) 
proposed them as NE plunging synclinorium overturned towards SE. Prasada Rao, Murthy and 
Deekshitulu (1964) established that it is U shaped basin open to the north, including lower lava as 
basement for Iron ore group, Shale composing of sediments, Banded Iron Formations (B.I.F) and 
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upper shale formation. However, they missed to incorporate sandstone formation in eastern 
margin. Banerjee (1977) supports this idea.  

 
Saha and Sarkar (1977) based on the structural as well as radiometric data have tried to 

establish the chrono-stratigraphy of the region, suggesting the older metamorphics as basement, 
on which iron ore group of sediments formed this basin, starting with sandstone and 
conglomerates as the basal part. Afterward the singhbhum granite was intruded into the older 
metamorphics and IOG of rocks. 

 
Murthy and Acharya (1975) called it koira Group and propose the structure as a low 

north plunging synclinorium slightly overturned towards east. Generally the workers, except few 
have worked in separate small patches, so entire area with regional geology is not fully explored.  
The area under investigation is part of SE margin of the horse-shoe shaped, NE plunging 
synclinorium, also termed Bonai-Keonjhar-Singhbhum Iron-Manganese belt. It unconformably 
overlies the older metamorphic groups (OMG and probably later intruded by Singhbhum Granitic 
batholiths). It is bounded by the copper thrust belt in the north and Sukinda thrust in the south. 
The belt is a narrow, NNE-SSW trending area, approximately 60 km. long and 25 km wide, 
defined by a spectacular ‘U’ shaped band of the resistant iron formation. The topography is 
generally very rugged with a high relief in the western and southern parts of the belt. 
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Figure 2.2 Geological map of study area (Orissa) modified after  

2.1.3.1 Basal Sandstone: 
It depicts lighter tone, gently dipping subdued hills forming cuesta landforms, with 

subdendritic to subparallel drainage, coarser texture with separately vegetated and having three 
sets of prominent joints in the directions E-W, N-S and NE-SW. It forms the basement of the 
lithological pile of the belt and occurs in the eastern and southern parts of the region. It has been 
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mapped around south of Basantpur, east of the Mahaparbat, Unchabali, north of Bamebari and 
along the Baitarani river. This formation comprises mainly of gritty sandstone, even grained 
orthoquartzite, characterized by white to reddish brown and gray hues. The bottom portions of the 
sandstone are interbedded with lenticular bands of conglomerate. The framework in the gritty 
sandstone is made up chiefly of white and gray quartz grains, rounded to well rounded, and the 
matrix is sillaceous and in the individual framework, the quartz grains show quartz overgrowths, 
It shows narrow beddings. The general strike is NE-SW dipping 80 - 100 (NW). 
 

2.1.3.2 Volcanic formations: 
Towards the top, the basal sandstone is interbedded with basic lava flows until ultimately 

it gives way to volcanc formation. Occuring to the south and east of the belt the volcanic 
formation occupies  large areas around the “U” shaped closure. It generally forms low lying hills 
and flat or undulating area. The nearest exposures of the formation near Joda are, east of 
Bamebari, south of Dubna and Basanthpur and most of Lower Shale horizon south and east of 
lower part of the IOSG syncline. The pillow structure is observed around Namira lava hillock. 
They support sparse vegetation and smaller residual patches, with extensive soil cover and 
laterisation. 
 

2.1.3.3 Lower Shale Formation: 
This formation is underlain by volcanic formation. It is characterized by lack of banding 

or lamination, which is well marked in upper shale formation. It is of tuffaceous nature and 
altered into buff or purple coloured shaly rock. They are highly cultivated and associated with 
lava exposures. It has been reported in the right eastern and lower southern part of flanks of IOSG 
syncline of Iron Ore Group.  
 

2.1.3.4 Banded Iron Formation: 
The banded iron formation is characterized by the banded nature of hematite and Jasper. 

In the satellite image they are characterized by the ridge-valley topography, resistant linear 
ridges, forming hogbacks with high relief, parallel to subparallel drainage, moderate drainage 
density, coarse texture, sharp contact with other lithounits, generally forms anticlinal hills. The 
thick vegeatation on BHJ gives darker tone in the imagery. Also active mining areas are well 
identified due to its peculiar bluish to greenish tinge inside the BHJ area. On the slopes and 
eroded areas laterite cappings are marked. Due to their high resistance to erosion jaspilites of the 
iron ore formation forms the dominant control over the topography of the belt. Practically all the 
hill ranges and plateaus of this belt are composed of this formation only. The high hill ranges 
occur in ‘U’ shaped pattern. The jaspilites form the proto-ore for the large iron ore deposit of the 
belt. BHJ consists of three members i.e. from bottom to top by coarse and irregular banded 
jaspilite, fine and even banded jaspilite and chert-shale members. 
 
2.1.3.5 Upper Shale Formation: 

The rocks of this banded upper shale formation occupying the core of the IOSG syncline, 
cover the large areas of the Banai – Keonjhar – Singhbhum belt. This is characterized as marker 
horizon for manganese mineralization. Below this shale formation no manganese mineralization 
is reported. In the imagery they are identified by their light gray colour, smooth texture, 
subdendritic to trellis drainage with medium drainage density, weathered terrain with good 
landuse practices occupying the valley portion (core of the banded iron formation syncline) and 
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frequently identifiable features being the manganese mines giving bluish colour in Hyperion data 
set, (FCC 47, 28, 15) 
This formation is made up of alternate band of pink, purple, buff and white shale, which are 
supposed to be alteration products of black shale. The variegated and weathered shale members 
are poor in manganese and at times covered with laterite. Also cherts and quartzites have been 
noticed. The shales exhibit clayey kaolinitic composition inferred to be altered ash beds. The 
evenly banded nature of the banded shale formation, representing depositions under the quite 
water condition, give way to features characteristic of stable conditions of deposition, and is 
reported as mixed facies formation by some workers. The clastic components are represented by 
silty claystone and fine grained sandstone. The chemical component comprises of rare lenses of 
dolomite, jaspilite, cherts, manganese and iron ore. Amygdaloidal basic lava and tuffaceous 
breccia, conglomerate with contemporaneous soft sediment deformational structures are reported 
in dolomite and chert.  
 
2.1.3.6 Upper Basic Lava: 
Along the river Karo, near Barbil these groups have been encountered.  

2.1.3.7 Laterite: 
An extensive laterite cover varying from 2 meter to 10 meter is found occupying in 

almost all the rocks. It is a massive cavernous, vermicular and ferrugeneous but when the laterite 
occurs on manganiferrous shale, the pisolites become manganiferrous.  

 
2.1.3.8 Soil an Alluvium: 

Low lying hills, plateaus and river banks are covered with soil cover and alluvium of 
recent origin, while in the low lying flat valleys in the southern and eastern part of the study area, 
3 – 6 meters thick alluvium has been encountered.  
 

2.1.4 Stratigraphy 
Based on the lithological details, as described earlier and their associations and 

characteristics the local stratigraphy has been established as follows. 
 

                Upper Basic Lava 

                 Upper Banded shale formation with manganese and cherts etc. 

                 Banded iron Formation 

                 Lower massive shale 

                 Volcanics 

                 Basal sandstone 

2.1.5 Geology of Iron Ores 
Iron ore occurs as massive and extensive beds occupying definite stratigraphic levels 

distinct from those pertaining to jaspilite (BHJ). These beds are conformally disposed with 
respect to other members in a sedimentary sequence to which they physically belong. 

 
The restricted occurrence of iron ore bodies within these Banded Hematite Jasper (BHJ) 

beds indicate a profound stratigraphic influence over ore localization. The effect of 
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metamorphism is not significant in the iron ore group. The sedimentological structures such as 
bedding have been preserved in their original form in iron ore (After A.K. Sen, GSI, 1982). 
 

It is a prevalent notion that the Jaspilite happens to be the parent rock from which 
residual surficial enrichment of iron minerals, called iron ore bodies, have resulted from mere 
removal (leaching) of silica by circulating supergene (meteoric) waters.  
The iron formation is composed of two distinct rock types.  
 

i. Jaspilite – a banded rock (Banded Hematite Jasper/Quartzite), consisting of alternate 

bands of Jasper (Chert/silica) and oxide minerals of iron (Hematite/Magnetite).  

ii. Hematite – A rock consisting of oxide minerals of iron, with subordinate but variable 

quantities of iron rich clays and particularly no free silica. 
In the just north to the study area near Noamundi and Joda, bore holes have been drilled 
(A.K.Sen, GSI, 1982), the descending order of stratigraphy, is as follows. 
 
Laterite / Canga : Forms capping over all the members of iron ore formation. 
 
Hard Ore            : Finely bedded but compact; sometimes interbedded with soft ore. 
 
Laminated soft  
Ore                     : Finely bedded. Occasionally nterbedded with hard ore and or other 
                             Types. 
 
Flaky friable       : Often interbedded with blue dust. 
Blue dust             : Often interbedded with flaky friable ore. 
 
Blue dust/or Flaky Ore : Associated with shaly ore. 
 
Shaly ore               : Associated with blue dust and/or flaky ore. 
 
Shaly ore and/or Jaspilite : May or may not be present. 
 
Shale/Jasplilte       : Often interbedded with blue dust and sometimes with flaky ore. 

 

The distribution and thickness of ore bodies depends on structure, thickest in synformal 
canoe folds and thinnest in structural high i.e. inverted canoe. The plunge direction and amount 
are also controlling factors for ore body localization. 
 

2.1.6 Geology of Manganese deposits 
Manganese oxide deposits are intimately associated with unmetamorphosed shales 

(occasionally tuffaceous) and cherts of Pre-cambrian Iron Ore Group (Sarkar & Saha, 1977) in 
Orissa and Bihar. Thus the Iron Ore Group is the oldest recognizable geological sequence in India 
and in the world. In the study area the Manganese deposits are confined to restricted belts which 
are in conformity with major fold pattern. The outcrop pattern of variegated shale and chert 
member, generally covered with laterite have been observed. Manganese mineralization is 
restricted to either the shale (Upper) or laterite covering it and chert bands. There seems a very 
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clear relationship with stratigraphic control. It has been established that the bedded Manganese 
oxide deposits were the donors of metals during weathering processes. The manganese and other 
metals from the bedded deposits were taken into solution and remobilized within the weathering 
profile. During remobilization, separation of Manganese from iron took place. In most cases, the 
manganese ores in the weathering zones are depleted in iron with respect to their ancestors in the 
bedded deposits. In some deposits of the Fe-Mn belt (Iron Ore Group) manganese has replaced 
highly fractured cherts. Inspite of the known occurrences of bedded deposits (in Banded Upper 
Shale) below the weathered profile, practically most of the production of manganese ores is 
restricted to supergene remobilized zone. The average composition is as Mn 36.6 – 51.3%, Fe  6 
– 16%, SiO2 – 1.6 – 4.5%, Al2O3 1.6 – 4.5 %, P-O0.08 – 0.12% 9 (IBM, Nagpur, 1974). 

 
Chronostratigraphy of the region Koira – Noamundi and surrounding area 

KOLHAN GROUP                                     Newer Dolerite 

                        

                                                                     Shale 

                 

                                                                    Limestone 

 

                                                                    Sandstone – Conglomerates 

--------------------------------UNCONFORMITY------------------------------- 

SINGHBHUM GRANITE 

IRON ORE OROGENY 

 

KOIRA GROUP 

(IRON ORE GROUP)                               Upper Shales with volcanics 

                                                                   Banded Iron Formation 

                                                                   Lower Shale Formation 

                                                                   Maffic lava and tuffs 

                                                                   Sandstone and Conglomerates (local) 

 

----------------------------------UNCONFORMITY-------------------------------- 

OLDER METAMORPHIC GNEISSES (>Ca 3200 Ma) 

OLDER METAMORPHIC OROGENY 

OLDER METAMORPHIC GROUP 
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2.1.7 Geomorpholgical setup  
The study and evaluation of all the landforms is regarded as geomorphology, which 

solves many geological and environmental issues such as lithological discrimination, mineral and 
ground water exploration and geological hazards like erosion, mass movement and sedimentation. 
This also gives an insight into the localization of ore deposits in the region. 
 

In the present study area, in Jamda-koira valley, Keonjhar, Orissa, the role of chemical 
alteration and disintegration of various rock types result in weathering deposits of iron and 
manganese in the form of lateritoid deposits. The following geomorphologic units were 
encountered during the field investigation. 
 

2.1.7.1 Structural hill units 
Typical ridge-valley topography is prevalent in the area with doubly plunging folded and 

faulted structures with hogback landform on BHJ hills, cuesta landform on basal sandstone, and 
isolated hills on volcanics. In the Banded Hematite Jasper, litho-unit linear hill ridges with high 
relief, steep slopes, with dark red colour, flat crest, densely vegetated cover are characteristics of 
hogback landforms. 

 
The linear to curvilinear pattern, bedding with 10-150 dip towards NW, low relief, less 

slope, joint controlled sub-parallel drainage. Alternate ridge valley topography are characteristic 
of cuesta structures in Basal sandstone. 
 

2.1.7.2 Denudo-structural hill unit 
The entire area is covered with highly dissected hills and rugged topography due to 

weathering and leaching on the hill tops. The laterisation on hill tops occurs generally on Banded 
Hematite jasper (BHJ) denudational hills, sometimes manganese bearing Upper Shale units. 
These are the prominent denudational hills in the study area. On the basis of structural and 
lithological data, this unit can be subdivided nto anticlinal and synclinal hills. 

 
2.1.7.3 Intermontane valley Units 

The area is intersected with linear to flat; narrow and wide valleys differentiated as IV1, 
IV2 and IV3. Based on tonal contrast, landuse, vegetation cover and association, it is very easy to 
differentiate it from other units. These valleys are subdivided into anticlinal and synclinal valleys, 
based on lithological and structural interpretation. BHJ comprises of the anticlinal hills, while 
upper shale forms synclinal valleys. It is formed between the structural and denudo structural hill 
ranges forming different landforms. 
 
2.1.7.4 Erosional Landforms 

Three major types of erosional landforms have been identified in the study area. They are 
the 1. Residual hill unit 2. Weathered hill slope unit and 3. Pediplain surface unit. 
 

2.2 Study Area 2. (Udaipur) 

Col. James Tod (1829) described the valley of Oodipoor (Udaipur), the most diversified 
and most romantic spot on the continent of India. Udaipur city is within the Girwa Tehsil of 
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Udaipur district. The name Girwa denotes a basin like land morphology wherein water flows 
from the surrounding hills (Gir = hills, Wa = flow of water). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.3 Study area (Udaipur), Hyperion (FCC 47 28 15) 

2.2.1 Physiography and climate       

Physiographically, Udaipur has undulating and rocky topography with high and low hills. 
The city is surrounded by the hills of Aravalli ranges of various heights. The important hills 
within the area are: 

Northern hills: Nimach Mata Hill (767 m), Bhuwana Hill (708 m).  

Southern hills: Balicha Hill (636 m), Odi Hill (688 m). 

Eastern hills: Eklingpura Hill (683 m), Chorbavari Hill (769 m). 

Western hills: Thoria Hill (756 m), Machhala Magra (753 m), Sajjangarh Hill (936 m). 

Besides these, the area also has depressions in form of lakes like Pichola, Fatehsagar, 
Rangsagar, Swaroopsagar and Goverdhanvilas-ka-Talab etc. The area has 234 water bodies The 
River Ayar flows diagonally in the area from northwest to southeast direction. 
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Udaipur has a semi-arid climate, which prevails over most of the year. It has a hot dry 
summer and bracing cold winter. The cold season is generally from November to February and is 
followed by the summer season from March to June. The southwest monsoon follows from last 
week of June to the mid September. In the area, 90% of its total rainfall occurs during June to 
September period. July and August are the wettest months of monsoon. The average annual 
rainfall for the area is 640 mm and average number of rainy days is 42. The annual rainfall for 
last 100 years ranges from 300 mm (1936) to 1133 mm (1973), with the coefficient of variability 
of rainfall (C.V.%) being 42%. The annual potential evapo-transpiration values in the area ranges 
from 1300 mm to 1400 mm. 

2.2.2 Existing land use 

An estimated distribution of existing land use categories is as follows: 

1. Forest land use including land under trees (~7%). 

2. Agricultural land use including cropland, orchards (16%). 

3. Residential and Mixed land use including commercial, hotels, institutions, etc.(39%) 

4. Industrial land use (10%). 

5. Recreational land use including Parks and Zoo (2%). 

6. Surface water bodies including lakes, streams, nallas (8%). 

7. Unclassified land use (including wasteland, uncultivable land (18%).  

Rapid change in land use is one of the important geo-environmental issues that demand 
attention in the area. It is noted that in last two decades the urban development activities in the 
area have grown at a high rate, resulted in the rapid but unplanned development of residential as 
well as industrial areas. This development directly influenced the agriculture and forestland. 

2.2.3 Slope 
The average slope data analysis reveals that in Udaipur area the average slope angle 

varies between 00 to as high as 17°. The slope Uniform slope is noted in N-E direction near Bari 
and Nimachmata area. Concave slopes are observed near Sajjangarh, in western side of area. 
Convex slope occurs at the Machhla Magra and Bhuwana Hills sites. In the rest of the elevated 
area i.e. to the southwest sites and northwest sites the slope are undulated type.  

2.2.4 Pedology 

The hills and ridges of the area are mostly covered by the rock outcrops associated with 
very shallow, well-drained, skeletal soils occurring on slopes and are prone to severe soil erosion. 
The soils on the foothill and highlands are shallow to moderately shallow, well drained, loamy in 
texture and moderate to severely prone to erosion problem. The texture of these soils varies from 
sandy loam to clayey loam. The soil of the area can be classified as Ustochrepts Group. Broadly, 
the soil of the area can be grouped into four types:  
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A. Hill soils: Found on and around the main hills in the area. The color of soils varies from 

yellow to brown and red. Presence of stones and lithic fragments is commonly observed 

in these soils. 

B. Alluvial soils: Found along the Ahar river. Significant deposits of alluvial light brown to 

yellowish soils are found around Ayad and Pahara.  

C. Red soils: Found in high lands and plain area of the regions and are dark brown to 

reddish brown in color. 

D. Brown soils: Occupy low grounds in plains. It is yellowish brown to light brown in 

color.  

The soils of the area are saline to alkaline and have normal EC values, low potash and 
phosphate concentration (accept the soil near Bargaon). The organic carbon content shows wide 
variation having medium to high organic carbon status. 

2.2.5 Geological setting 

The geological setting of Udaipur area is not only unique in the state but also shows wide 
complexity. It is considered as one of the “type area” of the Aravalli Super group of rock.  

The study area broadly has two main stratigraphic units i.e. rocks of Aravalli Supergroup 
and pre-Aravalli Formations Aravalli Supergroup of rocks around Udaipur city show a high 
degree of structural complexity and polyphase deformation history. However at some places (near 
Fatehsagar) the graywacke and phyllite rocks have escaped the severity of metamorphism and 
deformation and display some typical sedimentary characters like ripple marks, mud cracks, rain 
prints etc. 

Table 2.1 General Geological Succession of Precambrian Formation of Rajasthan (after Heron, 1953) 
(source: Department of Geology, MLS University, Udaipur) 

Recent & Sub 
recent 

Alluvium and blown sand   

Vindhyan System Sandstone, limestone & 
boulders 

Dolerite and basalt (age uncertain) 

  

Malani Rhyolites Rhyolite, tuffs Granite,  
ultrabasic rock 
Erinpura granite, pergmatite, aplite 
Epidiorite and hornblende schist 

Delhi 
System  

Ajabgarh Series 
 

Upper phyllite  
Limestone  
Biotitic limestone and calc-
schist  
Phyllites, biotite schist and 
composite gneiss  
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 Alwar Series Quartzites  
Arkose, grit and conglomerates  

 

   
Raialo Series  

Garnetiferous biotite schist  
Limestone (marble)  
Local basal grit  

Aploganite, epidiorites and 
hornblende schists, ultrabasics  

Impure limestone, quartzites, 
phyllites, biotite-schist, 
composite gneiss  
Quartzites, grits and local soda-
syenites, conglomerate  

Aravali 
System  

  

Local amygdaloids and tuffs  

  

Schists, gneisses and composite 
gneiss  

  Banded Gneissic 
Complex (BGC)  

Quartzites  

Pegmatites, granite, aplites and 
basic rocks  
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Figure 2.3 Geological map of Udaipur study area Modified after S.Sinha-Roy, G. 
Malhotra, M. Mohanty (Geological Society of India) 

Udaipur, the capital of a princely state of pre-independence time is perhaps the only place 
in India where artists, historians tourists, naturalists, geoscientists get a lot to fulfill their interests. 
Glorious history of Mewar echoing from all corners on one hand and the scenic beauty of the city 
and still waters of its fascinating lakes surrounded by Aravalli hills on the other stun a visitor. 
Rocks carving this blissful valley easily turn a geoscientist into a philosopher. Time has put its 
magnificent signatures on the rocks of this fascinating valley and its surrounding environs. The 
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oldest rocks, perhaps, the remnants of the primordial crust, the Mewar Gneiss popularly known as 
the Banded Gneissic Complex with pockets of paleosols (that altered to fine'-grained, talcose 
white mica) form a flat terrain at the eastern entrance of the city: Basement rocks also crop out 
between Neemach Mata and Bari Lake and around Titari and Udai Sagar areas. At the foot hill 
side of Neemach Mata, the basement granite shows metasomatized remobilization making its 
contact with the cover rocks quite interesting. In fact, all these granitoid bodies were considered 
by earlier workers to be intrusive into the Aravalli rocks. Surprisingly, the boundaries of the 
amphitheater encircling the historic town form the replica of the epicontinental sea in which the 
sediments of the Aravalli Supergroup, divisible into Lower, Middle and Upper Groups, were 
deposited about two and a half billion years ago. The two high ridges, Iniamagara-Sajjangarh in 
the west and Debari in the east, that include two linear "outliers of Delhi Formations" (now 
considered part of the Aravalli Supergroup) and define the limits of the Udaipur valley; have 
emerged at the same place where the two deep seated liastric faults, that had develop during the 
beginning of the Aravalli basin formation, out poured basic lava. All along these ridges basic 
volcanic with vesicles and pillow structures are spread in the form of green schist that is 
noticeable east of Debari Zinc Smelter, Bari Lake and at the northern termination of Iniamagara. 
Sedimentation of Aravalli rocks began with dumping of large assorted blocks in the basic lava 
along the margins of the graben so formed. Diamictites of the Lower Aravalli Group so formed 
are exposed along the hills to the east of Debari Zinc Smelter, to the south of Nandeshwer and in 
a river section at Koriyat. Tuffaceous material associated with the lava can easily be seen 
displaying paper-thin laminations and micro grading along the Koriyat-Nai section. Around 
Koriyat the basal volcanics have been observed to be interlayer with carbonates. The basal 
sequence of coarse and fine clastics, represented by conglomerate, quartzite; phyllite is exposed 
on the either sides of Udaipur valley: Most of the high ridges around Koriyat, Bari, Nai and Undri 
on western side and Udai Sagar, Debari, and Girwa on the eastern and northern sides represent 
these lithounits. These linear outcrops of conglomerate-arkose-quartzite sequence, exposed on 
either sides of the Udaipur valley, were thought to be the "outliners" of Delhi "System" (now 
Supergroup) by earlier workers(Heron, 1953) .This interesting coarse clastic sequence to the east 
of Udaipur City, popularly known as Debari Formation, has seen several ups and downs during 
the history of geological research in the area. Banerjee (1971) , dividing the Aravalli rocks in to 
Debari, Maton, and Udaipur Formations, assigned it the lower most position in the sequence. On 
the other hand Roy and Paliwal (1988) equated this sequence with the greywacke-phyllite 
sequence of Udaipur Valley Formation-C. This sequence suffered a lot of oscillation in its 
stratigraphic position in subsequent publications. Similar sequence, popularly known as 
lniamagra sequence is exposed around Koriat, Bujara, Undari etc. to the west of Udaipur city has 
retained its basal status. Good exposures of the basal sequence are seen in sections along the road 
connecting Udaipur City with the Maharana Pratap Airport particularly around Debari tunnel and 
Zinc Smelter. The diamictite with large rounded boulders exposures are seen at Nandeswar on 
way to jharol, in river sections at Bujara, Sajjangarh and Koriyat and at Bari Lake where basic 
volcanics, now altered to green schist, show well preserved vesicular and amygdular structures. In 
a ridge west of Sajjangarh an outcrop of banded hematite quartzite has been noticed. The Basal 
sequence of coarse clastics passes upward into a carbonate sequence comprising dolomites, ortho-
quartzite, stromatolitic phospharite and carbonaceous phyllite. Perhaps it was the time when the 
source area reached peneplanation and the weathering and erosional agencies calmed down. 
Chemicals started precipitating and carbonates got deposited in the epicontinental sea. Of course 
in deeper trenches, with reducing environment owing to profuse development of micro-
organisms, black shale was deposited to give rise the carbonaceous phyllite. Uraniferrous 
carbonaceous phyllite has been located around Umra, hardly a few km, east of Udaipur. In a road 
cutting near Berwas (Pratapnagar) carbonaceous phyllite can be seen on way to Debari Zinc 
Smelter (where Zinc from Zawar group of mines, located about 50 km southeast of Udaipur, is 
smelted). Carbonate with algal stromatolites, both phosphatic and non-phosphatic, forms a marker 
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horizon in the Aravalli Supergroup of rocks exposed in its type locality around Udaipur. In fact, 
blue-green algae grows profusely up to a depth of 30 meters (a depth to which sunlight can 
penetrate) effectively for the photosynthesis. The prolific growth of the algae together with other 
microbiota gave rise to a large variety of algal stromatolite in carbonate(s) deposits encircling 
Udaipur valley, particularly around Sisarama, Neemach Mata, Bargaon, Kanpur, Kharbaria-Ka-
Gurha, Maton, ]hamarkotra, and Dakankotra. At Jhamarkotra and Maton, hardly a few km west 
of Udaipur, the rock phosphate is being exploited commercially for fertilizer industry. Other 
prospects, of low-grade ore, may prove to be of economic significance in future. While enjoying 
boating in the Pichola Lake, phosphorite bearing carbonate hills of Sisarama can be viewed 
forming silhouette, which gives the Lake Palace a look of an iceberg with a smoky cloud in its 
background. Some geoscientists believe that rocks of the Udaipur area show a constant westerly 
younging and therefore the carbonates with phosphorite on either sides of the city form two 
separate stratigraphic horizons. Prolific development of blue-green algae in the epicontinenteal 
sea contributed a lot of oxygen to the atmosphere through photosynthesis through out the world. 
It is believed that our atmosphere lacked oxygen prior to the development of the blue-green algae 
in the seawater. A variety of stromatolites, the structures produced by these algae, are seen at a 
number of places around Udaipur City: In addition to a well preserved stromatolite park at the H-
block of Jhamarkotra, these deformed and undeformed stromatolites. (http://www.geolmlsu. 
org/geology.html)                                                                                                                                                                

2.2.5.1 Banded Gneissic Complex 

The basement rocks in Rajasthan occur in an arcuate terrain between the Aravalli hill 
ranges in the west and the Vindhyan plateau in the east. The Gneissic complex has the shape of a 
V with its apex pointing westward and its northern limb bounded by the Delhi fold belt and the 
southern limb by the Aravalli fold belt.  

The Banded Gneissic Complex (BGC) in Rajasthan can be divided into three major rock 
groups, i.e. Mangalwar complex, Sandmata Complex and the Hindoli Group. The BGC in 
Udaipur and its surroundings can be grouped under the Mangalwar and the Sandmata Complex. 
The mangalwar complex is a heterogeneous assemblage of amphibolite-facies metamorphites 
comprising of mignmatites, composite gneisses, feldsparthic mica schist, sillimanite-kyanite-
mica-schist, hornblende schist, granite gneiss and amphibolite along with minor carbonates 
constitute the Mangalwar complex (Gupta et.al. 1981). The Sandmata Complex are the high-
grade metamorphites, comprising of migmatites, composite gneisses, biotite-schist, garnet-
sillimanite-staurolite-biotite schist, dolomitic marble, hornblende schist with associated granite, 
are included in the Sandmata complex. The boundary between the Sandmata Complex and the 
Mangalwar Complex is marked by isograd roughly along the Delwara Lineament. Sinha-Roy et 
al. (1992) suggested that the Sandmata Complex constitutes only the high pressure granulite 
facies rocks having tectonic contact with the encompassing Mangalwar complex rocks.  

2.2.5.2 Debari Group 

The lithoassemblage comprising coarse clastics, carbonates and pelites constitute the 
Middle Aravalli sequence and is designated as the Debari Group Sinha-Roy et. Al. (1993b).  

The shelf-facies Aravalli sequence is punctuated by a prominent polymictic conglomerate 
which separates the Delwara Group at the base and the Debari group at the top. The polymictic 
conglomerate-arkose-grit-quatrzite horizon, ocuring as a linear band from Kailashpuri in the north 
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to Banswara in the south, is an important stratigraphic marker horizon which marks the base of 
the Debari Group and is designated as the debari conglomerates. The stratigraphic positon of the 
thick carbonate sequence above the Debari Group has been described differently by various 
workers. The dolomite unit containing phosphoritic stromatolites occurring at Jhamarkotra, 
Matun, Kanpur, Badgaon and Sisarama either overlies the basement rocks with an intervening 
thin arkosic conglomerate or unconformably overlies the Delwara Group rocls. The overlying 
Umra formation containing carbon phyllite is best developed at Umra, and is also well developed 
at Parsad, Sisarama, Nerach, Jahamarkotra area as a facies variant of dolomite. It contains Cu-U 
mineralization Roy et al (1988). The lithosequence comprising greywacke and phyllite is best 
developed around Udaipur, and hence it is designated as the Udaipur Formation Sinha-Roy et. Al 
(1993b). It shows the extensive development in Nathdwara and Dungarpur areas constituting the 
bulk of the shelf-facies rocks. The rhythmic sequence of Greywacke-slate/phyllite laterally passes 
into lithic arenite as at Jhamarkotra. The Udaipur Formation is overlain by a carbonate sequence 
hosting Pb-Zn mineralization at Zawar and Katar, and is designated as the Zawar Formation 
Sinha-Roy et al (1993b).  

2.2.5.3 Delwara Group 

The Aravalli Supergroup can be divided into two principal facies sequences. One is the 
Delwara group which are volcanic dominated and the volcanics free Debari Group. 

The Delwara group occupies the lowermost position in the Aravalli stratigraphy. It 
comprises of mafic volcanics, clean-washed quartzite, quartz pebble conglomerate (QPC), minor 
carbonates and BIF.  

2.2.5.4 Jharol Group  

The carbonate free and pelite dominant sequence with arenite bands constitute a large 
part of the Aravalli sequence and it is named as the Jharol Group Gupta et al (1981). It is 
interpreted as distal turbidities or flysch of the Aravalli deepsea sequence. The rock sequence 
comprising of coarse pelitic schist and quartzite with phosphoritic dolomite that occur in a 
roughly polygonal area in southern Rajasthan is referred to as Lunavada Group.  

2.2.5.5 Ultramafics 

Ultramafic rocks represented by serpentinite, talc-tremolite schist, antigorite-tremolite 
schist and monomineralic chloro-schist occur along two regional lineaments, i.e. Rakhabdev 
Lineament in the east and Kaliguman Lineament in the west Bakliwal and Ramaswamy, (1987). 
Although these bodies occur as lenses and linear bands of variable dimensions, their disposition 
marks a linearity. These Ultramafic rocks were variably described as ‘Magnesian rocks’ 
(Middlemiss, 1921) and as ‘talc-serpentine-chlorite rock’ Ghosh(1933). Based on the field and 
petrochemical studies Gathania et al. (1995) divided the Ultramafics into three groups; the first 
group consisting of coarse grained carbonate-talc dominated rock occurring near the contact with 
the metasediments, while the second group consists of dark coloured antigorite-chlorite bearing 
rocks, while monomineralic chlorite rich forms the third group. The latter occurs as intrusive 
bodies within other ultramafic groups and metasediments.  
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The above mentioned facts regarding the geologic setting of Udaipur study area have 
been referred from “Geology of Rajasthan” by S. Sinha-Roy, G. Malhotra and M. Mohanty, 
Geological Society of India, Bangalore, 1988. 

 The following chapter deals with the materials and the methodology adopted for the 
present study. 
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Chapter 3 
 

Materials and Methods 
 
 

The methodology for the present study has been formulated by keeping in mind the 
primary objectives of the work. During the literature review for the present study it came to the 
limelight that very few works have been conducted in the field of hyperspectral remote sensing in 
India which could assist our efforts for the present study. This stood as a great challenge and a 
factor of inspiration for the study. The methodology adopted for the present study is given below 
as a flow chart. 

 
                                   Figure 3.1 Methodology flow chart for the present study 

 
3.1 Materials and Data 

 
The materials and methods used in this research work are discussed in detail in the 

following sections. 
 

3.1.1 Hyperion satellite data 
 

The primary satellite data that has been used for the present study is the Hyperion data 
set. Hyperion sensor is a hyperspectral imager on-board of EO-1 satellite. There are 220 spectral 
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bands ranging from 400 – 2500 nm. The spatial resolution is 30 meter per pixel and swath width 
is 7.7 km. Each scene covers either 42 km, or 185 km. The product is distributed by USGS, and 
the level one product, which is only radiometrically corrected, is available. The EO-1 satellite 
was launched on November 21, 2001 as part of a one-year technology validation/demonstration 
mission. After the original EO-1 mission was successfully completed in November 2001, the 
remote sensing research and scientific communities expressed high interest in continued 
acquisition of image data from EO-1. Based on this user interest, an agreement was reached 
between NASA and the USGS to allow continuation of the EO-1 Program as an Extended 
Mission (Pearlman, et al., 2003; USGS, 2004a). The Hyperion satellite data was ordered from the 
USGS Earth explorer website and it was delivered within two months.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                     Figure 3.2 Hyperion strip of Orissa study area (FCC 47 28 15) 
 

 
The metadata information for the Jamda-Koira Hyperion scene is given below. 
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Figure 3.3 Metadata of Orissa hyperion dataset (Source: http://glovis.usgs.gov) 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Similarlly the metadata information for the Udaipur scene is also given below. 
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Figure 3.5 Metadata of Udaipur hyperion dataset(Source: http://glovis.usgs.gov) 
 

3.1.2 LISS IV Satellite Data 

LISS IV satellite data has been procured for both the study areas and were used as a 
validation tool as well as to highlight the importance of hyperspectral dataset for mineral 
exploration. The LISS IV band specifications as well as the metadata of the dataset used is given 
below. 

Satellite ID              :P6 
Sensor                    :L-4 
Path-Row                  :203-004 
Date, Time and  Scene Id. :07-FEB-05 05:51:40L4X ST00B234 F 
Product Code              :STPC0026J 
Orbit Number              :6807 
Image Layout              :BIL 
Number Of Bands           :3 
Bands Present in Product  :2 3 4  
Bands in this volume      :2 3 4   
File Header               :540 
Line Header (Prefix Bytes):32 
Line Trailer(Suffix Bytes):0 
Scan Lines                :5279 
Pixels                    :4947 
Image Record Length(Bytes):4979 

The liss 4 images for the two study areas are given below in figure 3.6 and 3.7 
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Figure 3.6 LISS 4 image of the Udaipur study area 

The band wise spectral characteristics of the LISS 4 is given below. 

Table 3.1 Band specification of LISS 4(Source: 
http://geo.arc.nasa.gov/sge/health/sensor/sensors/irsp6.html) 

Band Wavelength 
region µm 

Resolution 

2 0.62 – 0.68 6 
3 0.77 – 0.86 6 
4 1.55 – 1.70 6 
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Figure 3.7 LISS 4 image of Orissa study area 

3.2 Hyperion data file  

 There are five files coming with the distributed scene. They are as shown in the below figure as 
seen in the ENVI software. 

 

 
 
 
 
 
 

                    Figure 3.8 Primary Hyperion dataset delivery files 
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The first file is the Hyperion satellite data file (L1R) followed by the spectral center 

wavelength file, which gives information about the central wavelength value for each bands in the 
Hyperion data set. The spectral bandwidth file gives information regarding the bandwidths of 
each bands (220 bands) present in the data set. These files are followed by the gain and offset 
value information for each bands. 
 
3.3 Data importing 
 

The distributed image file in the CD is in the standard hyperion L1R data format. This 
L1R data format is been imported to the Hyperion-ENVI standard hdr format. This is done by 
customizing the ENVI tool bar using the Hyperion import file which has been downloaded from 
the ITT website.   
 
3.4 Preprocessing of hyperspectral data 

 
Processing of high dimensional hyperspectral data is a challenging task and the 

computational complexity is a result of vast data volume in numerous spectral bands. Since 
Hyperion sensor operates from a space platform with modest surface signal levels and a full 
column of atmosphere attenuating the signal, the data demand careful processing to manage 
sensor noise. The errors are said to be caused due to calibration differences in the detector array 
(Goodenough et al., 2003). The Hyperion dataset has to be corrected for abnormal pixels, striping 
and smiling prior to the atmospheric correction. Pre-processing of hyperspectral images is 
required not only for removing sensor errors during acquisition but also for display, band 
selection (to reduce the data dimensionality) and to reduce computational complexity. 
 
3.4.1 Spectral subsetting 
  

The Hyperion sensor covers the visible and near infra-red (VNIR, or 400 nm to 1000 nm) 
and shortwave infra-red (SWIR, 900 nm to 2500 nm) ranges. The instrument has a single 
telescope but two spectrometers – one for the VNIR and the other for the SWIR data. The VNIR 
spectrometer has 70 bands and the SWIR 172 bands providing 242 potential bands which are 
normally about 10 nm apart in each spectrometer and have spectral response functions with 
approximately 11 nm full-width at half maximum (FWHM). If every band were operating, the 
spectral range covered would be from 356 nm to 2577 nm with a common area of overlap 
between the spectrometers between 852 nm and 1058 nm. In practice a number of the bands were 
not illuminated and others correspond to areas of low sensitivity of the spectrometer material so 
that of the 242 a subset of 198 bands spectrally subsetted from the hyperion data set.  
 
VNIR Range :    Bands  8-57 (436-926nm) 
SWIR Range :    Bands  77-224 (892-2406nm) 
 
This results in 198 useable channels or bands with 196 unique wavebands and 2 pairs of channels 
remaining in the overlap between the two main detector sets. It is usual to disregard the SWIR 
overlap bands (77-78) as their SNR is slightly lower than their VNIR equivalents. The overlap is 
kept mainly to check caliberation. Hence the redefined spectral ranges of the hyperion image set 
is as follows. 
 
VNIR Range :   Bands 8-57 (436-926nm) 
SWIR Range :   Bands 79-224 (933-2406nm). 
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This datset now provides the basic 196 unique data channels that will be further used as a base set 
of unique hyperion bands. 
 
3.4.2 Destriping of VNIR and SWIR region 

A vertical stripe is said to occur where the statistics indicate that the image information is 
likely to be valid, ie. the pixel is not bad but have significantly modified gain and offset. In a 
pushbroom sensor, a poorly calibrated detector in either VNIR or SWIR arrays leaves high 
frequency errors (“vertical stripes”) on the image bands. In Hyperion striping pixels have been 
classified in four categories: i) continuous with atypical DN values, ii) continuous with constant 
DN value, iii) intermittent with a typical DN values and iv) intermittent with lower DN values. 
The first two categories of stripes are the most extreme type as they contain very little or no valid 
data about the ground feature (Goodenough et al., 2003). In the level1R product these stripes are 
left unmodified, allowing the users to handle or replace the pixels as per the requirement. In order 
to facilitate extraction of calibrated spectra from Hyperion dataset it is significant to carefully 
balance for the striping in the dataset. In the present study a tool was developed to compensate for 
the striping by visually identifying bad columns and develop a filter to balancing for the bad 
columns. 

3.4.2.1 Identification of bad columns 

In order to compensate for striping in Hyperion datasets global and local de-striping 
approaches have been suggested. In the present study the bad columns were identified visually to 
avoid enforcing severe change in the spectra. A total of 36 bad columns were identified in 13 
VNIR bands of Udaipur dataset and 48 bad columns in 16 VNIR bands of Spain dataset. SWIR 
bands were found devoid of visible stripes. Table 3.1 lists the detected bad columns in Udaipur 
and Orissa datasets. 

Table : 3.2 Location of detected bad columns in L1R product of Udaipur and Orissa scene 
Band Bad Column in Udaipur Band Bad Column in Orissa 

8  6, 68, 114 8 6, 68, 114, 167, 187, 238, 247 
9 6, 68, 114, 246 9 6, 68, 114 
10  6, 114, 119 10 6, 114, 199 
11  6, 114, 119 11 6, 114, 199 
12  114 12 6, 114 
13  114 13 6, 114 
14  114 14 114 
15  114 15 114 
16  114 16 114 
54  13 17 114 
55  13, 17, 20 18 114 
56  8, 13, 17, 20, 32, 37, 39 19 114 
57 8, 13, 17, 20, 33, 36, 38 20 114 
  21 114 
  22 114 
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  27 47 
  28 47 
  56 17, 20, 32 
  57 13, 40 
  79 186, 254 
  80 188, 246 
  81 248 
  82 242 
  
3.4.2.2 Balancing for bad columns 

A bad column removal filter was developed to target the bad columns in each band. The 
bad columns were replaced by the 3×3 neighbourhood mean, without taking into account the bad 
column value. In order to implement this a 3×3 filter was designed with positional values as (-
1,1) =1, (-1,0) =1, (-1,-1) =1, (0,1) =0, (0,0) =0, (0,-1) =0, (1,1) =1, (1,0) =1 and (1,-1) =1. The 
filter runs on the bands identified as containing bad columns.  The user interface allows the user 
to enter the band numbers that contain bad columns and column number of the specified band. 

1 0 1
1 0 1
1 0 1

 
Figure 3.9 Filter design for local de-striping of Hyperion dataset 

 
The values of the image data for sample (bad column) i, line j, and for band k (xijk) are modified 
to  
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Where 
i = identified bad column 
n = total number of rows in the predefined filter 
  
3.5 Atmospheric correction of the datasets 
 

Two atmospheric correction models were used in the present study for the retrieval of 
reflectance from radiance. There are certain inputs that need to be generated for both the 
atmospheric correction models (FLAASH an ATCOR2). The input parameters required for 
ATCOR2 and FLAASH are to be computed before the image is subjected to atmospheric 
correction. The parameters required from the user to run the two models successfully are sensor 
specific and specific to ground situation. Table 3.2 shows the list of input parameters required by 
the two atmospheric correction models. Selection of the input parameters has a direct bearing on 
the output of the atmospheric correction models. The parameters selected for atmospheric 
correction of the datasets is discussed here based on the user manual of the ATCOR and 
FLAASH. 
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Table 3.3 Input parameters for ATCOR2 and FLAASH 

ATCOR2 parameters FLAASH parameters 
Sensor type Sensor type 
Pixel size Pixel size 
Ground elevation Ground elevation 
Solar Zenith angle Scene centre Latitude/Longitude 
Visibility Sensor altitude 
Flight date Visibility 
Atmospheric file Flight date & flight time 
Adjacency range Atmospheric model 
Zones Aerosol model 
Region for water vapour Water vapour retrieval 
Water vapour absorption Spectral polishing 
Haze removal Wavelength calibration 
Shadow removal Advanced parameters 
Reflectance scale factor Output reflectance scale factor 
Value added product MODTRAN resolution 
Index map MODTRAN multi scattering model 
 
3.5.1 Generation of scale factor as ASCII files 
 

The scale factors for the VNIR and SWIR bands are 400 and 800 respectively in the case 
of nanometers (nm) while 40 and 80 for micrometers (µm). They are written in the notepad file 
from top to bottom in a single column with the number of rows corresponding to the number of 
bands in the dataset. 
 
3.5.2 Sensor type 
 

The option of selecting sensor type is provided to the user as both ATCOR2 and 
FLAASH are used for wide range of sensors. Sensor type, for the present study is selected as 
Hyperion. 

 
3.5.3 Pixel size 
 
The Hyperion data ordered to EPGS was specified as nadir looking product. Therefore the pixel 
size selected is 30 meters, as per the data description of Hyperion. 
 
3.5.4 Ground elevation 
 

Ground elevation input required by ATCOR2 and FLAASH is an average elevation of 
the imaged terrain. For Udaipur the average elevation of the imaged terrain was taken as 0.6 km 
above MSL (Roy et al., 1998). For Orissa dataset, average elevation was calculated as 0.65. 
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3.5.5 Solar zenith angle/ Flight date and time 
 

Solar zenith angle at time of the satellite pass is provided by the EPGS in the product 
description. For Udaipur the solar zenith angle is 37.214824 degrees and for Orissa the solar 
zenith angle is 38.450226 degrees. Flight date and time for Udaipur and Spain dataset are selected 
as per the data description of Hyperion 
 
3.5.6 Scene centre latitude and longitude 
 
The scene centre latitude and longitude is provided in the header file of the dataset. 
 
3.5.7 Sensor altitude 
 

The sensor altitude for hyperion scene is not provided for each scene. Hence the altitude 
information is derived from the topo-sheet and from the GPS that has been used in the ground 
truth investigation. 
 
3.5.8 Visibility 
 
The visibility selected for Udaipur and Orissa was inferred as “clear” in the range of 40 km. 
 
3.5.9 Flight date and Flight time 
 
Flight date and time is provided with the description/metadata of Hyperion. 
 
3.5.10 Atmospheric model 

The user has to make a choice, based on the geographic location of the scene to 
atmospherically correct the image. FLAASH supports six atmosphere types based on a seasonal-
latitude surface temperature MODTRAN modelled atmospheres which is given in table 3.3 

Table 3.4 Column water vapor amounts and surface temperatures for the MODTRAN model 
atmospheres (Source: FLAASH user guide). 

Model Atmosphere Water Vapour 
(std atm-cm) 

Water Vapour 
(g/cm2) 

Surface Air 
Temperature 

Sub-Arctic Winter (SAW) 518  0.42 -16 °C or 3 °F 
Mid-Latitude Winter (MLW)  1060  0.85 -1 °C or 30 °F 
U.S. Standard (US)  1762  1.42  15 °C or 59 °F 
Sub-Arctic Summer (SAS)  2589  2.08  14 °C or 57 °F 
Mid-Latitude Summer (MLS)  3636 2.92 21 °C or 70 °F 
Tropical (T)  5119  4.11  27 °C or 80 °F 

Selection of MODTRAN model atmospheres is based on latitudinal/seasonal dependence 
of surface temperature of the study area.  To help the user to select a model latitudinal ranges (0 
to 80ºN and 0 to -80º S) and month of scene capture FLAASH recommends the use of a specific 
model for use.  Based on the location of Udaipur 24º36′ N latitude for a January scene “Tropical” 
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model was selected. For Orissa location is at 21.7″ N latitude for January “Tropical” was 
selected. 

3.5.11 Aerosol model/ atmospheric file 

ATCOR supports four basic aerosol types: rural, urban, maritime, and desert. The user 
has to make a choice, based on the geographic location. Rural is recommended for areas with 
visibility greater 40 km. For FLAASH the Rural model represents the aerosol found in areas not 
strongly affected by urban or industrial sources.  For both Udaipur and Orissa datasets “Rural” 
aerosol model was selected. 

3.5.12 Water vapor retrieval 

ATCOR and FLAASH include a method for retrieving the water amount for each pixel. 
The selection of wavelength at which the water retrieval is to be carried out is based on the 
availability of bands in the dataset to be atmospherically corrected. As Hyperion has bands in 
356–2577 nm range the recommended 1135 nm is used for water retrieval for both Udaipur and 
Orissa datasets. 

3.5.13 Adjacency range and zone 

In order to accommodate for the adjacency effect, due to which radiances of adjacent 
fields of different reflectance. ATCOR allows adjacency range of 0.5 to 1 km. As the two dataset 
in use belong to a heterogeneous area an adjacency range of 0.5 km is selected with weight factor 
of 1. This same effect is treated as “adjacency correction” toggled to yes in advanced setting 
parameters of FLAASH. Three multiscatter models are available in FLAASH Isaacs, Scaled 
DISORT, and DISORT. The recommended Scaled DISORT with 8 streams (signifying 8 
directional adjacency) is selected for the present study. 

3.5.14 Reflectance scale factor 

In order to scale the output reflectance image from floating-point into 2-byte integer data 
space the recommended scale factor of 10,000 is used for Udaipur and Spain datasets in ATCOR 
and FLAASH. 

3.5.15 Additional optional parameters 

More additional parameters available in ATCOR are Haze removal, Shadow removal, 
Value added product, and Index map. The scene of the study area is not seen to be affected by 
haze or shadows, these options were not utilized during atmospheric correction. 

3.5.16 Wavelength calibration 

The wavelength re-calibration was applied as in FLAASH, where as no such option is 
available in ATCOR2. This option helps in determining the shift in the wavelength (central 
wavelength position for each band). This certainly helps in the interpretation part when very 
accurate analyses of the absorption spectrums are dealt.  
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Once the atmospheric correction model is run, the reflectance is retrieved from the 
radiance.  

3.6 Applying gain and offset  

The spectra generated after the atmospheric correction reflects the intrinsic characteristics 
of the earth materials that were captured by the sensor. But it is not a continuous spectrum with 
breaks in certain specific locations like at 0.9µm and 1.4µm which are basically due to high water 
absorption and low signal factors respectively. After applying the gain and offset values the 
spectrum becomes continuous without any breaks. 

3.7 Spectral Polishing 

EFFORT polishing is a spectral polishing technique by which the artifacts present in the 
reflectance spectra are removed by smoothening the spectra. But before running the EFFORT 
polishing algorithm it is made sure that they are merely artifacts and doesn’t manifest any 
information of the material imaged. 

3.8 Field Investigations 

The field investigation for Orissa and Udaipur are conducted from 28th  August to 5th 
September 2006 and 21st November to 24th November 2006 respectively. The following sections 
deals with the pre-fieldwork preparation adopted for the present study.  

3.9 Georeferencing of the satellite images. 

Georeferencing of Udaipur and Orissa satellite dataset were carried out using the 
orthorectified ETM+ dataset in UTM/WGS 84 datum, zone 43N. In order to avoid spectral 
interpolation, nearest neighbourhood re-sampling method was used (Janssen et al., 2004). 

3.10 Generation of vector database 

Geological map of both the study areas were generated before the field investigation 
which facilitates in determining the sampling locations in the ground-truth investigation.  

3.11 Sampling Plan 

The spectral signature within a pixel of the image consists of an average of the 
reflectances of all materials within that pixel. At Hyperion’s spatial resolution (15 x 15 meter) the 
spectral response for a geological sample will consist of a combination of spectra of all vegetation 
types and the soil, ground litter, etc., within the picture element. Prior to field work a random 
stratified sampling strategy was employed to decide on the location of sample points. 
Comparatively large and homogenous lithological outcrops in the study area were selected on the 
basis of existing geological map prepared by Geological survey of India and updated by (Roy et 
al., 1998). The other factors taken into consideration are the local terrain elevation the slope (to 
avoid shadow areas on the image), and accessibility to the area keeping in mind the fact that the 
data collection would have to be done in a limited period of time. Based on the above mentioned 
criterias 32 sampling points were selected in the study area of Udaipur and 64 locations in Orissa. 
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The rock samples were identified in the field and the corresponding co-ordinate locations from 
GPS is noted with their approximate height information.  

Table 3.5 Brief description of Rock sample collected with corresponding field locations of 
Udaipur 

Field location in UTM coordinates Sample 
code Easting Northing 

Rock/Sample collected 

1 369700.33 2744947.16 Chlorite Schist 
2 369656.95 2744965.19 Biotite Chlorite Schist 
3 369484.09 2743138.45 Chlorite Schists with carbonate bands 
4 371323.84 2742768.33 Quartzite 
6 371871.04 2740153.14 Quartzite 
7 370295.41 2738487.48 Quartzite 
8 370293.09 2737232.19 Chlorite Schist 
9 372026.28 2731618.40 Quartzite 
12 369001.19 2735653.65 Quartzite 
13 369818.04 2735084.92 Quartzite 
 
Table 3.6 Brief description of rock sample collected with corresponding field locations of Orissa 

Field locations in Geographic coordinates Rock/Sample collected Sample  
code Latitude Longitude  
1 22 10 56.2 N 85 22 28.0 E Shale 
2 22 10 38.9 N 85 22 16.3 E Banded Hematite Jasper (BHJ) 
3 22 05 58.6 N 85 21 05.7 E Banded Hematite Jasper (BHJ) 
4 22 07 34.3 N 85 20 48.6 E Laterite 
5 22 05 46.1 N 85 21 56.0 E Mine tailings 
6 22 05 23.8 N 85 23 08.5 E Laterite 
7 22 02 08.3 N 85 22 14.7 E Iron ore (Hematite) 
8  22 02 20.7 N 85 21 49.9 E Fine blue dust 
9 21 59 23.0 N 85 18 52.5 E Mine tailings 
10 21 58 17.8 N 85 18 08.9 E Weathered laterite 
11 21 57 13.5 N 85 19 03.5 E Manganese Ore 
12 21 55 56.2 N 85 20 13.1 E Banded Hematite Jasper (BHJ) 
13 21 56 46.4 N 85 20 50.8 E Iron rich soil 
14 21 52 09.7 N 85 18 30.3 E Mine tailings 
15 21 53 16.2 N 85 16 50.0 E Mine tailings 
 
3.12 Field Spectra collection 
 

The validation of the reflectance spectra is very important in this study. The analytical 
spectral device Fieldspec has been used to generate the laboratory spectra of the rock samples that 
have collected from the field. The spectral collection of the rock samples were conducted almost 
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at the same time of the sensor image capturing time. This was done to regenerate the same 
illumination conditions that persisted at the time of the image capture. The instrument and 
procedure for collection of field spectra is discussed below. 
 
3.12.1 Instrument 

In order to make measurements of surface reflectance of geological samples, an 
analytical spectral device, a FieldSpec®-Pro spectroradiometer, was used. The ASD radiometer is 
a portable array-based spectrometer consisting of a spectrometer unit, computer interface, and 
fiber optic probe. The instrument has two integrated radiometers covering 350 to 2500 nm. The 
radiometer consists of one silicon photodiode array and two fast scanning thermoelectrically (TE) 
cooled spectrometers with a spectral resolution 10 nm. The instrument was operated with 5° full-
field-of-view (FFOV) foreoptics. A laptop interface with the instrument allows real time viewing 
of the spectrum recorded. The ASD instrument records the spectra in 2151 continuous bands. The 
spectral range and spectral resolution of the ASD instrument meet the present study requirement 
on Hyperion datasets. Table  shows the characteristics of the instrument used. 

Table 3.7 Analytical Spectral Device FieldSpec-FR specifications (source: FieldSpec® Pro User 
Guide) 

Spectral Range 350 - 2500 nm 
Spectral Resolution FWHM 3 nm for 350-1000 nm 

FWHM 10 nm for 1400 -2100 nm 
Sampling Interval 1.4 nm for 350 - 1050 nm  

2 nm for 1000 - 2500 nm 
Scanning Time 100 milliseconds 
Detector One 512 element (Si photodiode array 350 - 1000 nms) 

Two separate, TE cooled, InGaAs (Indium-Gallenium-Arsenide) 
photodiodes 1000 - 2500 nm 

Input device Foreoptics gun 
 
3.12.2 Instrument calibration 

A certain amount of electrical current is generated by thermal electrons within the ASD 
and always added to the incoming photons of light during spectra collection. This adversely 
affects the spectra collection and has to be removed. This process is known as “Dark Current 
Correction”. Spectral data collection requires instrument calibration using a reference panel 
(“Spectralon” white reference) provided along with the instrument. During the white reference 
collection, a reference 100% line is available to the user to check the status of the instrument 
performance. White reference collection includes dark current correction and was repeated every 
20 minutes during the collection of sample spectra. This minimises the effects of the changing 
lighting conditions on the recorded spectra. This calibration was repeated several times during the 
sampling period to establish changing light conditions or instrument drift.  

Before the field spectra collection, to test the performance of the instrument a comparison 
for vegetation spectra was done. Figure 3.4 shows an example of tree foliage spectra (Dhoke 
variety of tree found abundantly in Udaipur environs) taken in IIRS campus compared with 
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atmospherically corrected image spectra extracted from Udaipur image. The vegetation spectra 
from ASD and image exhibit similar trends, indicating precision of the instrument. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.10 Image spectra and their corresponding ASD target spectra 

 
3.12.3 Spectral data collection 

The northern part of the study area has been under survey by various National 
organizations for the last few years, and is considered a potential mineralization zone. Out of 32 
spectra collected from ASD spectro-radiometer, 13 samples of the northern part of the study area 
were taken up for further processing. The field spectra collections was undertaken within 2 hours 
before and after solar noon to simulate the similar illumination conditions as during the satellite 
pass. The rock types were identified as Grey Quartzite and Chlortite schist. 

3.12.4 Creation of ASD and image spectral library  

The ASD records spectra in 1251 bands at 2 nm band width. To compare the ground-
measured spectra collected from ASD with that of atmospherically corrected image spectra, the 
ASD spectra were re-sampled to the Hyperion FWHM and bandwidth. A spectral library of re-
sampled ASD spectra was created. The spectra from the ASD library were used as standard to 
compare image reflectance spectra extracted using the two atmospheric correction models. The 
ground control points collected during the ground truth investigation were used to locate the exact 
pixel in the image which corresponds to the respective sample location. The image spectra for all 
the major sampling locations were generated similarly and saved in spectral library. 

 

 

Image spectra of vegetation pixel
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3.13 Hyperspectral Processing for mineral mapping 
 

Mineral targeting using hyperspectral data is now a proven fact internationally thought it 
is yet to take off in full fledged manner in India because of the non –availability of such data. 
Hyperspectral remote sensing combines imaging and spectroscopy in a single system which often 
includes large data sets and requires new processing methods. Hyperspectral data sets are 
generally composed of about 100 to 200 spectral bands of relatively narrow bandwidths (5-10 
nm), whereas, multispectral data sets are usually composed of about 5 to 10 bands of relatively 
large bandwidths (70-400 nm). The increase in the number of bands is both a blessing and a 
curse. The large number of bands provides the opportunity for more materials to be discriminated 
by their respective spectral response. However, this large number of bands is the characteristic 
which leads to complexity in analysis techniques. The techniques described in the following 
sections are those which are widely used by the USGS, NASA's Jet Propulsion Laboratory, 
ENVI, and others. There are, however, other methods and algorithms to extract information from 
hyperspectral sensors.  

One difficulty in working with hyperspectral data is to understand the differences 
associated with working in n-dimensional space. One must be careful about using two or three 
dimensional conceptual truths as a basis for conclusions in higher dimensional spaces (Langrebe, 
1997). AIG has developed standard methods for analysis of hyperspectral data. The Hyperion 
data were processed to geologic products using AIG developed approaches for extraction of 
mineralogical and geological information. This hyperspectral analysis methodology includes 1) 
Data Pre-processing, 2) Correction of data to apparent reflectance using the atmospheric 
correction software, 3) Linear transformation of the reflectance data to minimize the noise and 
data dimensionality, 4) Location of the most spectrally pure pixels, 5) Extraction and automated 
identification of endmember spectra, 6) Spatial mapping and abundance estimates for specific 
image endmembers. A key point of this methodology is the reduction of data in both the spectral 
and spatial dimensions to locate, to characterize, and identify a few key endmember spectra that 
can be used to explain the rest of the hyperspectral data set. Once these endmembers are selected, 
then their location and abundance can be mapped from the original data set. These methods 
derive the maximum information from the hyperspectral data, themselves minimizing the reliance 
on a priori or outside information (Kruse, 2002). 

 

 
 
 
 
 
 
 
 
 
 

 
 
         Figure 3.11 Methodology for mineral mapping using spectral analysis 
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Hyperspectral processing for mineral mapping includes the spectral processing and 
manipulation of the Hyperion data set with the correspondence to the geology of the study area. 
As it is observed in the nature, there are n-numbers of materials randomly distributed over the 
earth surface. Imaging space borne satellites acquire the information about the earth materials in 
different ranges of electromagnetic spectrum (spectral resolution) with certain amount of energy 
coming out of a specific area (spatial resolution) in a particular direction. Depending upon the 
spatial and spectral resolution of the imaging sensors the spectral information was modified in the 
images. Several techniques were applied for the differentiation of the materials based on their 
spectral variability present in the image. Pure endmembers were selected from the image on the 
basis of field observation in the area.  
 
3.13.1 Process of selection of image end members 
 
3.13.1.1 Creation of Minimum Noise Fraction (MNF) image 
 

Hyperspectral imagery is capable of providing a continuous spectrum ranging from 0.4 to 
2.5 microns (in the case of AVIRIS) for a given pixel, it also generates a vast amount of data 
required for processing and analysis. Due to the nature of hyperspectral imagery (i.e. narrow 
wavebands), much of the data in the 0.4-2.5 micron spectrum is redundant.  
The minimum noise fraction (MNF) transformation is used to determine the inherent 
dimensionality of image data, to segregate noise in the data, and to reduce the computational 
requirements for subsequent processing (Boardman and Kruse, 1994). The MNF transform is 
essentially two cascaded Principal Component transformations. The first transformation, based on 
an estimated noise covariance matrix, de-correlates and rescales the noise in the data. This first 
step results in transformed data in which the noise has unit variance and no band-to-band 
correlations. The second step is a standard Principal Components transformation of the noise-
whitened data (Green et. al., 1985). For the purposes of further spectral processing, the inherent 
dimensionality of the data is determined by examination of the final eigen values and the 
associated images. The data space can be divided into two parts: one part associated with large 
eigenvalues and coherent Eigen images, and a complementary part with near-unity eigen values 
and noise dominated images. By using only the coherent portions, the noise is separated from the 
data; thus improving spectral processing results. The MNF transform can also be used to remove 
noise from data by performing a forward transform, determining which bands contain the 
coherent images (by examining the images and eigen values), and running an inverse MNF 
transform using a spectral subset to include only the good bands, or smoothening the noisy bands 
before the inverse. 
 

Minimum Noise Fraction images created for the 196 unique bands of hyperion in the 
present study for both the study areas extracted around 20 bands with the maximum information. 
The remaining bands contain maximum noise. Hence the first 20 bands were used for further 
processing and finding out pure pixels in the image. 
 
3.13.1.2 Pixel Purity Index 
 

The Pixel Purity Index (PPI) is a means of finding the most “spectrally pure” or extreme 
pixels in the multispectral and hyperspectral images (Boardaman et al., 1995). The most 
spectrally pure pixels typically correspond to mixing endmembers. The Pixel Purity Index is 
computed by repeatedly projecting n-dimensional scatterplots onto a random unit vector. The 
extreme pixels in each projection are recorded and the total number of times each pixel is marked 
as extreme is noted. A “Pixel Purity Image” is created in which the digital numbers in each pixel 
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corresponds to the number of times that pixel was recorded as extreme. The PPI is typically run 
on a Minimum Noise Fraction (MNF) transform result excluding the noise bands.  
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Figure 3.12 Methodology for endmember selection 
 

In this study, number of iterations with different threshold limit was carried out 
interactively to isolate the position of most pure pixels in the image. A threshold of three was 
fixed for the identification of pure pixels in the image which can be explained as, all the pixels 
having 3 DN values (maximum limit) greater than the extreme pixel is considered as being pure. 
Different sets of iterations 50, 100, 500 and 1000 were carried out on this dataset with keeping 
the threshold at 3. It was observed that more the number of iterations more the number of extreme 
pixels found with more variability in the dataset. The value in the Pixel Purity Index image 
indicates the number of times each pixel was discovered as extreme in some projection. The 
higher values in PPI image indicate pixels that are nearer “corners” of the n-dimensional data 
cloud, and are thus relatively purer than the pixels with lower value. In the last step one region of 
interest (ROI) was created for the PPI image keeping the minimum threshold limit at 5, after 
comparing the pixel purity index image with calibrated image to get a better idea about the 
position of the pure pixels.  
 
3.13.1.3  Using PPI images in a n-dimensional visualiser for endmembers collection 
 

Spectra can be thought of as points in an n-dimensional scatterplots, where n is the 
number of bands. The coordinates of the points in n-space consist of “n” values that are simply 
the spectral radiance or reflectance values in each band for a given pixel. The distribution of these 
points in n-space can be used to estimate the number of spectral endmembers and their pure 
spectral signatures. The n-Dimensional visualizer provides an opportunity for interactive 
selection of the endmembers in n-space. The n-D visualizer is used in conjunction with the 
Minimum Noise Fraction Transform (MNF) and Pixel Purity index (PPI) tools to locate, identify 
and cluster the purest pixels and most extreme spectral responses in a data set. The n-Dimensional 
visulizer allows for interactive rotation of data in n-D space, selection of groups of pixels into 
different classes (Boardman, 1993; Boardman and Kruse, 1994). Here in this study this procedure 
was followed to isolate different group of pixels representing different endmembers. Several 
groups of pixels were isolated mostly projected at the corners of the scatter plot or completely 
isolated in the interactive scatterplots. The selected classes were exported to Region of Interest 
(ROI) and used as input for further spectral processing. 
 

MNF transferred data Discard low MNFs 

Fixing threshold and  
Maximizing iterations 

PPI Results Evaluation and threshold 
PPI to Region of Interest 
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3.14 Mineral Mapping Techniques  
 

Classification and feature extraction methods have been commonly used for many years 
for the mapping of minerals and vegetative cover of multispectral data sets. However, 
conventional classification methods, such as a Gaussian Maximum Likelihood algorithm, cannot 
be applied to hyperspectral data due to the high dimensionality of the data. Several mapping 
techniques were applied in the present study to map the abundance of minerals present in the two 
study areas.  
 
3.14.1 Band Rationing 
 

Ratio transformation is another technique of extracting information from highly 
correlated dataset. The major advantage of ratio images is that they convey the spectral or colour 
characteristics of image features regardless of variations in scene illumination condition. Ratio 
images are often useful for discriminating subtle spectral variations that are masked by the 
brightness variations in individual spectral bands. Ratio images are created by calculating the 
ratios of DN values from two image bands and mathematically it can be expressed as 
 

RDNij = DNi/DNj 
Where DN is the intensity in the ith and jth channel of the satellite images and RDN is the ratio 
value in the resulting images. The ratio image range from 0 to infinity and shows the variations in 
the slope of spectral reflectance curves between two bands involved. The most commonly used 
band ratios and their target minerals are given in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.13 Various band ratios and their applications 
 

The correlation between ratio images are lower than the correlation between the original 
LISS IV images resulting from the reduction of a wide range of DNs to a single RDN. The source 
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of variation which can be attributed to illumination differences in the scene, is reduced after 
rationing, which means that the spectral shape become proportionally more important. However, 
reducing variance due to illumination also implies that additive noise as well as effects of 
multiple reflections and atmospheric scattering will be exaggerated in ration images (Van der 
Meer, 1995). 
 
3.14.2 Spectral Angle Mapper Classification 
 

The Spectral Angle Mapper Classification (SAM) is an automated method for directly 
comparing image spectra to a reference (usually determined in a lab or in the field with a 
spectrometer) or an endmember. This method treats both (the questioned and known) spectra as 
vectors and calculates the spectral angle between them. This method is insensitive to illumination 
since the SAM algorithm uses only the vector direction and not the vector length. The result of 
the SAM classification is an image showing the best match at each pixel. This method is typically 
used as a first cut for determining the mineralogy and works well in areas of homogeneous 
regions. The USGS maintains a large spectral library, mostly composed of mineral and soil types, 
which image spectra can be directly compared. 
 

The spectral angle mapper (SAM) has been widely used as a spectral similarity measure. 
It calculates spectral similarity between the reference reflectance spectrum (ASD spectrum) and 
the test spectrum (image spectrum). The angle between two spectra is used as a measure of 
discrimination (equation 5-1). The spectral similarity between the image spectrum (t) and 
reference spectrum (r) can be expressed as an average angle (θ) between the two spectra for each 
channel (i) (Van der Meer and De Jong, 2003). 
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The result of SAM is an angular difference measured in radian ranging from zero to π/2 which 
gives a qualitative estimate of similarity between image spectrum and ASD spectrum (Van der 
Meer and De Jong, 2003). Small spectral angle values correspond to high similarity between 
image spectra and ASD spectra. Larger angle values correspond to less similarity.   
 
3.14.3 Mixture Tuned Matched Filtering 
 

Mixture tuned matched filtering (MTMF) performs a partial unmixing- finding the 
abundances of user defined endmembers. Not all of the endmembers in the image need to be 
known. This technique maxmises the response of the known endmember and suppresses the 
response of the composite unknown background, thus “matching” the known signature. The 
matched filtering results will appear as a series of gray-scale images with values ranging from 0.0 
to 1.0 (zero to one). This image provide a means of estimating relative degrees of match to the 
reference spectrum and approximate sub-pixel abundance, where 1.0 is a perfect match with the 
reference spectrum and 0.0 is no match situation. It provides a rapid means of detecting specific 
materials based on matches to library or image endmember spectra and does not require 
knowledge of all the endmembers within the image scene. This technique may find some “false 
positives” that shows high values in terms of matching score for rare materials which is taken 
care of by an output “infeasibility” image to the results. The infeasibility image is used to reduce 
the number of “false positives” that are sometimes found using matched filtering technique. 
Pixels with a high infeasibility are likely to be matched filter false positives. Correctly mapped 
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pixels will have a high matched filter score and a low infeasibility value where as Pixels with a 
high matched filter result and high infeasibility are “false positive” pixels and do not match the 
target. The infeasibility values are in noise sigma units which vary in digital number scale with 
matched filter score and indicate the feasibility of the matched filter results (Harsanyi & Chang, 
1994; Chen & Reed, 1987). 
 

Mixture Tuned Matched Filtering technique combines the best part of the linear spectral 
unmixing model and the statistical matched filter model while avoiding the drawbacks of each 
model. From matched filtering it inherits the advantage of its ability to map a single known target 
without knowing the other background  endmember signatures, unlike traditional spectral mixing 
models. From spectral mixture modeling it inherits the leverage arising from the mixed pixel 
model, the constraint on feasibility including the unit sum and positively requirements unlike the 
Matched Filter which does not employ these fundamental facts (Boardman, 1995). Hence this 
method can out perform either method in case of subtle, sub-pixel occurrences.  
 
3.14.4 Linear spectral unmixing 
 

Linear Spectral Unmixing is a means of determining the relative abundances of materials 
depicted in multispectral imagery based on the materials spectral characteristics. The reflectance 
at each pixel of the image is assumed to be a linear combination of the reflectance of each 
material (or endmember) present within the pixel. There are certain limitations that apply for the 
linear spectral unmixing technique. The number of endmembers must be less than the number of 
spectral bands and all of the endmembers in the image must be used for an efficient mapping 
result. Spectral unmixing results are highly dependent on the input endmembers and changing the 
endmembers will change the results.  
 

A unit-sum constraint in the linear Mixing algorithm was applied in this study where the 
score varies between zero and one. This was implemented to allow for user-defined weighting of 
a sum-to-unity constraint on the abundance fractions. It also permits proper unmixing of MNF-
transform data, with zero-mean bands. The weight factor, a default value of one is used for the 
extra constraint equation. This weighted unit-sum constraint is then added to the system of 
simultaneous equations in the unmixing inversion process (Boardman, 1989; 1992).  
 

Linear spectral unmixing images produced for this area show similar feature like the 
MTMF images. As this model gives information about the relative abundances of the material 
considering each endmember present in a pixel. In this study we have chosen all the major 
endmembers which best describes the image, which are discussed in detail in the next chapter. 
 
3.14.5 Spectral Feature Filtering 
 

Spectral feature fitting is an absorption-feature based methodology for comparing the fit 
of the image spectra to selected reference spectra using least squares technique. The reference 
spectra are scaled to match the image spectra after continuum removal from both data sets. A 
scale image is output for each reference spectrum and is a measure of absorption feature depth, 
which is related to material abundance. The image and reference spectra are compared at each 
selected wavelength in a least-squares sense and the root mean square error (rms) is determined 
for each reference spectrum (Clark et al., 1990). 
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3.14.6 Band Absorption Depth Analysis 

When light interacts with a mineral or rock, light of certain wavelengths is preferentially 
absorbed while at other wavelengths it is transmitted or reflected from the substance. Reflectance 
is defined as the ratio of the intensity of light reflected from a sample to the intensity of the light 
incident on it. Electronic  and charge transfer processes e.g., changes in energy states of electrons 
bound to atoms or molecules associated with transition metal ions such as Fe, Ti, Cr, etc., 
determine largely the position of diagnostic absorption features in the visible- and near-infrared 
wavelength region of the spectra of minerals (Van der Meer and De Jong, 2003). Band 
positioning and absorption analysis have been successfully attempted in Airborne Visible and 
Infrared Imaging Spectrometer (AVIRIS) data for surface mineralogical information extraction 
(Van der Meer, 2004). This technique has been adopted in the present study for Udaipur and 
Orissa Hyperion dataset. 

A spectrum has two components, continuum and the absorption feature itself. The 
continuum is defined as a piecewise-linear envelope enclosing the radiance spectra.The 
continuum or background is the over all albedo of the reflectance curve. Removing the continuum 
effectively normalizes the spectra (Van der Meer, 2004). The modified spectra exhibit a flat 
background, but absorption features are retained. The flat background means no absorption 
feature. 

 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.14 Continuum and absorption parameters (Van der Meer, 2004) 

To carry out band absorption analysis three parameters (i) absorption band position, (ii) 
absorption depth and (iii) absorption band asymmetry have been proposed (Van der Meer, 2004). 
Figure 3.9 shows a schematic view of parameters used in the derivation of absorption 
characteristics. These parameters are derived from continuum removed spectra. Absorption band 
position is defined as the minimum reflectance value over the wavelength range. Absorption band 
depth is calculated relative to the continuum as 
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Where Rb is the reflectance at the band bottom and Rc is the reflectance of the continuum at the 
same wavelength. Estimation of absorption depth position provides useful information about the 
absorption feature that could be attribute to a mineral of interest. Absorption band asymmetry 
describes the shape of the absorption feature. The asymmetry factor is defined as 

right

left

A
A

S =     

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.15 Schematic representation of parameters used derive absorption characteristics (Van 
der Meer, 2004) 

The values of asymmetry range from 0 to infinity. Asymmetry value of 1 for symmetrical 
shape, value range greater than 1 for skewed shape towards longer wavelength and value range 
between 0 and 1 for skew towards shorter wavelength. 

The absorption parameter definitions assume spectra to be continuous. To mathematically 
implement the derivation of these parameters (equation 3-8 and 3-9) a linear interpolation is 
suggested for hyperspectral discrete spectral bands. The inputs required are identification of short 
wavelength shoulder (S2), longer wavelength shoulder (S1), Short wavelength absorption band 
location (A2) and long wavelength absorption location (A1). A linear relationship is established 
using four points to calculate coefficients C1 and C2 (equation 3-8 and 3-9) (Van der Meer, 
2004).  
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The absorption wavelength was mathematically be expressed as equation 3-12 (Van der Meer, 
2004). 
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The associated absorption-band depth was then derived using equation 3-14(Van der Meer, 
2004). 
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The asymmetry factor of the absorption feature was calculated using equation 3-16 (Van der 
Meer, 2004). 

Asymmetry = (absorption_wavelength-S2) – (S1 – absorption_wavelength) 

The derivation of the band positioning and absorption for Udaipur dataset were 
performed using ENVI-IDL script developed during the study. The parameters S1, S2, A1, and A2 
required for the band positioning and absorption analysis were derived from the Udaipur dataset 
for quartzite rock and Banded Hematite Jasper from the Orissa dataset.  

The output result for the entire mapping techniques used in the present study is discussed in the 
next chapter, results and discussions. 
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Chapter 4 
 

Results and Analysis 
 

This chapter discusses with the various results of this project. The results were attained at 
different levels, some during the pre-processing of the dataset and while others in the latter stage 
of the project work. Different methods as well as various permutations have been adopted in the 
study to obtain the best possible results. This led to so many results which helped us during the 
final interpretation directly and indirectly which ultimately facilitated the completion of this 
work.  
 
4.1 Band De-stripping 
 

Both global as well as local band stripping techniques were used in this study to remove 
the stripes present in the various bands of the Hyperion dataset. Both the de-stripping techniques 
were employed in this work and the local de-stripping came up with better result. These stripes in 
the bands resulted in spike or aberrations in the spectra. These aberrations neither represent any 
characteristic feature of the target under the study nor the atmospheric attenuations. They are due 
to the vertical stripes present in the various bands of the Hyperion dataset which can be attributed 
to the sensor incapability.  
 

The existing methods to identify the stripes use cumulative mean, variance, minimum and 
maximum of each pixel in each column. Detection of bad columns is carried out using set 
thresholds based on median values from its neighbourhood. The bad pixel is then replaced with 
the median value of its neighbourhood (Datt et al., 2003). The value of threshold is scene 
dependent and different for each band containing stripes. Setting up of the threshold is at the cost 
of changing the spectra. 
 

The missing line filter designed in the present study only targets the visually identified 
bad columns (section 3-1), other pixel values remain unchanged. Hence the filter has a local 
balancing effect on the image. Examination of difference between the level 1R product and de-
striped image indicates that the stripes in VNIR are removed and the image appears smooth. 
Figure 4.1 shows the effect of de-striping on the image and the corresponding DN values of one 
stripe on the image using the designed filter on the Hyperion datasets (as discussed in section 
3.2.1). Form the visual inspection of the two images there is an over all contrast difference 
between the two. This difference is mainly due to the change in image statistics resulting from the 
de-striping of bad columns.  
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Figure 4.1 Destriping results of Orissa datasets 
 
 

The destriping results are very well manifested in the resultant spectra. The comparison 
of spectras before and after destriping manifest remarkable improvement in the spectral 
smoothening which was primarily due to sensor incapability. The spikes or deep absorptions 
which are not characteristic of the target under study in both the datasets (Udaipur and 
Kheonjhar) were removed to a large extent by the process of destriping.  
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(a) (b)  
Figure 4.2 Destriping results; (a) before and (b) after 

 
The local balancing effect can also be seen on the image spectra. The image spectra 

improves after performing de-striping and spurious spikes in the VNIR region (300 to 700 nm) 
are reduced, while no change in the spectra is seen in SWIR region. Figure 4.2 (a), (b) illustrates 
spectra taken at bad column in level 1 R product and post de-striping processing (pixel 6, 1148). 
 

(a)
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(b)

 
Figure 4.3 Local balancing effect of de-striping on the image spectra taken over know bad 

column. The encircled region shows the region of improvement. (a) spectra of Level 1 R product 
(b) spectra after de-striping. 

 
4.2 Radiance Spectra 
 
The spectra extracted from Hyperion L1R dataset exhibits atmospheric gaseous absorption 
features. These absorptions can be observed in the spectral region from 400 to 2500 nm. The 
known absorption regions of the atmosphere are used here to identify the effects on image 
spectra. 

400 nm 700 1000 1300 1600 1900 2200 2200

 
 
Figure 4.4 Known absorption regions of atmospheric constituents (Griffin and Hsiao-hua, 2003). 
 

To understand the absorption regions in the radiance spectra radiance dataset of Udaipur 
was taken. A spectrum over vegetation was extracted to visually analyze the effects of the 
intervening atmosphere before the radiance image was subjected to atmospheric correction. 
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Figure 4.5 Radiance spectra of vegetation over Udaipur showing absorption features of oxygen, 
carbon di oxide. 

At 760 nm, a strong, narrow oxygen absorption line is present. CO2 is absorbed strongly 
from 1900 to 2055 nm. CO2 also exhibits a weak absorption line at 1430 nm. At 940 and 1140 
nm, water vapor absorption is strong and is used to derive the total column water vapor. Water 
vapor absorption near 1375 and 1900 nm is strong enough and makes retrieval of the surface 
reflectance difficult from the image. The water vapor has the largest effect on the radiance. 
Oxygen and other gases along with aerosols in the atmosphere also affect the radiance spectra. 
The atmospheric correction models include modeled atmosphere, aerosol models, water vapor 
retrieval and CO2 concentration as input parameters.  These input parameters along with image 
ratio methods adopted by the ATCOR and FLAASH to retrieve water vapor, CO2 for the image 
itself should compensate for these absorption regions. ATCOR and FLAASH both use 
MODRTAN and has out performed other radiative transfer code especially in the water region 
940 and 1130 nm and CO2 at  2055nm (Staenz et al., 2002). 
 
4.3 Atmospheric correction Results 
 

FLAASH as well as ATCOR2 atmospheric correction models were applied on both the 
datasets. This section discusses the results achieved by atmospheric correction using both the 
models. 

Table 4-1 ATCOR and FLAASH input parameters applied on radiance images of Udaipur and 
Kheonjhar, Orissa dataset 

ATCOR2  FLAASH  
Parameters Udaipur Orissa Parameters Udaipur Orissa 
Sensor type Hyperion Hyperion Sensor type Hyperion Hyperion 
Pixel size 30 30 Pixel size 30 30 
Ground 
elevation 

0.6 km 0.65 km Ground 
elevation 

0.6 km 0.65 km 
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ATCOR2  FLAASH  
Parameters Udaipur Orissa Parameters Udaipur Orissa 
Solar Zenith 
angle 

37.214824º 38.450226º Scene centre 
Lat/Long 

24.6º N,  
73.7º E 

21.7º N,  
85.4º E 

Visibility 40 km 40 km Visibility 40 km 40 km 
Sensor 
altitude  

un-editable un-editable Sensor altitude 703.3166 
km 

707.3276 km 

Flight date 19/01/2004 16/01/2006 Flight date & 
flight time 

19/01/2004 
5:22:17 

16/01/2006 
4:33:49   

Atmospheric 
file 

hyperion.cal hyperion.cal - - - 

Atmospheric 
model 

h99000_ 
wv10_rura 

h99000_ 
wv10_rura 

Atmospheric 
model 

Tropical Tropical 

Adjacency 
range 

1 km 1 km - - - 

Zones 0.5 0.5 Aerosol model Urban Tropical 
Region for 
water vapour 

940 to1130 940 to1130 Water vapour 
retrieval 

1135 nm 1135 nm 

- - - Spectral 
polishing 

No No  

Water 
vapour 
absorption 

Yes Yes Wavelength 
calibration 

Yes Yes 

Haze 
removal 

Yes Yes Advanced 
parameters 

  

Reflectance 
scale factor 

100 100 Output 
reflectance 
scale factor 

10000 10000 

- - - MODTRAN 
resolution 

15 cms-1 15 cms-1 

- - - MODTRAN 
multi 
scattering 
model 

Scaled 
DISORT 8 
Stream 

Scaled 
DISORT 8 
Stream 

Reality 
spectra 
booster 

Yes Yes - - - 

CO2 (un-
editable) 

360 ppm 360 ppm CO2 (user 
defined) 

390 ppm 390 ppm 

 
The FLAASH atmospheric correction model provides more options to the user than the 

ATCOR2 models which shows a direct bearing on the reflectance spectra. The option of user 
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defined sensor height is an addition in FLAASH. ATCOR2 establishes sun-sensor geometry on 
the basis on solar zenith angle and un-editable sensor height (defined as 705 km in hyperion.cal 
file). To accommodate for adjacency effect FLAASH allows selection of MODTRAN resolution 
and MODTRAN multiple scattering model. These settings can objectively be selected based on 
the variability in terrain conditions (uniformity or varying landuse). User defined CO2 
concentration level is also a useful input variable to be defined by the user in FLAASH, as the 
CO2 levels varies with the presence of dense urban and industrial area in the scene. In ATCOR 
model CO2 level is set at default 360 ppm and is un-editable. These differences that the model 
provides to the user helps in better radiative transfer model results. The results from the two 
atmospheric correction models were compared. The vegetation and water spectra are used for this 
purpose. The conventional absorption depths as well as reflectance peaks were analyzed to 
understand the performance of the two radiative transfer models. 
 
4.3.1 Vegetation spectra 

Reflectance properties of vegetation in the VNIR and SWIR part of the spectrum are 
dominated by the strong atmospheric absorption regions and absorption properties of the 
chlorophyll a and b pigments. The image spectra extracted from ATCOR and FLAASH exhibit 
no significant absorption at wavelengths 1900 and 2100 nm, indicating that, CO2 input of 390 
ppm (default being 320) was sufficient to compensate for CO2. Narrow absorption at 760 nm 
corresponding to O2 is compensated by both the models, as no significant dip is seen in the 
spectra. Pigments in vegetation show absorption at 640 and 660 nm. The shape of the absorption 
feature is clearly seen in the FLAASH extracted spectra Figure 4-(a), (b). Similar observation 
have also been reported on HYDICE image corrected using FLAASH (Griffin and Hsiao-hua, 
2003) (Datt et al., 2003). Spurious peaks in both the spectra at 940 nm indicated the strong water 
absorption is under estimated by both models, this signifies that stronger water absorption region 
at 1140 nm is over estimated and is seen as sharp dip at 1124 nm and 1146 nm in ATCOR and 
FLAASH, respectively. Earlier studies have shown similar results using FLAASH (Griffin and 
Hsiao-hua, 2003). The difference in the positions of the water vapour absorption could be 
attributed to the process of treating the water vapour in the two models. The approach by ATCOR 
is based on the differential absorption method, using the water absorption bands from the image; 
whereas in FLAASH water vapour is extracted using three image band ratio methods in 
combination with a spectral weighted average. 
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Figure 4-6 Atmospherically corrected vegetation Spectra of Udaipur (a) ATCOR corrected (b) 
FLAASH corrected 
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Reflectance from vegetation is dominated by the green leaf interaction with the EMR. ATCOR 
and FLAASH exhibit clear diagnostic dips at 660 and 668 nm which corresponds to the presence 
of chlorophyll-b in the healthy leaves (Van der Meer and De Jong, 2003). Shape of the red 
absorption in ATCOR extracted spectra indicate over estimation it is correctly estimated by 
FLAASH. Similar results were reported in FLAASH corrected Hyperion datasets (Griffin and 
Hsiao-hua, 2003). Cellulose causes absorption at 2280 nm in spectra derived from both the 
models. A diagnostic absorption dip is also seen at 2062 and 2064 nm, which corresponds to the 
presence of protein and nitrogen in the leaves in ATCOR and FLAASH, respectively.  

4.3.2 Water spectra 
 

Water bodies have a different response to EMR than water bound-up in molecules in that 
they do not exhibit discrete absorption features. Water has a high transmittance for all visible 
wavelengths, but the transmittance increases with decreasing wavelength. However, suspended 
material and pigments cause increased reflectance in the visible region (Van der Meer and De 
Jong, 2003). In the near infra red and in SWIR all EMR is absorbed by water. FLAASH and 
ATCOR corrected spectra exhibits spurious spikes in 1900 to 2500 nm wavelengths indication 
over estimation of water vapour absorption (Figure 4-(a) and (b)). Similar observations have been 
reported in SWIR region (Kruse, 2003). 
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Figure 4-7  Atmospherically corrected waterbody spectra of Udaipur (a) ATCOR corrected (b) 
FLAASH corrected 

This visual analysis of the atmospherically corrected spectra extracted from ATCOR and 
FLAASH indicate that the over all shapes of the vegetation and water considered here, match 
very well with each other. However the spectra still has spurious spikes in SWIR region that can 
not be attributed to any specific feature on ground.  
 
4.3.3 Validation of Radiative Transfer Models 
 

Since two models have been used in the present study, it is very important to estimate 
their comparative performance. The result from the better performing model can be taken up for 
further analyzis and mapping. Three statistical parameters were used to validate the performance 
of the two models. Techniques based on image ratio and difference such as Spectral Angle 
Mapper (SAM), Euclidean Distance (ED), Normalized Euclidian Distance (NED) provide useful 
information on spectral similarity between reference and test spectra. 
 

The spectral angle mapper (SAM) has been widely used as a spectral similarity measure. 
It calculates spectral similarity between the reference reflectance spectrum (ASD spectrum) and 
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the test spectrum (image spectrum). The angle between two spectra is used as a measure of 
discrimination. The spectral similarity between the image spectrum (t) and reference spectrum (r) 
can be expressed as an average angle (θ) between the two spectra for each channel (i) (Van der 
Meer and De Jong, 2003). 
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The result of SAM is an angular difference measured in radian ranging from zero to π/2 

which gives a qualitative estimate of similarity between image spectrum and ASD spectrum (Van 
der Meer and De Jong, 2003). Small spectral angle values correspond to high similarity between 
image spectra and ASD spectra. Larger angle values correspond to less similarity. 
 

Another popular spectral similarity measure is Normalized Euclidean distance (NED), 
which is also being used to calculate the distance between two spectra as a spectral similarity 
measure. The Euclidean distance between n-dimension spectra (x) and (y) is given in the equation 
below. 

( ) ( )
2

1
, ∑

=

−=
n

i
ii yxyxe  

The values of ED are positively defined and do not lie within a set range. As  Normalized 
eucledian distance values are invariant to scalar multiplication, NED gives a better scaled 
measure for comparison (Robila and Gershman, 2005). Their equation is given below. 
 

xxNx /=  
 

( )yxyx NNeNED ,, =  
The standard range of SAM calculated is 0 to 90. Lower the angle more is the similarity. 

The SAM values are rescaled between 0 and 1 in ENVI. The expected NED value ranges from 0 
to 1 and is rescaled to 0 to 10 returns a very low value. ED values are positively defined and do 
not fall within as set interval. The larger number of bands leads to larger value for the distance 
(Robila and Gershman, 2005). The spectral angle is relatively insensitive to changes in 
brightness, whereas the normalized values of ED that is NED takes into account the brightness 
difference between the two vectors, thus giving a better estimate of spectral similarity. The 
Normalized Euclidean Distance (NED) derived from the Euclidean distance between the 
reference spectra and image spectra, outperforms most of the measures currently in used.(Robila 
and Gershman, 2005). SAM and NED values are not specified in value range, value of 0 indicates 
a perfect match and higher values indicate greater dissimilarity. 
 
4.3.3.1 Spectra Matching Analysis 
 

Use of NED as a spectral similarity measure has been strongly proposed for target 
detection and has been observed to out perform existing similarity measures. Owing to its 
computational simplicity and accuracy of results based on target detection experiments using 
HYDICE (Robila and Gershman, 2005) this measure is chosen for comparing ATCOR and 
FLAASH extracted spectra with the standard reference spectra. The ASD field spectra of 10 
samples from Udaipur were re-sampled to Hyperion band width and were taken as input reference 
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spectra for the calculation of the spectral similarity measures that is SAM and NED. Table 4.2 
shows the SAM and NED for each of the corresponding pixels of the 10 field samples for both 
the ATCOR as well as FLAASH processed images. Although the average SAM value (0.2015) 
for ATCOR processed image is smaller than the average SAM value (0.2919) for the FLAASH 
processed image, it is can not be decisively stated that the ATCOR model performs better than 
FLAASH model. The reason for this is that the spectral angle is relatively insensitive to changes 
in brightness (Robila and Gershman, 2005). Also much spectral class confusion have been 
reported while considering SAM as a similarity measure (Van der Meer, 2006). On comparing the 
average NED values for ATCOR and FLAASH processed images, it is seen that FLAASH 
performs better than the ATCOR because the average NED value for FLAASH is 0.7446 which is 
less that the average NED value for ATCOR (2.79). Since NED values takes into account the 
brightness difference between the two vectors, thus giving a better estimate of spectral similarity 
(Robila and Gershman, 2005) it can be inferred from this analysis that FLAASH out performs 
ATCOR in the case of the Udaipur data set. 

Table 4.2 Values of spectral measures calculated for ACTOR and FLAASH corrected images for 
Udaipur 

Sample code SAM ATCOR SAM FLAASH NED ATCOR NED FLAASH 
1 0.2086 0.2625 4.1537 1.1014 
2 0.2601 0.3308 1.6669 0.4109 
3 0.2007 0.2853 1.1567 0.4242 
4 0.3302 0.5111 3.7595 1.1763 
6 0.0902 0.2095 3.7743 0.7764 
7 0.1801 0.2763 1.57 0.3679 
8 0.1934 0.2581 3.9349 0.9057 
9 0.1803 0.2519 3.2694 0.8549 
12 0.1338 0.2322 0.8805 0.4836 
13 0.2385 0.3019 3.7696 0.945 
Average 0.2015 0.2919 2.79 0.7446 
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Figure 4.8 SAM (a) and NED (b) values for FLAASH and ATCOR models for Udaipur dataset 
 
Expected ranges of values for SAM are 0 to 1 and for NED 0 to 10. Lower the value more is the 
similarity to the ASD reference spectra. 
 

The ASD field spectra of 11 samples from Orissa were re-sampled to Hyperion band 
width and were taken as input reference spectra for the calculation of the spectral similarity 
measures such as SAM and NED. The average SAM value (0.1472) for the ATCOR processed 
image is lower than the SAM value (0.2086) for the FLAASH processed one, which explains that 
the ATCOR atmospheric correction model had performed better than the FLAASH model. 
Similarly the average NED value (1.0934) for the FLAASH processed image is much lower than 
the average NED value (3.096) for ATCOR processed image which reflects the better 
performance of the FLAASH model when compared to that of the ATCOR model.   
 
 
Similarly the spectral matching measures for Orissa hyperion data set have been calculated for 
ATCOR and FLAASH results and given below. 
Table 4.3 Values of spectral measures calculated for ACTOR and FLAASH corrected images for Orissa 

Sample code SAM ATCOR SAM FLAASH NED ATCOR NED FLAASH 
1 0.1043 0.1669 4.2357 1.6843 
2 0.1625 0.2293 1.7143 0.4939 
3 0.2014 0.2785 2.5764 1.4460 
4 0.2142 0.2560 3.9872 1.4016 
5 0.1419 0.2024 4.3851 1.4218 
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Sample code SAM ATCOR SAM FLAASH NED ATCOR NED FLAASH 
6 0.1651 0.2252 2.8923 1.4336 
7 0.1623 0.2218 4.2357 1.0837 
8 0.0923 0.1514 2.3416 0.4016 
10 0.0904 0.1438 2.8545 1.1049 
11 0.1347 0.1866 2.1816 0.7883 
Average 0.1472 0.2086 3.096 1.0934 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.9 SAM (a) and NED (b) values for FLAASH and ATCOR models for Orissa dataset  

 
 
The results show that the FLAASH atmospheric correction model had given much better 

results when compared to that delivered by the ATCOR2 model. As a result of this the reflectance 
image retrieved for the FLAASH model has been used for the further spectral analysis and  
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mineral abundance mapping. The choice of the two results is very much subjective to the kind of 
study aimed at. FLAASH results are preferred for the mineral targeting where as for the 
absorption depth analysis the ATCOR2 results are more useful. 

 
 

4.3.4 ASD Reference Spectra 
 

The samples collected during field investigation have been used to generate the 
reflectance spectra using Analytical spectral device (ASD). These spectras from both the study 
areas have been inturn used as reference spectra for the above mentioned spectral matching 
analysis. The 10 spectras from Udaipur and 11 spectras from Orissa have been used to generated 
the reference spectral library.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10 (a) Primary ASD spectra of the samples from Udaipur and (b) resampled spectra 
 
 
 
 
 

a
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4.4 Spectral Polishing 
 

The spectra generated by the atmospheric correction model need to be optimized for their 
slight aberrations present here and there. As mentioned earlier they are not indicators of any 
intrinsic characteristics or properties of the object or target sensed. Hence it is advisable to 
remove these artifacts from the spectra using the EFFORT algorithm incorporated in the ENVI 
software. This results in smooth spectra which do not remove any specific absorption depths or 
reflectance peaks of the target specific spectra. 

 
Figure 4.11 Unpolished and polished reflectance spectra 

4.5 Spectral Analysis Results 
 
4.5.1 Band Rationing Results 
 

The band rationing technique was applied for both the LISS IV satellite dataset. For 
mineral mapping ratio images were prepared using the LISS 4 images of both the study areas. 
They were prepared by dividing the digital number (DN) in one band by the corresponding DN in 
another band for each pixel, stretching the result value and plotting the new values as an image. 
This method is used by (Weissbrod et al. 1985; Cappiccioni et al. 2003; Edgardo 1992) to extract 
spectral information from multi-spectral imagery. The ratio of LISS 4 band 2 and band 3 (2/3) 
renders most of the area in rather dark gray or bright grey, which corresponds to zones of strong 
hematitic alteration. The Spectral response of the weathered iron minerals has weak reflectance in 
the blue region (band2) and strong reflectance in the red region (band 3), so the ratio 2/3, which 
has high values can be used for iron oxide mapping in Orissa area.  
 

Absorption caused by kaolinite, montmorillonite and clay minerals results in low 
reflectance in band 1 and high reflectance in band 2. So, the ratio image 2/1 would have bright 
signatures for clay minerals in udaipur study area. The ratio images of the both the study areas are 
given in figure 4.38 and 4.39 
 
4.5.2 Minimum Noise Fraction Results 
 

As explained in section 3.13.1.1 MNF transformation is used to reduce the 
dimensionality of the hyperspectral dataset by segregating the noise in the data. The MNF 
transform is a linear transformation which is essentially two cascaded Principal Component 
Analysis (PCA) transformations.  
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Forward MNF transformation has been run on both the Hyperion datasets of Orissa and 
Udaipur. Several trials of Minimum Noise Fraction transformation have been run to obtain the 
optimum results. The first 20 eigenvectors were chosen for both the datasets and the rest of them 
were more noise prone hence discarded from further spectral analysis.  
 
The selected eigenvectors and eigenvalues are shown below that have been determined for the 
Orissa dataset. 
 
MNF   Eigen value   Percent 
 
   1       28.4522           7.93% 
   2       23.3915         14.46% 
   3       19.1074         19.78% 
   4       14.1012         23.72% 
   5        7.6645          25.85% 
   6        7.2164          27.87% 
   7        5.5410          29.41% 
   8        4.6323          30.70% 
   9        4.3808          31.92% 
  10       4.1776          33.09% 
  11       3.3874          34.03% 
  12       3.2665          34.94%                                     
  13       3.1631          35.83% 
  14       2.8790          36.63% 
  15       2.6532          37.37%          
  16       2.6452          38.11% 
  17       2.5597          38.82%                           Figure 4.12 MNF Eigen value plot for Orissa 
  18       2.4663          39.51%                    
  19       2.4397          40.19% 
  20       2.3799          40.85% 
                                                                                                                                                                                                          
Similarly the Minimum Noise Fraction (MNF) for the Udaipur dataset was also estimated. The 
resultant Eigen values and their percentages are given below.  
 
MNF   Eigenvalue       Percent 
 
   1        129.0848          29.76% 
   2          23.0186          35.06% 
   3          12.4663          37.94% 
   4            8.1733          39.82% 
   5            7.1416          41.47% 
   6            6.5286          42.97% 
   7            5.3989          44.22% 
   8            5.1247          45.40% 
   9            3.9245          46.30% 
  10           3.5608          47.12% 
  11           3.4748          47.93% 
  12           3.4215          48.71% 
  13           3.0756          49.42% 
  14           2.9336          50.10%                 Figure 4.13 MNF Eigen value plot of Udaipur dataset 
  15           2.6197          50.70%                                    
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  16           2.4534          51.27%                     
  17           2.3512          51.81%                 
  18           2.2905          52.34% 
  19           2.2153          52.85%                    
  20           2.1993          53.36%                   
 
4.5.3 Pixel Purity Index 
 

The pixel purity index image was determined on the MNF image for both the Orissa and 
Udaipur datasets. The number of iterations was chosen as 10000 with 250 iterations per block, 
given a threshold of 3. The threshold were changed and tested on various MNF images of both 
the hyperion datasets. The threshold value of 3 has given the best results and it has been chosen 
for further selection of the region of interests (ROIs). 

 
4.5.4 Endmembers Selection 
 

The endmember needs to be selected for the abundance mapping using various mapping 
methods such as Linear Spectral Unmixing (LSU), Spectral Angle Mapper (SAM), Mixed Tuned 
Matched Filtering (MTMF), Matched Filtering etc. The various endmembers are chosen with 
respect to their relevance in the study area. For both the Udaipur and Orissa, the geologically 
relevant features are chosen as endmembers.  

 
In the Orissa study area, all the relevant topographic features are clustered in the N-

Dimensional visualizer and demarcated as separate region of interests and saved. These ROI’S 
were used for the further mapping using various techniques. The endmembers clustered in the 
Orissa study area are as follows. 

 
1. Water 
2. Vegetation 
3. Hematite ore 
4. Mine tailings 
5. Alluvium. 

 
The study area is a reserve forest and has the largest cluster of mines in India. The area doesn’t 
have any rock exposures. For accurate mapping using linear spectral mapping, all the land 
features need to be extracted.  
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Figure 4. 14 Endmember selection in N-Dimensional visualizer (Orissa) 
                                
 
 
 
 
 
 
 
 
 
 
           
 

 
 
 

 
Figure 4.15 Endmember spectra collected from Orissa hyperion dataset 

 
4.6 Characteristics of endmembers of Orissa dataset 

 
 The spectral as well as the mineralogical aspect of each endmember demarcated 
from the N-Dimensional visualizer is discussed in the below section. 

OVERBURDEN

HEMATITE 

ALLUVIUM 
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4.6.1 Hematite 
 
 Hematite, also spelled as Haematite, is the mineral form of iron oxide (Fe2O3). 
Hematite crystallizes in the rhombohedral crystal system. Hematite is a very common mineral, 
colored black to steel or silver-gray, brown to reddish brown, or red. It is mined as the main ore 
of iron. Hematite is harder than pure iron, but much more brittle.The name hematite is derived 
from the Greek word for blood (haima) because hematite can be red, as in rouge, a powdered 
form of hematite. The color of hematite lends it well in use as a pigment. Clay-sized hematite 
crystals can also occur as a secondary mineral formed by weathering processes in soil, and along 
with other iron oxides or oxyhydroxides such as goethite, is responsible for the red color of many 
tropical, ancient, or otherwise highly weathered soils. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.16 Hematite spectra from USGS spectral library 
 

The hematite spectra have certain diagnostic absorption depths. The absorption depth at 0.87 µm 
is the most characteristic of hematite. This absorption depth is also seen in the image spectra of 
the Orissa dataset. This absorption depth at 0.87 µm is basically due to the crystal field effect of 
transition element “Fe”.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.17 Hematite Spectra from hyperion image 
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4.6.2 Alluvium 
 
Spectral reflectance characteristics of soils are the result of their physical and chemical 

properties and are influenced largely by the compositional nature of soils in the main components 
are inorganic solids, organic matter, air and water. During the field investigation it was noticed 
that the alluvium present in the study area are mainly derived from the weathering of the iron 
bearing banded iron formation. This results in iron rich alluvium showing diagnostic reddish to 
yellowish colour. The spectra collected from the alluvium pixel indicate this inference with their 
corresponding characteristic absorption depth and water absorption at 1.4 and 1.9 µm.. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                     Figure 4.18 Alluvium spectra from Hyperion image  
 
4.6.3 Mine tailings  
 

The mine tailings present in the study area comprises of alluvium, low grade iron ore and 
boulders of banded iron formations. The spectra generated from the mine tailings shows the 
diagnostic characteristics of the alluvium as well as the hematite iron ore. The absorption depth at 
0.87 µm which is characteristic of Hematite is also seen in the mine tailing’s spectra. The general 
trend of the spectra resembles that of the alluvium with deep absorption depths at 1.4 and 1.9 µm 
due to water absorption. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.19 Mine tailing spectra from hyperion image 
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4.7 Characteristics of endmembers of Udaipur study area 
 
The endmembers selected from the Udaipur study area are as follows. 

1. Kaolinite 
2. Montmorillonite 
3. Pyrophyllite 
4. Chlorite 

 
 

  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.20 Endmember collection in N-Dimensional Visualizer (Udaipur) 
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       Figure 4.21 Endmember spectra collected from Udaipur hyperion dataset 

 
4.7.1    Clay Minerals 

Clay minerals are hydrous aluminium phyllosilicates, sometimes with variable amounts 
of iron, magnesium, alkali metals, alkaline earths and other cations. Clays have structures similar 
to the micas and therefore form flat hexagonal sheets. Clay minerals are common weathering 
products (including weathering of feldspar) and low temperature hydrothermal alteration 
products. Clay minerals are very common in fine grained sedimentary rocks such as shale, 
mudstone and siltstone and in fine grained metamorphic slate and phyllite. 

Clay minerals include the following groups, 

1. Kaolinite group which includes the minerals kaolinite, dickite, halloysite and nacrite. 
Some sources include the serpentine group due to structural similarities (Bailey 1980).  

2. Smectite group which includes pyrophyllite, talc, vermiculite, sauconite, saponite and  
montmorillonite 

3. Illite group which includes the clay-micas. Illite is the only common mineral.  

4. Chlorite group includes a wide variety of similar minerals with considerable chemical 
variation. 

4.7.1.1 Kaolinite  (Al2Si2O5(OH)4)  

Kaolinite is a clay mineral with the chemical composition Al2Si2O5(OH)4. It is a layered 
silicate mineral, with one tetrahedral sheet linked through oxygen atoms to one octahedral sheet 
of alumina octahedra. Rocks that are rich in kaolinite are known as china clay or kaolin.The name 
is derived from Gaolin ("High Hill") in Jingdezhen, Jiangxi province, China. Kaolinite was first 
described as a mineral species in 1867 for an occurrence in the Jari River basin of Brazil.[3] 
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Kaolinite is one of the most common minerals; it is mined, as kaolin, in Brazil, France, 
United Kingdom, Germany, India, Australia, Korea , the People's Republic of China, and the 
USA. 

Kaolinite has a low shrink-swell capacity and a low cation exchange capacity (1-15 
meq/100g.) It is a soft, earthy, usually white mineral (dioctahedral phyllosilicate clay), produced 
by the chemical weathering of aluminium silicate minerals like feldspar. In many parts of the 
world, it is colored pink-orange-red by iron oxide, giving it a distinct rust hue. Lighter 
concentrations yield white, yellow or light orange colours. Alternating layers are sometimes 
found, as at Providence Canyon State Park in Georgia, USA. 

 

 

 

  

 
 
 

Figure 4.22 Image spectra of Kaolinite 
 

The spectral characteristics of clay minerals are mainly concentrated in the SWIR portion 
of the electromagnetic spectrum. Spectroscopic indicators are of great interest because reflectance 
spectra show absorption bands in the visible and near-infrared (NIR) region, which permit 
identification of clay minerals in natural soils.and, then the strong absorption bands at 1400 nm 
and 1900 nm are due to bound water. The strong OH bands at 1400 nm and 2200 nm are typical 
of Kaolinite (Hunt and salisbury, 1970). The Al-OH overtone-combination absorption band 
around 2200-2300 nm is very diagnostic of all clay minerals. Short Wave Infrared (SWIR) part of 
the spectrum, 1400-2500 nm, and particularly the SWIR2, 1900-2500 nm, are the most useful part 
of the spectrum for the identification of clays. Kaolinite shows doublet absorption bands at 1400 
nm and 2200 nm that are characteristic of the mineral.  
 
4.7.1.2 Montmorillonite 

Montmorillonite is a very soft phyllosilicate mineral that typically forms in microscopic 
crystals, forming a clay. It is named after Montmorillon in France. Montmorillonite, a member of 
the smectite family, is a 2:1 clay, meaning that it has 2 tetrahedral sheets sandwiching a central 
octahedral sheet. The particles are plate-shaped with an average diameter of approximately 1 
micrometre. Montmorillonite's water content is variable and it increases greatly in volume when 
it absorbs water. Chemically it is hydrated sodium calcium aluminium magnesium silicate 
hydroxide (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O. Potassium, iron, and other cations are 
common substitutes, the exact ratio of cations varies with source. It often occurs intermixed with 
chlorite, muscovite, illite, cookeite and kaolinite. 
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Montmorillonite swells with the addition of water. However, some montmorillonites 
expand considerably more than other clays due to water penetrating the interlayer molecular 
spaces and concomitant adsorption. The amount of expansion is due largely to the type of 
exchangeable cation contained in the sample. The presence of sodium as the predominant 
exchangeable cation can result in the clay swelling to several times its original volume. 

 

 

 

 

 

 

 

   

Figure 4.23 Image spectra of Montmorillonite 

The spectral characteristics of Montmorillonite is very much similar to that of Kaolinite. 
The absorption depth at 1395 and 1415 nm for the OH overtones and 2163 and 2208.5 nm for the 
combination of AL-OH bend plus OH stretch are very unique for Montmorillonite among the clay 
minerals. Montmorillonite exhibits a well defined single absorption band around 2200 nm due to 
the combination of the above mentioned facts. Montmorillonite often shows shift in the 2200 nm 
absorption depth and this can be attributed to their mineral composition. This shift is mainly due 
to the increase in the content of calcium (Ca) and decrease in the sodium (Na) content. Hence this 
absorption depth is very critical in understanding the swelling potential of Montmorillonite. The 
sodium rich montmorillonites swell more than calcium rich montmorillonites. The shift in the 
2200 nm absorption band has been attributed to interaction with interlayer cation held (Ryskin, 
1974). 

4.7.1.3 Chlorite 

The chlorites are a group of phyllosilicate minerals. Chlorites can be described by the 
following four endmembers based on their chemistry via substitution of the following four 
elements in the silicate lattice; Mg, Fe, Ni, and Mn. 

Clinochlore: (Mg5Al)(AlSi3)O10(OH)8  
Chamosite: (Fe5Al)(AlSi3)O10(OH)8  
Nimite: (Ni5Al)(AlSi3)O10(OH)8  
Pennantite: (Mn,Al)6(Si,Al)4O10(OH)8 

 
The range of chemical composition allows chlorite group minerals to exist over a wide 

range of temperature and pressure conditions. For this reason chlorite minerals are ubiquitous 
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minerals within low and medium temperature metamorphic rocks, some igneous rocks, 
hydrothermal rocks and deeply buried sediments. Chlorite is a common metamorphic mineral, 
usually indicative of low-grade metamorphism. In Udaipur, they are commonly found in areas 
where there is large exposures of Phyllite and Schist.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.24 Image spectra of Chlorite 
 
The variety found in Udaipur is Chamosite. They are iron rich chlorite with characteristic 

Fe absorption depth at 875 nm.  
 
4.7.1.4 Pyrophyllite 
 

Pyrophyllite is a phyllosilicate mineral species belonging to the clay family and 
composed of aluminium silicate hydroxide: AlSi2O5OH. Alkaline aluminum silicate (28.3% Al2 
O3 ; 66.7% SiO2 ; 5.0% H2O). It occurs in two more or less distinct varieties, namely, as 
crystalline folia and as compact masses. 

Pyrophyllite occurs in phyllite and schistose rocks, often associated with kyanite, of 
which it is an alteration product. Pale green foliated masses, very like talc in appearance, are 
found at Beresovsk near Yekaterinburg in the Urals, and at Zermatt in Switzerland. The most 
extensive deposits are in the Deep region of North Carolina, where the compact variety is mined, 
and in South Carolina and Georgia. Major deposits of pyrophyllite occur within the region of 
Ottosdal, South Africa, where it is mined for the production of a variety of manufactured goods 
and blocks are quarried and marketed as "Wonderstone" for the carving of sculptures. In 
Australia, pyrophyllite has been mined at three sites near Pambula on the Sapphire Coast of 
NSW. 
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Figure 4.25 image spectra of pyrophyllite 

The spectral absorption depths in the pyrophyllite spectra is basically concentrated in the 
infrared portion of the spectrum mainly around 2160 and 2320 nm. These absorption depths are 
mainly due the Al-OH concentration which is typical of clay minerals. Another strong band 
absorption is centered around 1390 nm which is attributed to the water molecule absorption.  

4.8 Results of various mapping techniques 

Various mapping techinues were used in the present study to map the minerals that have 
been demarcated using the endmember collection. Linear spectral unmixing Mixed tune match 
filtering (MTMF) and spectral feature fitting were used for this purpose. 

4.8.1 Results of Linear Spectral Unmixing (Udaipur) 

Linear spectral unmixing has been performed using the five endmembers of the Udaipur 
study area. The results of this mapping technique for both the study areas are discussed below.  

Linear spectral unmixing images produced for the Udaipur study area have been 
generated by the giving endmember region of interest as the reference spectra and their 
abundances in the image are given in the resultant final linear spectral unmixing image. This 
models gives information about the relative abundances of the endmember material considering 
each endmember present in a pixel. Five endmembers for the Udaipur and three endmembers for 
the Orissa dataset have been used to describe the resultant image. The five resultant endmember 
abundance image and the rms image is shown below.  
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                    Pyrophyllite                                                       Fe rich Chlorite (Chamosite) 

Figure 4.26 linear spectral unmixing results for Udaipur (approximate map scale 1:61,400) 
 
 

                                                                                                                                                                         
The linear spectral unmixing results of the udaipur study area clearly demarcates the clay 

minerals kaolinite and Montmorillonite. This is basically due to the mineral composition of the 
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two minerals. It is the characteristic absorption depth at 2160 nm enables these minerals to be 
distinguished in the image. The abundance image of pyrophyllite exhibits areas of intermixing 
existance with the montmorillonite. This makes them obscure to identify in the image. The 
abundance of iron rich chlorite (Chamosite) is very sparse. Due to their unique Fe absorption 
depth at 875 nm, their presence has also been succesfully mapped using the linear spectral 
unmixing model.  
 
4.8.2 Results of Spectral Feature Fitting (Udaipur) 
 

According to the principle of SFF a scale image and one rms image is the output for each 
reference spectrum or a combined “fit” (scale/rms) image is output for each refernce spectrum. 
The scale image is a measure of absorption feature depth, which is related to material abundance, 
and the rms image shows the error percenatge in the scale image. Therefore the brighter pixel in 
the scale image (corresponding to low rms error) indiactes a better match to the reference 
spectrum. Since here the spectra are devoid of any absorption feature this method did not give 
suitable result for different enmembers.  

 
The images calculated for each endmember did not show any noticeable variability or 

discriminability among themselves. Hence it can be concluded that the technique of SFF (Spectral 
Feature Fitting) is not the appropriate mapping tecnique where absorption depths of individual 
endmember mineral is not taken into consideration. The results of each endmember images are 
given below. The vegetation spectra was also taken as an endmember for the SFF mapping 
method. This model was not appropriate even for the mapping of vegetated area. 
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                            Pyrophyllite                                              Chamosite 
 

Figure 4.27 Spectral feature fitting results for Udaipur endmembers (approximate map scale 
1:40,528) 

 
4.8.3 Results of Mixture Tuned Matched Filtering (Udaipur) 
 

Image endmembers are derived from the hyperion satellite imagery using the interactive 
analysis technique of ENVI. All the four image endmembers mostly describing the image were 
considered for creating a set of score and infeasibility image.  
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                         Chlorite (Score)                                        Chlorite (Infeasibility) 

Figure 4.28 MTMF mapping results for Udaipur (approximate map scale 1:40,528) 
 

 The interpretation of mixture tuned matched filtering mapping method involves the 
integration of close analysis of both the score and infeasibility images of the individual 
endmembers. The four endmember’s score as well as infeasibility image are given above. The 
score images of kaolinite exhibits their abundance in the study area with high pixel values and 
they can be considered only valid if the same area have low pixel values in the infeasibility 
image. The kaolinite and montmorillonite are the two major clay minerals and their occurrence is 
primarily due to the weathering of the parent rock, quartzite which is abundant in the study area. 
The method indicates that both the clay minerals co-exist in the study area and their 
differentiability is meek using this method. Similarlly the mineral, pyrophyllite which is derived 
from the weathering of the parent rock, Phyllite can be differentiated and mapped using the 
method. The chlorite which is a retrograde metamorphic alteration mineral of existing 
ferromagnesian minerals is found associated with the chlorite schist in the study area. The 
exposures of these rock are very sparse in the study area and hence their abundance is also found 
low using this method. This method is very efficient in mapping the three set of minerals, 
kaolinite and montmorillonite as a single group, pyrophyllite and chlorite are the other two.   
 
4.8.4 Band Absorption Depth Analysis (Udaipur) 
 

The atmospherically corrected reflectance spectra contain compositional information of 
minerals, mineral mixtures, rocks and vegetation, exhibited as characteristic absorption at specific 
wavelength. The spectral reflectance in the visible and near-infrared wavelengths provides a rapid 
and inexpensive means for determining the mineralogy of samples and obtaining information on 
chemical composition. The significance of performing band positioning and absorption analysis is 
to see whether the spectra for a sample feature extracted from the atmospherically corrected 
Hyperion dataset of Udaipur behave in accordance with the USGS standard spectroscopic band 
absorption characteristics of that sample feature. 
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In order to attempt band position absorption, the atmospherically corrected spectra were 
examined at 2200 nm to 2300 nm for Udaipur quartzite. Quartz does not exhibit any significant 
absorption feature and is considered as featureless spectrum. Aventurine Quartz found in India 
has scales of Biotite / Muscovite, Zircon or Hematite distributed within it. Samples of ultra mafic 
origin that have Biotite / Muscovite and Zircon inclusions exhibit characteristic absorption feature 
at hydroxyl bands of 1400 nm and between 2200 and 2600 nm indicating presence of Fe-Mg-OH 
and Fe2O3. Figure 4.29 shows this characteristic absorption feature for the Aventurine quartz 
sample from India as published by USGS Denver spectroscopy laboratory (source: 
http://speclab.cr.usgs.gov/spectral.lib456.descript /DESCRIPT/quartz.avent.hs117.html). A 
similar absorption feature is also exhibited in the ASD field spectra of Udaipur quartzite and the 
spectra extracted from the atmospherically corrected Hyperion dataset of Udaipur, as seen in 
figure 4.30 
 
 

Figure 4.29 Aventurine quartz reference spectra 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

⇑
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Figure 4.30 ASD spectra of Quartzite 
 

 
 
 

Figure 4.30 ASD spectra of Quartzite 
For the derivation of asymmetry and band depth parameters (i.e. S1, S2, A1, A2) required 

for the band position absorption analysis, continuum removed bands between 2280 to 2340 nm 
were used. Two shoulders S1 at 2337.04 and S2 at 2286.55 were selected for the diagnostic 
absorption at 2316.84 nm. Two absorption points for interpolating the depth A1 at 2326.94 and 
A2 at 2296.64 were used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 4. 31 Continuum removed absorption position of Udaipur Quartzite 
 

The derived band asymmetry and depth images enhance the analysis of Hyperion dataset 
for surface compositional mapping. The resulting asymmetry image shows pixel values ranging 
between 0.0035 – 0.0113 and can be interpreted as weakly skewed towards the shorter 
wavelength. The asymmetry image displays pixels that have the same asymmetry as that of the 
quartzite spectra at 2316 nm.   
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Figure 4.32 Asymmetry image for Udaipur Quartizes. Yellow pixels have asymmetry value range 
between 0 and 1 are weakly skewed towards shorter wavelength. 
 
 The depth of absorption feature in quartzite is higher in relation to the continuum. Higher 
depth values indicate a greater possibility of the occurrence of mineral that is displaying the 
absorption feature in the spectra. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                             Figure 4.33 Depth image of Udaipur Quartzites. (approximate map scale 
1:20,858)  

 Band absorption analysis has not shown good results for Udaipur hyperion dataset. In 
case of Udaipur Quartzite, the absorption range is covered by 6 bands. The result of band position 
and absorption analysis shows a very low number of pixels (2206) qualifying for the hydroxyl 

 Asymmetry (0 - 1) 

 Band Depth (1.8 - 4.5) 
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band depth and asymmetry, most of which fall in the shadow region. This indicates that 
identification of absorption feature depends not only on the spectral quality of the dataset but also 
on absorption width (number of bands that constitutes the absorption range). Earlier studies have 
reported Hyperion SNR in the range of 1 to 60 in SWIR region resulting in less information 
extraction from hyperion for mineralogical targets (Kruse et al., 2003a). Other reason of 
underperformance of this technique for hyperion could be attributed to very strong superimposed 
hydroxyl absorption due to atmospheric moisture accumulation in the shadowed region of the 
study area. This dominant absorption interfered with the characteristic hydroxyl absorption of 
Udaipur quartzites. Hence the areas in shadow region show similar band depth and asymmetry in 
the study area. 
 
4.8.5 Results of linear spectral unmixing (Orissa) 
 
 Linear spectral unmixing has been performed using the six endmembers of the Orissa 
study area. The results of this mapping technique for both the study areas are discussed below. 

This models gives information about the relative abundances of the endmember material 
considering each endmember present in a pixel. The three endmembers used in the Orissa dataset 
are alluvium, minetailings and hematite. Three endmembers for the Orissa dataset have been used 
to describe the resultant image. The three resultant endmember abundance image and the rms 
image is shown below. 

 

 
 
 
 
 
 
 
 
 
 
 
 
                           
 
 
                           Alluvium                                                                    Hematite 
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                                                                Minetailings 
                             Figure 4.34 Results of linear spectral unmixing (Orissa) (approximate map 
scale 1:40,528)                                                        
 
 The linear spectral unmixing results of Orissa study area clearly demarcates the hematite 
mineral and alluvium. This is primarily due to the characteristic absorption depth at 875nm for Fe 
(hematite). The minetailings which are the residue or leftout portion of the mined or target 
material can also be demarcated using this method, but in some location there is an intermixing 
between the hematite. The minetailings present in this area are also rich in iron content. They are 
normally discarded due to the low grade quality. They had a spectra resembling both the hematite 
and alluvium as discussed in section 4.6.3. They exhibit the general spectral trend of the alluvium 
but shows a moderate absorption depth at 875 nm which is primarily due to the Fe absorption. 
This absorption depth at 875 nm is basically due to the crystal field effect of transition element 
“Fe”. 
 
4.8.6 Results of Mixture tuned matched filtering (Orissa) 
 
 Mixture tuned matched filtering is used to perform MF and add an infeasibility image to 
the results. The infeasibility image is used to reduce the number of false positives that are 
sometimes found when using MF. Pixels with a high infeasibility are likely to be MF false 
positives. Correctly mapped pixels will have an MF score above the background distribution 
around zero and a low infeasibility value. The infeasibility values area in noise sigma units that 
vary in DN scale with an MF score.  
 
 The results from linear spectral un-mixing exhibits an intermixing of hematite and mine 
tailings. This mapping technique is adopted to differentiate between these two targets. The results 
from the mixture tuned matched filtering (MTMF) for the Orissa study area is given below. The 
score image and the corresponding infeasibility image for both hematite and minetailings are 
given below in figure 4.35  
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            False minetailings (Score)                                        Minetailings (Infeasibility) 

Figure 4.35 Results of MTMF Orissa (Scale (approximate map scale 1:40,528) 
  
 The visual interpretation of false minetailings image given above, figure 4.35 indicates 
that the areas with high pixel values (appearing bright) are actually false indications of 
minetailings. This can be understood by the close analysis of minetailings infeasibility image in 
which the same area appears bright with high pixel values. These areas are actually hematite 
mines. 
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              Minetailings (Score)                                             Minetailings (Infeasibility) 

 
Figure 4.36 Results of MTMF minetailing (approximate map scale 1:40,528)  

 
The results of the MTMF minetailings image, figure 4.36 indicate areas of minetailings 

abundance. The bright pixels present in the score image indicate their abundance. The areas in the 
score image which have correspondingly low pixel values (appear dark) in the infeasibility image 
indicate their presence in ample amounts.  
 
4.8.7 Results of Spectral Angle Mapper (Orissa) 

 
The spectral angle mapper algorithm determines the spectral similarity between two 

spectra by calculating the angle between the spectra and treating them as vectors in a space with 
dimensionality equal to the number of bands. The output from SAM is a classified image and a 
set of rule images (one per endmember). The pixel values of the rule images represent the spectral 
angle in radians from the reference spectrum for each class. Lower spectral angles represent 
better matches to the endmember spectra. The SAM classification method was applied to the 
Orissa dataset and hematite endmember spectra was given as the reference spectra..  

 
The rule image generated for the hematite in Orissa dataset is given below.  
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 Figure 4.37 Results of SAM Hematite rule image (approximate map scale 1:40,528) 
 

 The results of the SAM mapping method for the Orissa dataset indicates that the lowest 
radian measurement (angle between the reference spectra and the target) have been registered for 
the hematite mineral. This indicates the similarity in the spectra of the reference and target 
spectra. This indicates that the SAM mapping method has given good results in the mapping of 
hematite in Orissa.   
The band rationing images of LISS 4 dataset for the both the study areas are given below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.38 Results of band rationing of LISS IV image 

 

85°20'0"E

85°20'0"E

85°30'0"E

85°30'0"E

22°0'0"N
22°0'0"N

22°10'0"N
22°10'0"N

22°20'0"N
22°20'0"N

±

0 6 123 Kilometers

Legend
Value

High : 3.21

 

Low : 0.89

73°30'0"

73°30 ' 0"E

73°40 ' 0"E

73°40 '0"E

24°10 ' 0"N
24°10 ' 0"

24°20 ' 0"N
24°20 ' 0"

± 

0 5 102.5 Kilometers

Legend 
Value 

High : 1.71 
Low : 0.64 



Mineral abundance mapping using Hyperion dataset in parts of Udaipur (Rajasthan) and Keonjhar (Orissa), 
India 

 

 93

4.9 Lithological Differentiation 
 
 After carefully analyzing the output images of the various mineral mapping techniques 
such as the Linear Spectral Unmixing (LSU), Mixture Tune Matched Filtering (MTMF) and 
others the different abundant materials were mapped separately from separate images. They are 
prepared with each other and with the result of other image processing techniques. A final 
lithological map was prepared from the output results. This is compared with the existing 
geological map of the study area.  
 
 Minerals like Montmorillonite, Kaolinite, Pyrophyllite and Chlorite has been mapped 
using the various mapping techniques in the Udaipur study area. Rock is a naturally occuring 
aggregate of minerals or mineraloids and they are basically classified based on their 
mineralogical as well chemical composition. The genesis and distribution of these minerals are 
mainly controlled by the distribution of the parent rock and the weathering process they have 
undergone. The results from the various mapping techniques have been analyzed to generate this 
final validation process. The above mentioned minerals are basically clay minerals which are 
alteration minerals of other major deposits. Hence it becomes very important to map the lithology 
of the area which may be promising to other major potential deposits.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           Figure 4.39 Geological map of Udaipur study area modified after Mohan Lal Sukhadia 
University, Department of Geology, Udaipur 
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The lithological explanation of the above mentioned legend is as follows. 
 
1. Conglomerate with phyllitic matrix, greywacke – phyllite – laminated greywacke – Phyllite - 

rhythmite 
 
2.   Carbonaceous phyllite – slate, phyllite - mica schist 
 
3.   Quartzite – dolomite facies variation, dolomite with rock phosphate, sideritic marble and 
       impure crystalline dolomite   
 
4.   Conglomerate with quartzitic matrix – Quartzite silty arenite 
 
 

The lithosequence comprising of greywacke and phyllite is best developed around 
Udaipur, and hence it is designated as the Udaipur formation. They follows a rhythmic sequence 
of greywacke – slate/phyllite which laterly passes into lithic arenite as it moves from Udaipur. 
These formations are overlain by a carbonate sequence hosting Pb-Zn mineralization and is 
designated as the Zawar formation. Their rock sequence comprises of Phyllite, conglomeritic and 
gritty greywacke, dolomite. The conglomerate-arkose-grit-quartzite horizon, occurs in kailashpuri 
in the north of Udaipur marks the base of the Debari group and is designated as the Debari 
conglomerate. They are poorly sorted conglomerate and contains pebbles, cobbles and boulders 
of quartzite, metabasics and marble. The composition varies from arkosic and arenaceous to 
calcareous.  
 

As discussed in section 4.8.1 and 4.8.3 and the figures depicting the results of the various 
mineral mapping techniques for Udaipur study area, it is clear that the two major rock classes 
have resulted in the generation of various clay and mica minerals in the study area. They are the 
Quartzite and Phyllite. The study area of Udaipur is dominated by these two classes of lithology. 
 

The rock discrimination was done using two various methods, one using the spectral 
signatures (using the spectral library of the samples collected from the study area during the field 
investigation) and the tonal analysis of the reflectance image. The two major rock classes 
Quartzite and Phyllite and mapped based on these findings and is given in figure 4.40. The results 
of the mapping techniques shows the abundance of minerals like Montmorillonite and Kaolinite 
and their genesis is related to the weathering of the Quartzite rock. Similarly for the Pyrophyllite 
mineral, they are distributed in the areas pertaining to the Phyllite rock variety and their genesis is 
related to the weathering of the Phyllite rocks. The mineral Chlorite is found associated with the 
Chlorite schist rock which itself is found along with the Phyllite greywacke sequence. The 
mapping of the Chlorite schist rock hence becomes difficult and have been left out in the final 
lithological map as they may be associated with the Phyllite schist sequence. 

 
The colour composites of classified images (mineral classified images) have been used in 

the present study for lithological differentiation. Three mineral classified images have been used 
in the colour composite image. They are the Montmorillonite, Kaolinite and Pyrophyllite. The 
results from the Mixture Tuned Matched Filtering (MTMF) have been used for this. The score 
images of these three minerals have been stacked together to generate the colour composite 
image.   
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Figure 4.40 Colour composite of classified image and FCC, 47 28 15 (approximate map 
scale1:84,253) 

 
 Three classified mineral images of Kaolinite, Montmorillonite and Pyrophyllite have been 
assigned red, green and blue sources in the colour composite. The colours in the composite image 
gives a clear idea about the lithological boundary of the parent rock present in the study area as 
the three minerals (Kaolinite, Montmorilonite and Pyrophyllite) have been derived by the 
weathering of their respective parent rock.  
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 Six lithologies have been demarcated in this analysis. They are depicted along with the 
colour composite image. They are 1. Conglomerate with phyllitic matrix, 2. Conglomerate with 
quartzitic matrix, 3. Carbonaceous phyllite, 4. Carbonaceous quartzite, 5. Phyllite and 6. 
Quartzite. In the FCC, 47 28 15 band combination of Hyperion Udaipur dataset could demarcate 
only three lithologies. It is the spectral analysis that have been conducted uasing the endmembers 
collected from the n-dimensional visualizer that enabled as to demarcate six lithologies with 
slight variations in the Udaipur study area. These rocks are primarily Phyllite and Quartzite but 
their mineralogical variations resulted in the generation of other classes of lithology. 
  
 Since Pyophyllite, the clay mineral derived from the Phyllite have been assigned blue 
colour, the lithology or the rock types with Phyllitic matrix exhibits bluish tint in the colour 
composite image. Similarlly the Montmorillonite and Kaolinite which are derived from the 
weathering of Quartzite rock have been assigned green and red colour gives a brownish to 
yellowish tint to the quartzite and arenitic variety which makes them distinguishable in the colour 
composite image. The pure quartzite rock exhibits brownish colur and their colurs varies from 
brownish to yellowish tone These findings along with the information derived from 
supplementary as well as auxillary sources like geologic map of the study area and information 
collected during the ground-truth investigation have immensely helped in the demarcation of six 
lithologies in the Udaipur study area. 
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Chapter 5 
 

Conclusions and recommendations 
 

This chapter deals with the various conclusions that have been arrived at the end of the 
study. The primary objective of this study was to retrieve reflectance from the raw (radiance) data 
from Hyperion dataset and to evaluate its application potential in mineral exploration in the two 
selected study areas. The two study areas selected for this study are the Udaipur in Rajasthan and 
Keonjhar (Jamda-Koira valley), Orissa, India. Geologically both the study areas belong to the 
Precambrian era of the geological time scale.  

 
Recent advances in remote sensing and geographic information has led the way for the 

development of hyperspectral sensors. Hyperspectral remote sensing, also known as imaging 
spectroscopy, is a relatively new technology that is currently being investigated by researchers 
and scientists with regard to the detection and identification of minerals, terrestrial vegetation, 
and man-made materials and backgrounds. Hyperspectral data sets are generally composed of 
about 100 to 200 spectral bands of relatively narrow bandwidths (5-10 nm), whereas, 
multispectral data sets are usually composed of about 5 to 10 bands of relatively large bandwidths 
(70-400 nm) (www.csr.utexas.edu/projects/rs/hrs/hyper.html). With the increase in the number of 
bands, the volume of information it gives are enormous and the challenges it poses for a 
researcher is also ample. Being a new and innovative technology, this branch of remote sensing is 
under tremendous growth and is going to be the face of the remote sensing technology in the 
coming decade.  
 
5.1 Conclusions 
 

Pre-processing of the hyperspectral dataset is one of the initial steps included in the 
retrieval of atmospherically corrected reflectance data. The Hyperion satellite data contains 242 
bands. All the entire bands do not contain information basically due to the atmospheric 
attenuation. Spectral subsetting need to be done to remove those badly affected bands. This 
process leaves 196 unique hyperion bands in the dataset. The visual analysis of the several bands 
among the 196 bands in the hyperion dataset indicates that there are number of vertical stripes 
encroached in to the dataset, which is primarily due to the sensor faults. These stripes are 
removed using 3*3 local filter and it removes only the spurious pixel values present in the striped 
area, which doesn’t represent any characteristics of the target sensored. This local balancing 
technique improved the spectra of the dataset once the reflectance is retrieved from the radiance 
image.  
 
 Two atmospheric correction techniques have been employed to retrieve the reflectance 
from the radiance. FLAASH and ATCOR 2.3 based on the MODTRAN. ATCOR and FLAASH 
both use MODTRAN and has out performed other radiative transfer code especially in the water 
region 940. Visual comparison of the ATCOR 2 and FLAASH retrieved reflectance spectra 
indicated that both the models compensated for the O2, and CO2 atmospheric gas absorptions. The 
SWIR portion of the reflectance spectra exhibited spurious spikes in both the atmospheric 
correction models. Since two models have been used in the present study, it is very important to 
estimate their comparative performance. This will help in selecting the better-performed model 
result, which can be used for further spectral analysis and mineral mapping. Validation of the two 
models have been done using the spectral similarity parameters SAM and NED. They have been 
used considering the Analytical Spectral Device (ASD) derived spectra as the standard. SAM 
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exhibited lower values for the ATCOR derived spectra than the FLAASH and can be stated that 
the ATCOR had better performed than FLAASH. Low NED values of the FLAASH derived 
spectra indicated their better performance when compared to that of the ATCOR. Since NED 
being a better similarity measure, it has been stated that FLAASH atmospheric correction model 
have performed better than ATCOR2 model. Spectral polishing technique EFFORT was 
performed on FLAASH reflectance result to smoothen the reflectance spectra.  Hence FLAASH 
derived reflectance data have been selected for the further spectral analysis and mineral mapping 
for both the study areas.  
 
 During the field investigation, rock samples were collected from both the study areas 
which have been used to generate the field spectra (reference spectra) using ASD. The 
endmembers were selected after understanding the geology of both the study areas. Three 
endmembers were selected for Orissa and five endmembers were selected for Udaipur. The 
number of endmembers selected also depends upon the mapping technique used. Linear spectral 
Unmixing technique requires all the land use classes to be included to give a better result. The 
endmembers were collected after spectral processing of the reflectance data which is discussed in 
section 3.13.1. After collection of endmembers they are used in various mapping techniques. 
 

Mapping technique such as linear spectral unmixing, mixture tune matched filtering, 
spectral feature fitting, spectral angle mapper and band absorption depth analysis were used to 
map the different endmembers. For Udaipur study area, Kaolinite, Montmorillonite, Pyrophyllite 
and Fe rich Chlorite (Chamosite) were mapped. Linear spectral unmixing results for Udaipur 
helps in mapping Kaolinite and Montmorillonite. There is an intermixing between the 
Pyrophyllite and Montmorillonite in the linear spectral unmixing results. Due to the unique iron 
absorption at 870 nm Fe rich Chlorite (Chamosite) have been successfully mapped using this 
method. Spectral feature fitting technique uses an approach in which individual adsorption depths 
of the endmembers are not taken into consideration and this resulted in poor results for this 
method. The mixture tuned matched filtering technique was successful in mapping Pyrophyllite 
and Chamosite but shows intermixing between Kaolinite and Montmorillonite. The Kaolinite and 
Montmorillonite are derived from the weathering of the parent material, Quartzite, where as the 
Pyrophyllite is derived from Phyllite and Chamosite forms a part of Chlorite schist. The band 
absorption depth analysis was conducted on Udaipur dataset and gave poor results and this could 
be attributed to the very strong superimposed hydroxyl absorption.  

 
For Orissa study area, linear spectral unmixing, Spectral angle mapper, MTMF were used 

to map the endmembers. The three endmembers used for the Orissa study area are Hematite, 
Minetailings and Alluvium. The linear spectral unmixing method successfully mapped the 
hematite and alluvium but showed intermixing between minetailing and hematite in minetailing 
abundance image. The MTMF method was adopted for the Orissa study area primarily to 
differentiate between the hematite mineral and minetailings which were intermixed in the Linear 
spectral unmixing result. The MTMF successfully conducted the abundance mapping for hematite 
and minetailing. The final interpretation of the MTMF results need to be done after integrating 
the score image results to that of the infeasibility image for all the endmembers. Spectral angle 
mapper (SAM) also gives good results for hematite but showed intermixing between alluvium 
and minetailings. 
 

Band rationing of LISS 4 images were generated to map the clay minerals in Udaipur and 
the Hematite mineral in Orissa study area. The band rationing results of Udaipur highlighted the 
clay minerals but was incapable of demarcating the variety among them as been expected from a 
multispectral dataset. Similarly for the Orissa data set, all the features other than water and 
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vegetation got highlighted in band rationing as the area has high concentration of iron content due 
to mining activities. 

 
An integrated approach of different mapping technique gives a much better result than 

depending on a single method. Results from several mapping methods have helped in the mineral 
abundance mapping. 

 
The careful analysis of the classified mineral images have been done for the lithological 

differentiation in the Udaipur study area. A colour composite image of Montmorillonite, 
Kaolinite and Pyrophyllite has been generated to meet this objective. Six major lithologies have 
been demarcated as a result of this analysis. They are Conglomerate with Quartzitic and Phyllitic 
matrix, Carbonaceous Phyllite, Carbonaceous quartzite, Phyllite and Quartzite.   

 
The following research questions were answered to meet the objectives of the present study. 
 
5.1.1 Can the existing the pre-processing techniques used in the multispectral images sufficient 
for the efficient feature extraction in hyperspectral data? 
 

The hyperspectral dataset contains numerous bands with very narrow spectral bandwidth, 
10 nm in the case of hyperion. The multispectral images contain three to four bands with very 
broad bandwidth. This itself gives an overview about the amount of information the hyperspectral 
sensor gives. Proper pre-processing of hyperspectral dataset, which includes the spectral 
subsetting of noise prone bands, destriping of vertical columns in the bands need to be done to 
achieve a less noise prone dataset. The broad bandwidths of the multispectral images are less 
affected by the atmospheric attenuation. Hence the pre-processing approach for the multispectral 
and hyperspectral satellite data need to be different.  
 
5.1.2 How good are the atmospheric correction models that have been used for the retrieval of 
reflectance in hyperspectral (Hyperion L1R) data? 
 

FLAASH and ATCOR2 atmospheric correction models have been used in the present 
study. The visual comparison of the reflectance spectra derived form both the atmospheric 
correction models have performed well enough to retrieve the spectral characteristics of the target 
sensored. The SWIR portion of the spectrum is largely affected by the various absorbing gases 
present in the atmosphere. Most of the mineral species have characteristic absorptions in SWIR 
portion of the spectrum. Both the atmospheric correction models could not remove the spurious 
spikes in the SWIR portion of the spectrum, which cannot be attributed to any spectral 
characteristics of the object under study.  
 
5.1.3 Which among the various mapping techniques are the most efficient for the mineral 
mapping? 
 

Various mapping techniques have been employed in this study. Linear Spectral 
Unmixing, Mixture Tune Matched Filtering, Spectral Angle Mapper, Band Absorption Depth 
Analysis and Spectral Feature Fitting are few of the techniques that have been used in the study. 
A single mapping technique has not given all the endmember classified result. In the case of 
Udaipur study area, Mixture Tune Matched Filtering as well as linear spectral unmixing was 
successful in mapping all the endmembers. Similarly, in Orissa study area, linear spectral 
unmixing as well as Mixture Tune Matched Filtering have given good results. Hence it can be 
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concluded that an integrated approach of several mapping techniques will lead to the successful 
mapping of the endmembers. 
 
5.1.4 Can the statistical parameters like SAM (Spectral Angle Mapper) and NED (Normalised 
Euclidean Distance) be used as the validation parameters for the various atmospheric correction 
models? 
 

As stated by the previous study conducted by Robila and Gershman 2005, it was proved 
that the techniques based on image ratio and difference such as Spectral Angle Mapper  (SAM), 
Normalized Euclidean Distance (NED) provide useful information on spectral similarity between 
reference and test spectra. This approach was selected to validate the performance of two 
atmospheric correction models (FLAASH and ATCOR2) that has been used in the present study. 
According to these statistical parameters, FLAASH atmospheric model have outperformed the 
ATCOR2 model for both the study areas and hence been taken up for mineral abundance 
mapping in both the areas. 

 
5.2 Recommendations  
 

 Mineral prospecting need to be conducted by taking into account various factors 
including the landuse-landcover of the study area. Geo-botanical anomaly is an important 
criteria in this regard. These anomalies induces spectral shift in the chlorophyll 
absorption at 0.66 and 0.68 µm.. The changes in the chlorophyll concentration produces 
spectral shift in the reflectance spectra of the vegetation. This phenomenon is called red 
edge shift. Inclusion of these parameters in the prospecting will ensure a better and 
comprehensive result in mineral abundance mapping which has not been taken into 
consideration in this study due to lack of knowledge and experience in vegetation studies. 

 
 Both the atmospheric correction models have not compensated well enough for the 

sporadic spikes in the SWIR portion of the spectrum. Improvement in the SWIR portion 
of the spectrum will enhance the prospecting capability of the hyperion dataset in future 
studies as most of the minerals have characteristic absorptions in the SWIR portion. 

 
 Improvement in SNR of Hyperion sensor should be worked out for future space borne 

Hyperspectral sensors to allow the same level of mineral mapping capability as airborne 
sensors. 
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