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Abstract 

 

Impact craters are the most studied features in lunar and planetary science. They are the 

most outstanding features on the lunar surface and they are important for lunar geologic 

study. One of the important challenges in lunar research is to estimate lunar surface ages by 

calculating crater density per unit area. Therefore, proper crater detection, morphological 

attribute (shape and size) measurement and derived crater size frequency distribution 

(CSFD) of lunar craters is necessary. Identifying impact craters on planetary surfaces is one 

of the fundamental tasks in planetary science. Manually extracting craters from remotely 

sensed data is a difficult task because it requires specific knowledge as well as skills of 

extraction and a great deal of man power. Hence efficient and effective automatic crater 

detection method is needed. In this work, an integrated approach of automatic crater 

detection, image based as well as topography or Digital Elevation Model (DEM) based, 

using image and DEM data from Terrain Mapping Camera (TMC) sensor on-board 

CHANDRAYAAN-1 has been developed. Automatic crater detection algorithms (CDA) 

have been developed for image based as well as DEM based approaches. The algorithms 

consist of various crater detection techniques like Hough Transform and Wavelet Transform 

are used for image based approach and Marker Controlled Watershed Transform and 

Terrain Derivatives are used for DEM based approach. The final craters detected will be the 

integration of the one of the image based and DEM based crater detection techniques on the 

basis of the sharpness of the edges of detected craters and image detail preserving 

coefficient. Further for the computation of crater attributes (shape and size) of the detected 

craters, Moment Measure technique is being used for which algorithm has been developed. 

Finally, the CSFD is being computed for lunar (near side, far side and polar region) surface 

using TMC and MiniSAR (on-board CHANDRAYAAN-1) image data and hence, also the 

age for the global moon is determined. The crater shape and size attributes retrieved from 

Moment Measure technique appears to match with the CSFD results obtained with the help 

of Crater Tool. The lunar surface age obtained from the crater size frequency distribution 

with the help of CraterStat Tool appears to match well with the established stratigraphic age. 

 

Keywords: Impact craters, Morphological Attributes, Hough Transform, Wavelet 

Transform, Watershed Transform, CSFD 
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1 Introduction 

1.1 Background 

 

Impact craters are geologic structures formed by the collision of meteoroids, asteroids or 

comets with planetary surfaces. They are common features on the surface of all planetary 

solid bodies in the Solar System, but are most abundant on bodies such as the Moon, 

Mercury, or Mars where they can  accumulate over geologically long times due to slow 

surface erosion rates (Stepinski et al., 2012). They are among the most studied geomorphic 

planetary features because they provide useful information about the past geological 

processes like impact history and also provide a tool for measuring relative ages of the 

surfaces of various planetary or satellite bodies like moon (Urbach and Stepinski, 2009). 

They are the most outstanding features on the lunar surface and they are important for lunar 

geologic study. One of the important challenges in lunar research is to estimate lunar surface 

ages by calculating crater density per unit area(Yue et al., 2008). Therefore, proper crater 

detection, their morphological attribute measurement (shape and size) and derived crater 

size frequency distribution (CSFD) are important steps for surface aging (evolution) of the 

moon (Kim et al., 2005). Hence, proper detection of lunar craters has high priority among 

all these steps. Identifying impact craters on planetary surfaces is one of the fundamental 

tasks in planetary science. Manually extracting craters from remotely sensed data is a 

difficult task because it requires specific knowledge as well as skills of extraction and a 

great deal of man power. Hence efficient and effective automatic crater detection method is 

needed (Yue et al., 2008). 

 

1.2 Motivation and Problem Statement 

 

The task of automatic crater detection using remotely sensed images is very difficult. 

Previous studies in the field of crater detection largely engaged in the development of 

methods for automatic detection of craters from images (Bue and Stepinski, 2007) . The 

unsupervised (fully automatic) image based crater detection approaches primarily rely on 

pattern recognition techniques for identifying crater rims in an image as circular or elliptical 

features (Barata et al., 2004; Cheng et al., 2003; Honda et al., 2002; Kim et al., 2005). The 

original image is preprocessed to enhance the edges of the rims and subsequently detection 

is achieved by using Hough Transform (Hough, 1962), genetic algorithm (Honda et al., 

2002), or radial consistency algorithm (Earl et al., 2005). The image based crater detection 

approaches must be optimized by combining supervised (which requires training samples 

from domain expert) and unsupervised algorithms to improve the detection rate. But, in 

spite of such complicated, multistep sophistications, image based algorithms are found to 

produce limited success over planetary surface because the image data is suitable for human 

visual interpretation and are skewed representations of the landscape. Image based crater 

detection algorithms have inherent limitations on the visibility of the craters as a function of 

quality of the images and depend on the factors namely illumination, surface properties and 

atmospheric state. One of the main limitations of running the crater detection algorithms on 

images is the presence of shadows on the image which depends on the illumination factor. 
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When the impact craters are imaged from an orbit, they show a roughly circular shape. Their 

contours are marked topographically by elevated rims thus producing shadows (Bue and 

Stepinski, 2007). But for the improved accuracy of surface chronology (dating), where only 

diameter and not the depth of the crater is required, detecting craters from images is still 

necessary (Stepinski et al., 2012). 

 

On the other hand, detecting craters from topographic (DEM) data is, in principle, much 

easier than detecting them from imagery data. It is because craters are landforms that can be 

defined in terms of DEM derivatives calculated from DEM. This avoids numerous problems 

inherent to the detection of craters from optical images, such as illumination. Moreover, 

with the availability of high resolution digital topographic data over Mars and Moon in the 

recent years, the importance for developing DEM based crater detection algorithms is 

continuously gaining significance. A DEM is a raster data set where each pixel is assigned 

an elevation value. DEM derivatives are another raster data set, where each pixel is assigned 

a value calculated from the elevation values. Hence, DEMs are suitable for a quantitative 

geomorphic analysis and well suited for automatic crater detection (Bue and Stepinski, 

2007). However, sometimes DEMs are limited in availability and resolution, so image based 

crater detection is still necessary (Stepinski et al., 2012). 

 

A previous research by Bruzzone et al. (2004) stated about the development of image based 

automatic crater detection algorithm independent of the remotely sensed data and the target 

(planetary body). But for the better accuracy of results, integration (data fusion scheme) of 

image data with DEM data was recommended. Kim and Muller introduced an integrated 

approach for crater detection process by fusion techniques using both images and DEMs. 

But it worked well for detecting medium sized craters and failed to detect very large impact 

craters. Hence a robust and practical automatic crater detection algorithm (CDA) is required 

which should be able to detect craters of wide range of sizes. This is a significant challenge 

to the scientific community. 

 

In this work, an integrated approach of automatic crater detection, image based as well as 

topography or Digital Elevation Model (DEM) based, using image and DEM data from 

Terrain Mapping Camera (TMC) sensor on-board CHANDRAYAAN-1, has been 

developed. Automatic crater detection algorithms (CDA) have been developed for both 

image based as well as DEM based approaches. The algorithms are independent of the 

planetary (target) body to be considered for crater detection as well as the remotely sensed 

data (in terms of resolution) acquired from different sensors (optical and synthetic aperture 

radar (SAR) sensors). The algorithms consist of various image segmentation techniques like 

Generalized Hough Transform and Wavelet Transform for image based approach and 

Marker Controlled watershed and Terrain Derivatives for Digital Elevation Model (DEM) 

based approach. The final craters detected will be the integration of the one of the image 

based and DEM based crater detection techniques on the basis of the sharpness of the edges 

(in terms of edge strength) of detected craters and image detail preserving coefficient (in 

terms of correlation coefficient between preproceesed image and image with detected 

craters). Further for the measurement of attributes (shape and size) of the detected craters, 

Moment Measure technique is being used for which algorithm has been developed. Finally, 

the crater size frequency distribution (CSFD) is being computed for lunar (near side, far side 
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and polar region) surface using TMC and MiniSAR (on-board CHANDRAYAAN-1) image 

data and hence, also the age for the selected test sites of moon is determined. The age dating 

of the test sites is computed using tool (Craterstat in ENVI) taking Crater Size Frequency 

Distribution (CSFD) as input which is computed using two techniques - Semi-automated 

(Crater tools in ArcGIS) and Automated (Moment Measure technique). 

 

1.3  Research Identification  

1.3.1  Research Objective 

 

The main objective of the present study is to characterize the lunar surface based on crater 

shape, size and density.  

1.3.2 Sub-objectives 

 

 To detect craters automatically. 

 To measure morphological attributes (shape and size). 

 To analyse spatial variation in the shape, size and density of impact craters                 

in selected test sites of equatorial, north polar and south polar regions over the 

lunar surface. 

 To determine the age of lunar surface for the selected test sites using impact crater 

size frequency distribution.     

            

1.3.3 Research Questions 

 

For the fulfilment of objectives, present study aims at answering the following questions. 

 Which algorithm is best suited for image-based and topography-based crater 

detection?  

 How efficiently the regional descriptor based algorithm work for automatic 

retrieval of crater shape and size? 

 What is the spatial variation pattern of crater shape, size and density for the 

selected test sites over the lunar surface? 

 How does the age vary for the selected test sites over the lunar surface? 

 

1.4    Research Setup 

 

The methodology, adopted to fulfil the desired objectives is carried out in six phases, is 

described below. Preprocessing, Automatic Crater Detection from image and DEM data, 

Decision, Integration, Morphological Attributes measurements and Surface Dating of Moon 

based on CSFD are the different steps performed for fulfilling the objectives of this research 

work. 
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1.4.1  Phase 1: Pre-processing 

The pre-processing step apply a sequence of filters to remove background features such as 

mountains that are too large not to be part of craters  and to remove features that have 

shapes not like craters using Median filter, Area filter and Shape filter. 

1.4.2  Phase 2:  Automatic Crater Detection  

This phase consists of two approaches for crater detection which are as follows. 

1.4.2.1 Phase 2.1: Image Based Crater Detection 

The image based crater detection approach consists of two techniques viz. Generalized 

Hough Transform and Wavelet Transform.  

1.4.2.2 Phase 2.2: DEM Based Crater Detection 

The DEM based crater detection approach consists of two techniques viz. Watershed 

Transform and Terrain Derivatives. 

1.4.3 Phase 3: Decision 

The integration of the two approaches will be done on the basis of decision parameters like 

edge strength and correlation coefficient which are calculated for the output images of 

detected craters using all the segmentation techniques. 

1.4.4 Phase 4: Integration 

The final craters detected will be the result of integration of one of the image based crater   

detection techniques and one of the DEM based crater detection techniques. 

1.4.5 Phase 5: Morphological Attributes Measurement 

For the measurement of crater attributes (shape and size) of the detected craters, Moment 

Measure technique is being used. 

1.4.6  Phase 6: Surface Dating (Evolution) of Moon based on CSFD 

The age of lunar surface for selected test sites is determined on the basis of the crater size 

frequency distribution (CSFD) which is computed semi automatically (using CraterTool in 

ArcGIS) and automatically (using moment measure technique). 

 

1.5 Structure of the Thesis 

 

This thesis has been organised into six chapters. The first chapter is Introduction which 

gives an overview of the basic concepts used in this research work and the research 

identification. The second chapter is Literature Review of the research done for 

understanding the topics related and relevant to this research work. Third chapter gives 

information about the Study Area and the Datasets used in this research. The fourth chapter 

is dedicated to the details of the complete Methodology.  The fifth chapter explains and 

discusses all the Results obtained in this research and the sixth chapter discusses the 

Conclusions and future Recommendations. 
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2 Literature Review 

 

 

The origin of the Earth and Moon are intimately related. Ancient samples of the Earth are 

likely to be found on the Moon’s surface. Human exploration of the solar system starts at 

the Moon. Impact processes, which affected the Earth’s evolution and biosphere, are best 

studied on the Moon. Impact craters have attracted a lot of attention in the scientific 

community and hence form a major research element. The disastrous effect of impact 

cratering phenomena on the environment provoked the scientists to study and understand 

the impact craters and their characteristics, to explore the effects of such craters on planets 

and to extract useful information from them which are important not only for scientific 

research but also for industrial and commercial purposes. 

 

Craters are studied extensively because they provide us the relative age of the surface and 

more information about the geology of any planetary or satellite body (like moon) in the 

solar system (Sawabe et al., 2006). Craters play an important role to estimate the age of a 

planetary surface or surface unit when sample specimen is not available. The importance of 

impact craters stems from the wealth of information that detailed analysis of their 

distributions and morphology can bring forth. In particular, in the absence of in situ 

measurements, crater counting is the only technique for establishing relative chronology of 

different planetary surfaces (Wise and Minkowski, 1980; Tanaka, 1986). Identifying impact 

craters on planetary surfaces is one of the fundamental tasks in planetary science. Manually 

extracting craters from remotely sensed data is a difficult task because it requires specific 

knowledge as well as skills of extraction and a great deal of man power. Hence efficient and 

effective automatic crater detection method is needed (Yue et al., 2008). Because of the 

importance of craters in the field of planetary science, various automatic crater detection 

algorithms (CDA) have been developed.  

Many research works came up with the idea of automatic identification of impact craters on 

Moon and other planetary bodies. With the help of remote sensing techniques, impact 

craters on other planetary surfaces could be explored and studied. Recently, many planetary 

exploration missions were flown and the data brought by these missions help us to reveal 

the unimagined information of planetary science. For example, high spatial resolution image 

and DEM data are available from the Terrain Camera (TC) sensor onboard Kaguya 

(SELENE) with a spatial resolution of 10 meters (Haruyama et al., 2009) and from the 

Terrain Mapping Camera (TMC) onboard Chandrayan-1 with a spatial resolution of 5 

meters (Arya et al., 2012) for the lunar exploration. The availability of these high resolution 

data has drastically enhanced the detection limit of the craters. 

 

2.1 Development of Automatic Crater Detection Algorithms  

2.1.1 Image based Crater Detection Algorithms 

In planetary context, high resolution grayscale (panchromatic) images are available, so the 

task is to find craters in grayscale images. Image based crater detection approaches can be 

divided into two categories: unsupervised (fully automatic) and supervised (which requires 

training samples from domain expert) methods. The unsupervised methods rely exclusively 
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on pattern recognition techniques to identify crater rims having circular or elliptical features 

in an image (Barata et al., 2004; Cheng et al., 2003; Honda et al., 2002; Kim et al., 2005). 

The general idea of all these methods is to first preprocess the image to enhance the edges of 

the crater rims, and then actual crater detection is done using various techniques like Hough 

Transform (Hough, 1962), genetic algorithms (Honda et al., 2002), or the radial consistency 

algorithm (Earl et al., 2005) that identifies regions of rotational symmetry. The supervised 

methods (Plesko et al., 2004; Vinogradova et al., 2002; Wetzler et al., 2005) depends on 

machine learning concept to train an algorithm for crater detection. In the learning phase, 

the training set of images containing craters labelled by domain experts is fed to the 

algorithm. In the detection phase, the previously trained algorithm detects craters in a new, 

unlabelled set of images. (Burl et al., 2001; Vinogradova et al., 2002) used a continuously 

scalable template model technique to achieve crater detection. (Wetzler et al., 2005) tested a 

number of algorithms and found that the support vector machine algorithm achieves the best 

rate of crater detection. The machine learning based supervised algorithms for crater 

detection work well for small craters and/or for relatively simple terrain, but their efficiency 

drops in proportion to the complexity of the terrain (Vinogradova et al., 2002). On the other 

hand, the pattern recognition based unsupervised algorithms for crater detection work well 

in the limited context of an autonomous spacecraft navigation system (Cheng et al., 2003) 

because of the relative simplicity of asteroid surfaces. 

Use of image data for crater detection involves multistep procedures to identify craters 

however; it has its own limitations. Image shadowing, noise, distortions in the image are 

few factors which result in false crater detection (detection of non-crater structures) which 

leads to the wrong analysis of the crater characteristics. This led to the use of an alternate 

technique of detecting craters which utilizes digital topographic data (DEMs) instead of 

images. DEMs are much more fundamental descriptors of planetary surfaces than images. 

They are suitable for a quantitative geomorphic analysis and are well suited for automatic 

crater detection (Bue and Stepinski, 2007). The high resolution DEMs with near global 

coverage for several planets (Moon, Mars) are available. However there is still very limited 

work done using DEM data showing a lot of scope to implement different methods which 

have been applied on the images in many previous researches. 

2.1.2 DEM based Crater Detection Algorithms 

The research work by Salamuniccar et al. (2011) introduces a hybrid method of automatic 

crater detection based on topography (DEM) reconstructed from optical images from Moon 

Mineralogy Mapper (  ) of CHANDRAYAAN-1 and one selected region of Lunar 

Reconnaissance Orbiter Wide Angle Camera (WAC) global optical image mosaic. This 

DEM based crater detection algorithm (CDA) is used for systematic cataloguing of lunar 

craters. The hybrid crater detection algorithm (CDA) used in this work is integration of the 

topography (DEM) based CDA and CDA based on crater shape based interpolation method 

(Salamuniccar and Loncaric, 2010; Salamuniccar et al., 2011). The hybrid CDA resulted in 

new and improved catalogue with detection of 3570 new lunar craters.    

A combination of segmentation and detection algorithm for automatic crater detection on 

Mars using digital topography (DEM) was developed by Bue and Stepinski (2007). The 

method applies thresholding of the binary images and segmentation approach for delineation 

of craters by topographic curvature as it is a preferred parameter to extract topographic rims 
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of the craters. The algorithm gives a relatively easier tool for identifying small and fresh 

impact craters but fails to detect heavily degraded craters. 

 

2.2 Development of Image Segmentation Techniques  

 

Image segmentation in general is defined as a process of partitioning an image into 

homogenous groups such that each region is homogenous but the union of no two adjacent 

regions is homogenous (Pal and Pal, 1993). It means subdividing the image into regions 

which are called as objects and background and representing the result images with binary 

images, label the objects as “1”and the background as “0”commonly. Image segmentation 

has very wide role in many applications. All previous studies state that image segmentation 

is present in every kind of image analysis for extracting the information from the image. For 

example, in machine vision applications, it is viewed as a bridge between low level and high 

level vision subsystems (Spirkovska, 1993), in medical imaging as a tool to delineate 

anatomical structure and other regions of interest whose a priori knowledge is generally 

available (Pham et al., 2000). In remote sensing application, image segmentation is often 

used for the purpose of change detection and classification. Image segmentation algorithms 

development has been increased after the availability of high resolution remotely sensed 

image (Schiewe, 2002; Blaschke, 2010). 

  

Some of the previous studies (Pal and Pal, 1993; Spirkovaska, 1993) state that image 

segmentation can be categorised based on discontinuity and similarity in the intensity value 

of image. Figure 2.1 shows the image segmentation hierarchy. Discontinuity based 

segmentation means partitioning of the image based on abrupt changes in intensity. This 

change in intensity is due to the presence of points, lines, edges or corners in the image. 

Hence segmentation is done using edge detection techniques viz. Sobel edge detector 

(filter). Sometimes the detected edges have gaps. Hence the edge linking technique (viz. 

Hough transform) is used to group these edges. Similarity based segmentation means 

partitioning of the image into many regions based on intensity similarity. The partitioning is 

done on the basis of threshold. The threshold may be global (thresholds the entire image 

with a single threshold value) and local (partitions a given image into sub images and 

determines a threshold for each of these sub images) which is decided on the basis of spatial 

variance. On the basis of the threshold, image is converted into binary image and finally all 

the similar regions are grouped using region growing techniques and hence the image gets 

segmented.  

 

Guindon (1997) categorised image segmentation in two approaches: image driven and 

model driven approaches. It can be said that image driven approach forms object by 

combining pixels or group of pixels whereas model driven approach moves from splitting 

the whole image into image objects based on heterogeneity criteria (Benz et al., 2004). 

Apart from aforementioned categorisation, image segmentation can also be categorised as 

supervised and unsupervised segmentation. Unsupervised segmentation leads to feature 

extraction and clustering whereas supervised segmentation incorporates segmentation 

accuracy as an addition to unsupervised method. 
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Image based approach works directly on the image pixels and detects objects in the image 

(Zhang et al., 2010). It extracts edges of objects based on the statistical features of the image 

derived from the pixels. This is done with the edge based segmentation techniques. Edge 

based techniques detects edges and then closes the regions by contour generating 

algorithms. Sawabe et al. (2006) used edge detection techniques (Binarization, Fuzzy 

Hough transform) for detecting lunar craters with better accuracy. Edge detection is more 

used for feature extraction in remote sensing (Pham et al., 2000).  

 

Model based approach assumes that objects in an image have certain pattern. Many models 

like Object-Background threshold model, Fractal model and MRF model have been studied 

previously for the purpose of image segmentation (Pal and Pal, 1993). Thresholding based 

object-background methods are not suited for the high resolution images because of high 

degree of variation of histogram and hidden clustering problem (Beveridge et al., 1989). 

High computational complexity and mathematical formulation are the drawbacks of MRF 

model and Fractal model. The newly transformation model (Watershed Transform and 

Wavelet Transform) showed significant results in the segmentation of the remotely sensed 

images. Watershed Transform (model) is a mathematical morphological approach based on 

analogy of flood situation (Beucher, 1992).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Image segmentation hierarchy 

 

In this research work many image segmentation techniques have been used for lunar crater 

detection using image and DEM. A brief review about these image segmentation techniques 

used in previous research work is given below to understand their utility in the present 

work. 
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2.2.1 Wavelet Transform 

Wavelet transform based edge extraction technique has been used in many previous 

researches. It has been used to detect the edges in the image at various decomposition levels. 

According to a paper by AL-HALABI and ABD (2005), Wavelet transform offers extracted 

edges with a natural decomposition of images at multiple resolutions. The efficient results 

came with the Haar wavelet due to its strictness at breakdown points (Bijaoui et al., 1996). 

Zhang and Desai (1997) developed a method for image segmentation based on automatic 

thresholding using multiresolution wavelet transform. The method adaptively chooses 

thresholds to segment the targets from background using multiscale analysis of the 

probability density function (PDF) of the image. In a research work carried out by 

Tamililakkiya (2011) Wavelet (haar) transform was used for extracting edges of linear 

features (ridges) from lunar images and results were found good. 

 

2.2.2 Hough Transform 

Hough transform plays an important role in image segmentation. It deals with the edge 

linking means it fills the gaps in edges and detects boundary of objects in image. Hough 

transform has been used widely in crater detection. In a research of recognition and 

detection of impact craters, Hough transform has been applied on the gradient magnitude 

image of extracted edges (using Sobel filter) of the craters in the image (Bruzzone et al., 

2004). Tamililakkiya (2011) used Circular Hough Transform to detect the craters from lunar 

images efficiently. The Hough transform may be applied on the edges extracted through 

edge detection techniques like Wavelet transform followed by morphological operations. In 

a research work carried out by Bue and Stepinski (2007), Hough transform has been applied 

on the morphologically closed edges extracted with the combination of thresholded 

curvature map and connected components of craters in DEM based crater detection 

algorithm for detecting Martian craters. Kim and Muller introduced an integrated approach 

of crater detection using image and DEM data in which Hough transform was applied for 

grouping of edges of craters extracted from image as well as DEM with good detection 

accuracy.    

 

2.2.3 Watershed Transform 

Watershed transform has been widely used for fast computing and high accuracy in locating 

weak edges of adjacent regions in the field of image segmentation. It is a region based 

segmentation method based on mathematical morphology (Bhagwat et al., 2010). In a 

research carried out by Bue and stepinski (2007), segmentation has been done for detecting 

Martian craters using DEM. Watershed transform was used for segmenting the topographic 

basins into connected components with good accuracy. 

 

Mathematical morphological functions efficiently deal with watershed segmentation 

oriented features such as size, shape area or connectivity for automatic image segmentation 

(Gao et al., 2001). The basic steps used for the segmentation process were simplification, 

marker extraction and boundary detection. Simplification is the removal of unwanted details 

from the image by using area morphology for extracting better segments. The markers based 

on luminance and colours were extracted to precisely locate the boundary of regions of 

interest. Marker extraction and boundary detection methods utilized colour measurement to 
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replace gray scale measurement and the spaces. The gray scale space was replaced by the 

RGB colour space and YUV colour space is replaced by the L ^a^ b colour space. The 

classical watershed algorithm was having over segmentation problem because of noise or 

textured patterns. 

  

Gao et al. (2004) introduced a new marker based watershed algorithm to solve over 

segmentation issue. This technique involves generation of low frequency image generated 

from the gradient map for the extraction of markers using regional minima. Binary marker 

image is generated from the extracted regional minima method. This image has been used 

for suppressing the all intrinsic minima around the extracted markers. The results were 

obtained by applying watershed algorithm on the modified gradients to perform 

segmentation. The implementation of this method required less computation and simple 

parameters when compared to other methods to reduce the over segmentation issues of the 

watershed algorithm. 

 

2.2.4 Estimation of Terrain Derivatives 

DEMs are fundamental descriptors of planetary surfaces as compared to the images. They 

provide a quantitative geomorphic analysis and are well suited for automatic crater 

detection. Craters can be defined in terms of terrain morphometric attributes (slope, aspect, 

topographic curvature) calculated from the DEM.  Bue and Stepinski (2007) gave a DEM 

based automatic crater detection approach in which craters are identified using a 

combination of segmentation (watershed transform) and detection (Hough transform) 

algorithms. Craters have been delineated by topographic curvature (in the gradient direction) 

which reflected the change of slope angle and found well indicator of crater rims on the 

basis of their concavity. Topographic curvature was found the preferred terrain parameter to 

extract topographic rims. Thresholding maps of curvature transforms DEM data into a 

binary image, from which craters are identified using a combination of segmentation and 

detection algorithms. 

  

2.3 Attribute Measurement 

 

To find an image from remotely distributed databases, the image should be described or 

represented by certain features. Shape is an important visual feature of an image used to 

describe image content. There are many shape representation and description techniques 

developed in the past. These techniques are generally classified into two classes of methods: 

contour based and region based methods based on whether shape features are extracted from 

the contour only or from the whole shape region. Contour based shape techniques use shape 

boundary information only while the region based shape techniques use all the pixels within 

the shape region rather than only use of boundary information.  

 

Both classes are further divided into sub-classes: global (continuous) and structural 

(discrete) approaches on the basis of representation of the shape as whole or by 

segments/regions. Global approach does not divide the shape into sub-parts and a feature 

vector derived from the integral boundary is used to describe the shape in terms of shape 
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similarity. Shape similarity is measured usually as a metric distance (Euclidean distance) 

between the acquired feature vectors. On the other hand, discrete approach breaks the shape 

into segments (primitives) using particular criteria. The final shape representation is in the 

form of a string or graph. Shape similarity measurement is done either by string matching or 

graph matching. 

 

These approaches are further distinguished into space domain and transform domain. The 

Boundary Moment descriptor is one of the global contour based shape descriptor. The 

boundary moments are used for reducing the dimensions of the boundary representation. 

The normalized moments which are invariant to shape translation, rotation and scaling are 

computed mathematically. This method is easy to implement (Zhang and Lu, 2004). 

 

Shape representation is a prerequisite for similar shape retrieval. For the analysis of 2D 

shapes, moment measurements have been considered to be very powerful. Size, central 

location and orientation of the shape feature are the essential descriptors which are moment 

based attributes (You and Bhattacharya, 2000). 

 

2.4 Surface Age Dating  

 

Dating of planetary surfaces is one of the important task for understanding a planet’s origin 

and evolution. Crater counts can be used to determine relative and absolute ages if the crater 

production rate and crater size frequency distribution (CSFD) are known (Hartmann, 1966; 

Oberbeck et al., 1977; Ivanov, 2001). The crater chronology method is based on the simple 

idea that older surfaces accumulate more craters than the recent ones (Le Feuvre and 

Wieczorek, 2011). Based on the radiometric dating of existing lunar rock samples, there is 

linear (constant) cratering rate back to around 3 Ga ago and approximately exponential 

beyond that time. The relationship can be approximated by a function which is in 

cumulative form (Michael and Neukum, 2010; Neukum et al., 2001; Stöffler and Ryder, 

2001).  

 

According to Michael and Neukum (2010), the determination of the age of the Lunar 

surface is based on two age functions which are described here. 

 

 Production Function: It describes that how many craters of a given size are 

formed in relation to the number of any size. The assumption here is the CSFD 

should be of homogeneous surface units of any planetary body (Moon or Mars). 

Since the older units are characterised by more number of craters and the younger 

units by lesser number of craters, the production function is constructed by 

piecewise normalization procedure for the entire diameter range. Figure 2.2 (a) 

shows CSFD plot who’s X-axis represents crater diameter and Y-axis represents 

crater cumulative frequency. 

 

 Chronology Function: The empirical relationship between the crater frequencies 

plotted versus the radiometric age. The crater chronology function is based on the 

measurements of the crater size frequency distribution (CSFD), which are linked to 
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the radiometric ages of lunar rocks carried by Apollo missions (Werner and 

Tanaka, 2011). Figure 2.2 (b) shows cratering chronology function where X- axis is 

the surface age and the age exponentially increases after 3Ga. 

            

                                              

Figure 2.2 Age determination graph for Lunar Chronology 
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3 Study Area and Data Used    
 

                   

Ancient samples of the Earth are likely to be found on the Moon’s surface. Impact 

processes, which affected the Earth’s evolution and biosphere, are best studied on the Moon. 

To analyse the lunar surface for understanding the age of the moon in relation to impact 

cratering, we have selected Equatorial region and polar region (North Pole and South Pole 

region from selective sites of Nearside and Farside) of the moon as the study area in this 

research.      

                         

3.1 Study Area of Equatorial Region  

 

The equatorial test site of lunar surface is shown by an image and DEM is shown in Figure 

3.1(a) and (b) respectively. This test site (shown by image and DEM) is used for the 

portability of the image and DEM based segmentation techniques as well as attribute 

measurement technique for computing crater attributes. The test site locations for both 

image and DEM are same and shown in Table 3.2 taken from Indian Space Science Data 

Centre (ISSDC). 

 

            
             (a)                                                              (b) 

                              

                              Figure 3.1 Equatorial test site of moon   

                                                  

3.2  Data Sets of Equatorial Region 

  

Chandrayaan-1, the maiden Indian mission to Moon was launched during 22 October, 2008. 

The main objective of the mission is the photo-selenological and chemical mapping of the 

Moon. TMC is the prime imaging payload to collect stereoscopic data of lunar surface. It 

has 5 m spatial resolution and 20 km swath operating in panchromatic band (500-880 nm). 
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It is an optical imaging payload comprising three cameras with different view angles viz., 

fore, aft and nadir, accomplished through the use of suitably displaced linear arrays in the 

focal plane of a single lens. The Selenographic projection has been used for equatorial 

region. The image based and DEM based crater detection algorithms and the crater attribute 

measurement technique are applied on both data (image and DEM). The ortho image and 

digital elevation model (used in this research work) generated from its stereo pair enable a 

better study of the morphology of various lunar features like craters. The TMC image and 

DEM data has been taken from the ISRO Science Data Archive (ISDA) node handled by 

Indian Space Science Data Centre (ISSDC). The data is freely available and has been 

downloaded from www.issdc.gov.in.  

 

Table 3.1 Location of the test site for equatorial region of moon 

Top Left Top Right Bottom Left Bottom Right 

Latitude Longitude Latitude Longitude Latitude Longitude Latitude Longitude 

15.925 

 

226.827 15.925 228.184 10.156 226.827 10.156 228.184 

 

  

3.3 Study Area of Polar Region  

 

Test sites have been taken from both the poles –North Pole and South Pole from selective 

sites of Nearside and Farside of the lunar surface. The test site locations are shown in Figure 

3.2 and its central Latitude and Longitude located from Virtual Moon Atlas developed by 

Legrand and Chevalley (2013) are described in Table 3.2.                

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 North Pole and South Pole test sites of moon (MiniSAR is overlaid on UVVIS 

Clementine data) 

Two test sites have been selected for the current research study. One test site is selected 

from the North Pole of the near side region and one test site is selected from the South Pole 

of the far side region of the moon. Both the test sites are used for the portability of the 

developed image based segmentation techniques as well as for Moment Measure technique 

for computing crater attributes. The test site in the North Pole is basically in the hilly terrain 
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while the test site in the South Pole which is permanently under shadow region of the moon 

is in different geomorphic location.   

                            

Table 3.2 Location of the test sites for polar region of moon 

Test 

Site 

Description Location (Crater) 

 

Lunar Coordinates 

 

Latitude Longitude 

1 Near Peary Crater (Nearside) 

 

87.5 

 

8.8 

 

2 Near Drygalski P Crater (Farside) 

 

-83.0 

 

-93.7 

 

 

 

3.4 Data Sets of Polar Region  

 

Miniature Synthetic Aperture Radar (Mini-SAR) on-board Chandrayaan 1 which was 

launched on 22 October 2008 is an instrument with single frequency S-band (12.6 cm 

wavelength) with spatial resolution of 75 m per pixel. It employs a unique hybrid 

polarization architecture, which allows the determination of the Stokes parameters from the 

reflected signal. The MiniSAR data is level-2 processed dataset in planetary data system 

(PDS) format that stored radar backscatter response in 4 channels respectively.  

Mini-SAR data comprises two intensity images primarily, horizontal (H) and vertical (V) 

and two cross power intensity images between the H and V received, it exhibits hybrid-

polarity SAR where the transmitted field is circularly polarized, and the subsequent 

resulting backscatter is received in two mutually coherent linear polarizations (Raney, 

2006). The four channel bands of MiniSAR are processed to generate the Stokes parameter 

(Das and Chakraborty, 2011) as given in following equations below 

S1 = <|  |   |  | >                                                                                            (3.1) 

S2 = <|  |   |  | >                                                                                            (3.2) 

S3 = 2Re<  .    >                                                                                                (3.3) 

S4 = -2Im<  .   >                                                                                                (3.4) 

Where, S1, S2, S3 and S4 are the Stokes parameters. S1 and S2 represent the horizontal and 

vertical intensity images respectively and S3 and S4 represent real and imaginary images 

hybrid polarimetric data of MiniSAR respectively. In this work, intensity images (S1 and S2) 

are used with Polar Stereographic projection. MiniSAR data is freely available at Planetary 

Data System node and has been downloaded from http://pds.nasa.gov. 
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4 Methodology 

 

The methodology of this research work is shown below in the flow diagram in Figure 4.1. 

The methodology adopted for this work is explained here. Various approaches and 

techniques are adopted starting from the preprocessing of image and DEM data, 

development of automatic crater detection algorithms for image based and DEM based 

approaches using image segmentation techniques, integration, development of attribute 

measurements technique and computing crater size frequency distribution (CSFD) and 

finally getting age of moon on the basis of computed CSFD. 

 

 
 

Figure 4.1 Flow of the Research Work 
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4.1 Pre-processing 

 

An image of a planetary surface contains many features that are not parts of craters such as 

highlight and shadow. It means the non-crater features also exist which is of no interest to 

our present method. Thus, it is necessary to remove all such features. In the present work, a 

series of filters have been implemented in MATLAB to remove such features. The 

preprocessing has been done for TMC and MiniSAR (North Pole and South Pole) images as 

well as for TMC DEM. For the current methodology, the preprocessing consists of three 

steps which are described one by one below. 

4.1.1  Noise Filter 

A median filter has been applied to the original image and DEM to remove the noise present 

in the background of image. A median filter consisted of a moving window (5x5) is run over 

the image and DEM and computed the output pixel as the median value within the input 

window. The resulting median filtered image having smoothness show only the global 

features (craters) without any noise in the background. The median filter has also removed 

the speckle noise present in the MiniSAR image. 

4.1.2 Area Filter 

An area filter is an attribute filter which uses the number of pixels in a feature as its 

attribute. The filter has been applied on the binary images obtained by thresholding the 

median filtered images and DEM using Otsu's method, which chooses the global threshold 

to minimize the intraclass variance of the black and white pixels (Otsu, 1979).  This filter 

removes all the non-crater features that are not part of craters and also those features that are 

considered too small for reliable crater detection. Features with less than 1000 pixels have 

been removed using area filter. The area filter opens the binary image morphologically. The 

area filtered image is binary image. 

4.1.3 Shape Filter 

After removal of the noise and non-crater features using median and area filters 

respectively, the next step is to remove features that have shapes incompatible with craters. 

For this purpose we have implemented a disk shape filter as a circular averaging filter with 

radius 5 pixels and run it on the image and DEM. The area filtered binary images and DEM 

have been converted back into grayscale integer images using ‘im2uint16’ command in 

MATLAB and then shape filter has been applied on the gray tone images and DEM. The 

shape filter preserves and removes features from the image based on their shapes.  

 

4.2  Crater Detection Techniques 

 

In this work, various crater detection techniques have been used for image based and DEM 

based crater detection approaches. The image based crater detection approach uses 

Generalized Hough Transform and Wavelet Transform as the crater detection techniques 

while the DEM based crater detection approach uses Watershed Transform and Terrain 

Derivatives estimated from DEM as the crater detection techniques. For this purpose, 

automatic crater detection algorithms have been developed in MATLAB which are 

described below. 
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4.2.1 Wavelet Transform 

In the current methodology, Wavelet transform based image segmentation technique has 

been used for the image based crater detection approach. Wavelet transform has been 

applied on the preprocessed image (TMC and MiniSAR) to get multiscale 2-D wavelet 

decomposition of gray scale preprocessed image and the corresponding detailed coefficients 

(horizontal, vertical and diagonal edges responses). The Wavelet decomposition has been 

done using Haar wavelet transformation since it has been found simplest transformation 

method of all and effectively served the edge detection purpose. An object in the image 

which is smaller than the spatial resolution of image can’t be identified. Therefore high 

resolution image is required to solve this problem. If the object size is larger than the spatial 

resolution then the object may get split. Hence multiscale (multiresolution) approach arises 

to solve this issue (Dey et al., 2010). The following steps have been followed for 

implementing edge detection using Wavelet Transform in MATLAB (Mallat, 1989; Open 

discontdemo.m Matlab 2012 (a) Help). 

 Read the original image. 

 Preprocessing of the image is done. 

 Multiscale 2-D Wavelet (Haar) decomposition of gray scale image has been done. 

The Haar wavelet applies a pair of low pass and high pass filters to image 

decomposition. Upto five levels (scales) of decomposition have been done to get the 

detailed edges of craters for TMC image and three levels for MiniSAR images. The 

inbuilt function ‘wavedec2’ of MATLAB has been applied on the image for all the 

five levels and it returns corresponding wavelet decomposition structure having the 

decomposition vector C and the corresponding matrix S for all the five levels. The 

size of vector C and the size of matrix S depend on the type of analyzed image. In 

our case, C is having (3n+1) sections and size of S is (n+2) - by – 2, where n is the 

level of decomposition. 

 After decomposition of the image at five levels, it is reconstructed for 

corresponding levels. 

 The corresponding detailed coefficients (horizontal, vertical and diagonal edge 

responses) for all the five levels have been achieved by passing the wavelet 

decomposition structure, obtained in previous step, to a MATLAB inbuilt function 

‘detcoef2’ as input parameters. 

 Visualize all the detailed coefficients for each level as an image. 

 Continuous Wavelet Transform using Haar wavelet has been applied on the image 

with a scale (s) varying from 1 to 32 to get image details in the form of continuous 

wavelet coefficients using MATLAB inbuilt function ‘cwt’.  

 

The main advantage of Wavelet Transform is that it gives the edge details at multiple scales 

in time-frequency domain. It also gives facility to get details of edge discontinuity at local 

position. Continuous Wavelet Transform (CWT) detects the abrupt transitions (edges) in the 

image. The abrupt transitions affect the CWT coefficients at all scales. Abrupt changes in an 

image or signal produce relatively large wavelet coefficients (in absolute value) centred 

around the discontinuity at all scales. Because of the support of the wavelet, the set of CWT 

coefficients affected by the singularity, increases with increasing scale. This is the definition 

of the cone of influence. The most precise localization of the discontinuity based on the 

CWT coefficients is obtained at the smallest scales. 
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4.2.2 Generalized Hough Transform 

Hough transform is generally used for edge linking and boundary detection purposes in the 

image segmentation process. Results of edge detection methods may contain sparse points, 

instead of straight lines or curves. Therefore, there is need to fit a line to these edge points. 

In the methodology of this work, generalized Hough transform has been used as an image 

segmentation technique in image based crater detection approach applied on TMC and 

MiniSAR images. The generalized Hough Transform has been implemented in MATLAB, 

as per the given equations (Ballard, 1981) for the input preprocessed image. 

 Read the original image. 

 Preprocessing of the image is done. 

 The Sobel edge detector has been used to get all the edges of objects (craters) in the 

preprocessed image. Hence binary egde image is obtained. 

 Horizontal and vertical edge components (GH and GV) are obtained from the Sobel 

edge detector. 

 Finally for each detected edge pixel, the shortest distance, r, (Euclidean distance) 

from edge point (GH, GV) to the reference point (Xc, Yc) has been calculated as per 

the equation 4.1. Initially      ) are coordinates of origin (0, 0). 

 Direction, β, (angle) has been calculated using GH and GV as per the equation 4.2. 

It is the inverse tangent angle of the ratio of GV to GH. This direction is also called 

aspect.                               

 Update the values (Xc, Yc, r, β) for each value of distance and angle as per the 

equations 4.3, 4.4, 4.1 and 4.2 respectively.  

 

                   √       )        ) )                                              (4.1)                       

                 β       (
      )

      )
⁄ )                                                          (4.2)                                      

                   β)                                                                                                  (4.3) 

   

                    β)                                                                                                   (4.4) 

 

The main advantage of generalized Hough transform is that it can tolerate noise and gaps in 

edge image and it is invariant to scale changes, rotations and foreground/background 

reversals. 

4.2.3 Watershed Transform 

A watershed is the ridge that divides areas drained by different river systems. The watershed 

lines determine the boundaries in an image that separate image regions. In the topographic 

representation of an image, the watershed transform computes the catchment basins and 

ridge lines. The catchment basins correspond to the image regions and ridge lines 

correspond to the region boundaries. The watershed transform is often applied for separating 

touching objects in an image. It finds "catchment basins" and "watershed ridge lines" in an 

image by treating it as a surface where light pixels are high and dark pixels are low. In this 

research work, marker controlled watershed transform has been used as image segmentation 

technique under DEM based crater detection approach. It has been applied on the optical 
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DEM data of TMC. A connected component belonging to an image is termed as a marker 

(Gonzalez et al., 2009). A set of internal markers which are inside of the object of interest 

and a set of external markers which are contained within the background are generated. 

Gradient image generated from the gray scale image is modified using these generated 

markers. There is a one to one relationship of marker to a specific watershed region. Thus 

the number of markers generated will be equal to the final number of segmented regions by 

watershed transform.  The algorithm implemented in MATLAB for generating marker 

controlled watershed transformation, shown in figure 4.2, is as follows.  

 Read the original DEM. 

 Pre-processing of the DEM is done. 

 Find the gradient magnitude image using sobel filter. 

 Applying watershed transformation directly on the gradient image generates over 

segmentation which is a serious problem. So to avoid this, marker              

computations is done. 

 The foreground markers are generated by using the morphological operators such 

that it must generate the connected blobs of pixels inside each of the foreground 

objects. These operators also used for enhancing the object of interest and then 

finally, performing the regional minima function for marking the crater as objects. 

 The background markers are also generated to segment the background so that it 

should not be too close to the boundaries of the objects. The watershed transform 

based on the distance transform can be used for thinning the background. 

 The final step is to compute the watershed transform of the marker images. The 

superimposition of the marker image on the mask image (gradient magnitude               

image) needs to be done to run the watershed function to extract the final object 

            boundaries. 
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Figure 4.2 Flowchart of Marker Controlled Watershed Transform 

 

The discussed watershed algorithm consists of the following functions (in MATLAB) to 

delineate the precise boundary of the craters. 

 In this research work the gradient magnitude of the DEM is calculated which 

represents the gray scale transition from base of the craters to the crater rims as the 

intensity in the preprocessed input image. The gradient magnitude image clearly 

represents the craters and crater boundaries from the background. The foreground 

and background markers when used with the gradient magnitude image extract 

precise boundaries of the craters.  

 Morphological operations are used for the analysis and processing of geometrical 

structures on the basis of set theory and topology. These operations are done on 

binary images and gray scale images based on morphology and shapes. Each output 

pixel has a value which is based on the corresponding input pixel and its neighbours 

(Jähne, 2004). The size and shape of the neighbourhood can be selected such that a 

morphological operation constructed is sensitive to specific shapes in the input 

image.  

 The fundamental morphological operations are erosion and dilation. Dilation states 

that if a pixel in the input pixel’s neighbourhood is one, the output pixel is also one 

otherwise zero in the case of binary image, whereas it increases the brightness of 

objects when applied to the gray scale images (Jähne, 2004). It is performed by 

taking the neighbourhood maximum when passing the structuring element over the 

image. Dilation results in growing of the area of the object (crater) and thus removal 

of small holes in the object. In erosion if every pixel in the input pixel’s 

neighbourhood is one the output pixel is one otherwise zero. While in the dilation, 

erosion when applied to the gray scale images reduces the brightness and thus 
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reduces the size of the bright objects on a dark background. It is performed by 

taking the neighbourhood minimum while the structuring element is passed over the 

image. Erosion results in shrinking the object’s area and small isolated regions 

disappear. The structuring element size and shape is responsible for the number of 

pixels added or removed from the objects in an image (Jähne, 2004). 

 The morphological opening and closing operators are the mixture of erosion and 

dilation operators. The morphological opening of an image is defined by performing 

erosion function followed by dilation function with the same structuring element 

used for both operations. On the other hand the morphological closing is the reverse 

as it performs dilation function followed by erosion function with the same 

structuring element (Gonzalez et al., 2009).  

 The structuring element has been used as an essential part of all the morphological 

operations in the marker controlled watershed transformation. It consists of a matrix 

(with 0’s and 1’s) that can have arbitrary shape and size. The neighbourhood is 

defined by the pixels with the value of 1. The ‘disk’ structuring element has been 

used in this research work. It creates a disk shaped, flat structuring element along 

with the radius (R) specified. The radius must be a positive integer and neighbour 

connectivity (N) should be 0, 4, 6 or 8. When N is greater than 0, the approximation 

of the disk shaped structuring element is done by a sequence of N periodic–line 

structuring elements. No approximation is used when N equals 0 and in this case the 

structuring element members consist of all pixels whose centres are not greater than 

radius away from the origin. The default value of N is 4 when N is not specified.  

 The gray scale image can be considered as a three dimensional image where the x 

and y axis represent position of the pixel and the z axis denotes the intensity of each 

pixel. The intensity values can be stated as the elevation of the pixel. The high 

intensity values and the low intensity values of the image can be considered as the 

peaks and valleys in topographical terms respectively. The markers at the low 

intensity valued pixels of the image are determined using the concept of regional 

minima. The regional minima function takes gray scale image as input and 

generates a binary image as output. The values are set to 1 for the regional minima 

pixels and all other are set to 0.  

 The superimposition of the marker image on the gradient magnitude image can be 

done to perform the final watershed transformation on the image. The imposition of 

the marker image consisting of regional minima generated by the morphological 

functions to extract the objects of interest from the mask image is done. The marker 

image creates new minima in the mask image and eliminates all the values of other 

pixels in the image.  

 The process of Skeletonization is used to remove the boundaries of the objects 

(craters) without breaking the object apart and without changing the essential 

structure of the image. The remaining pixels build up the image skeleton.  

 Distance Transform has been used for measuring of the separation of points in the 

image. The distance is calculated between each pixel that is set to   and the nearest 

non zero pixel for the binary images. The Euclidean distance which is the straight 

line distance between two pixels in the image is calculated for watershed transform.  
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4.2.4 Estimation of terrain derivatives 

Topographic information and terrain (DEM) derivatives (slope, aspect, curvature etc.) are 

used to ideally model the terrain. Craters, being morphological features, can be 

characterized well using the topography of the terrain and DEM derivatives. Terrain 

morphometric attributes calculated from the DEM can be used to define the craters. Hence, 

detecting craters from topographic data is much easier than detecting them from imagery 

data. Each pixel in a DEM, which is a raster data set      ), is assigned an elevation 

value      ). The attributes also can be regarded as raster data set, in which each pixel 

value       ) is assigned a value calculated from the   values. The value of an attribute 

at       ) is evaluated using only values of   in the immediate neighbourhood of       ). 

Slope, aspect and topographic curvature are the examples of such attributes (Bue and 

Stepinski, 2007). 

4.2.4.1 Slope and Aspect 

Slope and the aspect are the two first order derivatives of any topographic surface. Slope is 

defined by a plane tangent to the surface as modelled by the DEM at any given point and 

comprises two components named as Gradient and Aspect. Gradient is the maximum rate of 

change of altitude whereas the aspect is the compass direction of this maximum rate of 

change. Gradient is usually measured in per cent, degrees or radians while aspect is 

measured in degrees (Evans, 1980). 

 

Aspect identifies the steepest downslope across a surface. It can be thought of as slope 

direction (compass direction) a hill faces. It is usually measured clockwise in degrees from 0 

(due north) to 360. The value of each location in an aspect dataset indicates the direction the 

surface slope faces. The following steps are followed while computing aspect from DEM 

data of TMC. 

 Read the original DEM. 

 Preprocessing of the DEM is done. 

 The Sobel edge detector has been used to get all the edges of objects (craters) in the 

preprocessed DEM.  

 Gradient magnitude has been calculated using horizontal edge component (GH) and 

vertical edge component (GV) obtained using Sobel edge detector. It is the square 

root of the sum of the squares of GH and GV components as per the equation 4.5. 

This gradient magnitude is known as the slope of the surface. 

 Direction (angle) has been calculated using same GH and GV. It is the inverse 

tangent angle of the ratio of GV to GH as per the equation 4.6. This calculated 

direction is known as the aspect of the surface. 

 

             )   √        )                                                              (4.5)                                                            

                 )       (
  

  
)                                                                                      (4.6) 

 

Craters can be seen very clearly with the help of the parameters like slope and aspect 

estimated from DEM data.  There is no issue of shadow with these parameters. Hence slope 

and aspect are very useful in crater detection using DEM. 
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4.3  Decision 

 

After detecting the craters from image based and DEM based crater detection approaches by 

implementing various image segmentation techniques, a decision has been taken for 

choosing a better crater detection technique in each approach. The decision parameters are 

the edge strength and image detail preserving coefficient which are described below. 

4.3.1 Edge Strength 

Edge strength tells about the sharpness of the edges of the craters detected using image 

segmentation techniques. Edge strength is the magnitude of the gradient obtained from the 

edges present in an image (Gonzalez et al., 2009). The steps implemented in MATLAB for 

calculating the edge strength are as follows. 

 

 The Sobel edge detector has been used to get all the edges of objects (craters) present 

in the output images with detected craters using image segmentation techniques. 

 Gradient magnitude has been calculated using horizontal edge component (GH) and 

vertical edge component (GV) obtained using Sobel edge detector. It is the square 

root of the sum of the squares of GH and GV components as per the equation 4.5. 

This gives the pixel by pixel edge strength. 

 Summation of all the edge pixels of the gradient magnitude image gives the overall 

edge strength of the detected craters.  

 Dividing this overall edge strength by the total number of edge pixels of the gradient 

magnitude image obtained in step 2 gives the overall edge density (normalized edge 

strength) of the detected craters.  

 The higher the value of edge strength or edge density the better is the sharpness of the 

edges of the craters. 

4.3.2 Image Details Preserving Coefficient (Correlation Coefficient) 

The image detail preserving coefficient tells that how much detail of the features present in 

the input preprocessed image is still there in the output image obtained after applying 

segmentation techniques. It is the coefficient of correlation between the output image with 

detected craters and the input preprocessed image (Qiu et al., 2004). Correlation measures 

the association between two variables and quantitates the strength of their relationship. The 

coefficient of correlation (r) is calculated between the output image (B) with detected craters 

using the image segmentation techniques and the input preprocessed image (A), as per the 

given equation 4.7. 

 

   
∑ ∑ (     )(     )  

√ ∑ ∑       ̅)  
 
) ∑ ∑       ̅)  

 
)

                                                   (4.7) 

 

where  ̅ and   ̅  are the mean of image matrices A and B respectively and subscript m and n 

are the rows and columns of the matrices. 

 

In this research work, image matrix B is considered as the dependent variable while the 

image matrix A is considered as the independent variable. A significant advantage of the 
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correlation coefficient (r) is that it does not depend on the units of the variables (A and B) 

and can therefore be used to compare any two variables regardless of their units. The value 

of r exists between -1 to +1. Depending on the value of r, the correlation can be classified as 

negative correlation        ), no correlation     ), positive correlation       ) 

and linear correlation    ). The higher the value of r (highly correlated), the better is the 

detail preservation in the image. In our study, it is positive and negative correlation only 

between the output image (B) of all image segmentation techniques and input preprocessed 

image (A). 

 

4.4 Integration 

 

The integration of one of the image based and DEM based crater detection techniques gives 

the craters which are finally detected. The integration depends upon the values of the 

decision parameters evaluated for each segmentation technique. After evaluating the 

decision parameters for each technique, it is found that aspect which is estimated from the 

DEM under DEM based crater detection approach and the vertical coefficient of wavelet at 

level 3 which is the result of multilevel 2-D wavelet decomposition under image based 

crater detection approach show higher value of edge strength as well as coefficient of 

correlation among all the techniques. It means the edges are more sharp and the correlation 

between A and B is more positive in both cases. Hence both the results are integrated to get 

the final detected craters. The steps implemented in MATLAB for the integration of both 

these results are as follows. 

 The aspect image is converted into binary image. 

 The vertical coefficient image at level 3 is converted into binary image. 

 If the dimension (size) of both the binary images is not matching with each other, 

resize them with respect to each other. 

 The binary images are then multiplied with each other and finally the output is in 

the binary format.  

 Visualize the result as image having final craters detected using the integrated 

approach. 

 

4.5  Crater Attributes Measurement using Moment Measure Technique  

 

Crater attributes (shape, size) have been measured using moment measure technique. 

Moment measure technique is a regional based descriptor which involves two steps: 

 Region of interest identification in the image and differentiating them into 

individual components. 

 Determining the attributes for the components using regional descriptors.  

 

Gonzalez and Wintz (1977) stated that for the two dimensional continuous function      ) 

the moment of order     ) is represented as per the equation 4.8. 

    ∫ ∫          )    
 

  

 

  
                                                                      (4.8) 

For p, q = 0, 1, 2… 
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                   )                  (Object or target; region of interest) 

                   )                  (Background; outside region of interest) 

The two first order moments representing the centre of mass of the image f (x, y) are 

represented as per the equations 4.9 and 4.10 respectively. 

    ∫ ∫       )    
 

  

 

  
                                                                            (4.9) 

 

    ∫ ∫       )    
 

  

 

  
                                                                           (4.10) 

 

The centre of mass is the point in an image where the mass of the image can be concentrated 

without changing the first moment of any given axis. The centre of mass is used to represent 

the location of the image in the field of view (equation 4.9, 4.10) can be used as a reference 

point to locate the location of the image. Lai et al (2008) stated that the centroid of an image 

or the centre of gravity is the balancing point of the image function f (x, y) and m00 is the 

zero order moment, m10 is the first order row moment and m01 is the first order column 

moment.  

 

Central moments and normalized central moments are derived from the objects from which 

length of the major and minor axes and orientation of the objects are determined. Zhou et al. 

(2009) defined central moment as certain particular weighted average of the image pixel’s 

intensities and are useful for interpreting an object after segmentation because of their 

relation to object shape where the object (region of interest) is found based on image 

moments, like area, centroid and orientation. 

 

4.5.1 Moment Measures 

A MATLAB program is written for crater attribute measurement using inbuilt ‘regionprops’ 

function. It measures properties of image regions based on moment measures. The output is 

a structure array with length equal to the number of objects in binary image. It measures a 

set of properties for each connected component (object) in the binary image. The fields of 

the structure array denote different properties for each region. The ‘properties’ can be a 

comma-separated list of strings, a cell array containing strings, the single string 'all', or the 

string ‘basic’. If ‘properties’ is the string ‘all’, regionprops computes the parameters for the 

shape measurements like ‘Area’, ‘Orientation’, ‘Extent’, ‘Perimeter’, ‘Centroid’, 

‘Eccentricity’, ‘MajorAxisLength’, ‘EquivDiameter', ‘MinorAxisLengt’. If ‘regionprops’ is 

applied on a grayscale image, it also returns the parameters like ‘MaxIntensity’, 

‘MinIntensity’, ‘WeightedCentroid’, ‘MeanIntensity’, ‘PixelValues’ for pixel value 

measurements. If ‘properties’ is not specified or if it is the string ‘basic’, regionprops 

computes only the ‘Area’, ‘Centroid’, and ‘BoundingBox’ measurements. 

In the current methodology, we have applied ‘regionprops’ function on a structure of 

connected components of the binary image with final detected craters. The structure of the 

connected components is obtained using ‘bwconncomp’ which is inbuilt function in 

MATLAB and it returns the connected components (CC) found in the binary image. The 

binary image can have any dimension. CC is a structure with four fields which are 

Connectivity (Connectivity of the connected components (objects)), ImageSize (Size of the 

binary image), NumObjects (Number of connected components in binary image) and 

PixelIdxList. ‘bwconncomp’ uses a default connectivity of 8 for two dimensions, 26 for 
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three dimensions. In this methodology, we have used the default connectivity. The steps 

implemented in MATLAB to get the shape measurement parameters from the binary image 

are as follows. 

 Reading the binary image. 

 Getting the structure of connected components (CC) present in the binary image 

using ‘bwconncomp’ function in MATLAB. 

 Applying ‘regionprops’ on the structure of connected components (CC) which 

returns a structure array with length equal to the number of objects in binary image. 

 The function ‘regionprops’ returns the shape measurement parameters for the 

connected components. These parameters are centroid, area, diameter, eccentricity, 

extent, orientation, minor axis length, major axis length, and perimeter. All these 

parameters are supported for 2-D input label matrix which is used to visualize 

connected components (CC). 

 The inbuilt function ‘labelmatrix’ is used to create a label matrix from the output 

(CC) of ‘bwconncomp’. The function ‘labelmatrix’ stores the label matrix in the 

smallest numeric class necessary for the number of objects. 

 

The shape measurement parameters are described one by one below. 

 

Centroid: It is a vector that specifies the centre of mass of the region. The first element of 

centroid is the horizontal coordinate (x-coordinate) of the centre of mass and the second 

element is the vertical coordinate (y-coordinate). All other elements of centroid are in order 

of dimension. 

 

Area:  It is a scalar quantity representing the actual number of pixels in the region. 

 

Diameter: It is a scalar that specifies the diameter of a circle with the same area as the 

region. It is the square root of the ratio of four times the value of area obtained to the value 

of pi as per the equation 4.11. 

         √
       )

  
                                                                                      (4.11) 

 

Eccentricity: It is a scalar that specifies the eccentricity of the ellipse that has the same 

second-moments as the region. The eccentricity is the ratio of the distance between the foci 

of the ellipse to the major axis length as per the equation 4.12. The value of eccentricity is 

between 0 and 1. An ellipse whose eccentricity is exactly 0 is actually a circle, while an 

ellipse whose eccentricity is 1 is ellipse only.  

               
              

                 
                                                                       (4.12) 

 

Extent: It is a scalar that specifies the ratio of pixels in the region to pixels in the total 

bounding box. Bounding Box is the smallest rectangle containing the region. Extent is 

computed as the area divided by the area of the bounding box.  
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Orientation: It is a scalar specifying the angle (in degrees ranging from -90 to 90 degrees) 

between the x-axis and the major axis of the ellipse that has the same second-moments as 

the region.  

 

Minor Axis Length: It is a scalar specifying the length (in pixels) of the minor axis of the 

ellipse that has the same normalized second central moments as the region.  

 

Major Axis Length: It is scalar specifying the length (in pixels) of the major axis of the 

ellipse that has the same normalized second central moments as the region.  

 

Perimeter: It is scalar specifying the distance around the boundary of the region. The 

function ‘regionprops’ computes the perimeter by calculating the distance between each 

adjoining pair of pixels around the border of the region.  

 

The parameters like diameter and area of the detected craters are used to determine the 

crater size frequency distribution (CSFD) which tells the age of the craters and hence about 

the evolution of the lunar surface. 

 

4.6 Surface Age Dating   

 

Counting (frequency) of impact craters is a simple method which is often used to estimate 

the ages of geologic units (craters) on the planetary surfaces when in situ rock samples are 

not available (Le Feuvre and Wieczorek, 2011). It is possible to determine the ages of 

planetary surface units by measuring the crater frequencies using remotely sensed image 

data (Morota et al., 2008). Crater size frequency distributions (CSFDs) have been used to 

get absolute ages with the help of remotely sensed image data (Kneissl et al., 2011). In this 

work, crater size frequency distribution (CSFD) of impact craters has been used for age 

determination of lunar surface using TMC data (equatorial region of moon) and MiniSAR 

data (North Pole and South Pole of moon). Some basic assumptions given by Michael and 

Neukum (2010) have been taken in this research for crater chronology of lunar surface. 

These are given below. 

 The particle flux is constant over the entire surface of moon. 

 The frequency of the impact craters can be measured with respect to the size of the 

craters. 

 The area of interest to be dated is a homogenous unit. 

 

The concept of the age determination involves fitting the observed crater size frequency 

distribution (CSFD) of a given surface unit to a known crater production function (PF) and 

to use the crater frequency for certain crater sizes together with a calibrating chronology 

function (CF) to get absolute age. Therefore, to measure the age of the lunar surface unit, 

cumulative crater size frequency distribution normalized to a unit area is plotted and the 

production function is shifted until it fits the data points. Hence it is possible to read the 

cumulative frequency at standard crater diameter (Michael and Neukum, 2010). 

The steps adopted for crater chronology of lunar surface are described here one by one. 
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 Crater Size Frequency Distribution (CSFD): It computes the number of craters 

per unit area as a function of crater size. The size of the crater (diameter) and the 

frequency of the crater distribution (number of craters per unit area) are the two 

basic parameters that control the crater density of a particular surface. Crater size 

frequency distribution (CSFD) is computed semi automatically in GIS environment 

using ‘CraterTools’ and automatically using shape descriptor technique (based on 

moment measures) which has been implemented in MATLAB. ‘CraterTools’ which 

is a software extension in ArcMap (ArcGIS) toolbar has been used for measuring 

CSFDs on lunar surface. The measured CSFD is independent of map projection and 

image data. The workflow of the ‘CraterTools’ software is divided into two 

processes. The first process is the determination of correct sizes of the impact 

craters present in the homogeneously cratered areas. The second process comprises 

of digitization of the impact craters in the same homogeneous area and 

determination of their correct size in the form of diameters. ‘CraterTools’ computes 

size frequency distribution by generating two empty shape files with attributes that 

are later used for calculation of the crater age. The first polygon shape file is for 

storing one or several measurement areas and second shape file is for storing impact 

craters. The shape file for the impact craters is drawn by three point’s tool which 

digitises the craters using three points on the crater rim from which a circle is 

drawn. The two polygon shape files act as input for generation of CSFD age 

determination (Kneissl et al., 2011). Finally the ‘CraterTools’ gives the size 

(diameter) of craters which is stored as ‘*.diam’ text file. 

 

 Production Function: It describes formation of number of craters of a particular 

size  in relation to the number of craters of any other size. In this work, Neukum 

Production Function (NPF) is used which is 11
th
 order polynomial fit to the 

cumulative number of craters, N per square kilometer with diameters larger than a 

particular diameter D. For the time period of 1Ga, N (D) may be expressed as per 

the equation 4.13 given below. 

 

       )     ∑   [       )]   
                                                      (4.13) 

 

Here, D is in km and N is the number of craters with diameters > D per km
2 
per Ga. 

This equation is valid for D = 0.01 km to 300 km. 

 

 Chronology Function: After plotting of the production function with respect to the 

diameter of the craters, the production function is derived from the SFD plot and 

that value is substituted in the equation 4.14 to calculate the age of the lunar 

surface. 

 

           )            [          )   ]                     (4.14) 

Here, N is the cumulative crater frequency per km
2
 for D > 1 km and t is the crater        

accumulation time (Ga).
        

 

In this research work, ‘Craterstats’ tool, an extension in ENVI is used to get the lunar 

surface ages. The CSFD based diameter files, generated by ‘CraterTools’ software in 
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ArcGIS, are fed to the ‘Craterstats’ tool along with the lunar production function. The 

imported data are binned and the craters are counted. The lunar production function is fitted 

to the CSFD of the detected craters. The production function is shifted until it fits the data 

points and finally we get the age of lunar surface. The age is displayed as isochron and the 

image is exported into ‘*.png’ file format and the composite files are saved (Michael and 

Neukum, 2010). 

 

4.7 Softwares /Tools Used 

 

           MATLAB 12 

           ArcGIS 10 

           ENVI 5 

 

Automatic crater detection algorithms for all the image segmentation techniques used in the 

methodology of this research work have been developed and implemented in MATLAB 

2012 software. The decision parameters also have been computed in MATLAB 2012 

software only. The integration of image based and DEM based crater detection approaches 

have been done in MATLAB 2012 software.  

 

ArcGIS 10 software has been used as a support (platform) to Crater Tools which is a set of 

tools to measure crater size-frequency distribution (CSFD) for lunar surface. 

 

ENVI 5 software has been used as a support (platform) to Craterstats software tool which 

has been used for getting production function and crater chronology (age) function for lunar 

surface. 
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5 Results and Discussion 
 

5.1 Pre-processing 

 

5.1.1 Noise Filter 

 

         
                                (a)                                                            (b) 

 

 

        
                            (c)                                                               (d) 

      

Figure 5.1 Results of noise filter 
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The noise present in the original images and DEM has been removed using median filter. 

The same median filter has been applied on all the images as well as on DEM. Figure 5.1 

shows the results obtained after removing the noise. Figure 5.1(a), (b), (c) and (d) shows the 

results of noise filter applied on TMC image, shown in Figure 3.1(a), TMC DEM, shown in 

Figure 3.1 (b), North Pole MiniSAR image and South Pole MiniSAR image, shown in 

Figure 3.2, respectively. 

 

5.1.2 Area Filter 

 

          
                            (a)                                                               (b) 

 

          
                               (c)                                                               (d)    

    

Figure 5.2 Results of area filter 
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Figure 5.2 (a), (b), (c), (d) shows the area filtered TMC image, TMC DEM North Pole 

MiniSAR image, South Pole MiniSAR image respectively. In these figures the background 

features such as mountains (non-crater features) that are too large not to be part of the 

craters have been removed by applying area filter on the median filtered images and DEM. 

The output (result) of Area filter is in the binary format. 

5.1.3 Shape Filter 

 

                
                           (a)                                                                   (b) 

 

           
                             (c)                                                                (d)  

 

Figure 5.3 Results of shape filter 

 

Figure 5.3 (a), (b), (c), (d) shows the shape filtered TMC image, TMC DEM, North Pole 

MiniSAR image, South Pole MiniSAR image respectively. These results show the features 
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having shapes comparable to the shape of craters. Only circular and elliptical shapes are 

preserved and other shapes have been removed using shape filter applied on the area filtered 

images and DEM. 

 

 

5.2 Crater Detection Techniques 

5.2.1 Wavelet Transform 

 Decomposition  of TMC image at scale (level) 1: 

 

          
                          (a)                                                                  (b) 

 

          
                            (c)                                                                  (d) 

 

Figure 5.4 Results of Wavelet decomposition at scale 1 on TMC image 
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The above results show the detected edges using Haar wavelet decomposition of the TMC 

image at scale 1. Figure 5.4 (a) shows the horizontal coefficient obtained after wavelet 

decomposition at scale 1. The horizontal coefficient gives edge details in horizontal 

direction. Figure 5.4 (b) shows the vertical coefficient obtained after wavelet decomposition 

at scale 1. The vertical coefficient gives edge details in vertical direction. Figure 5.4 (c) 

shows the diagonal coefficient obtained after wavelet decomposition at scale 1. The 

diagonal coefficient gives diagonal edge details. Among all the three coefficients, vertical 

coefficient gives most clear and sharp edges. Figure 5.4 (d) shows the image reconstructed 

from the decomposition structure (matrix) at scale 1. The decomposition at scale 1 is not 

detecting all the edges of craters in the image and even the detected edges (boundaries) of 

craters are not very clear and sharp.  

 

 Decomposition of TMC image at scale (level) 2: 

 

          
(a)    (b) 

 

          
(c)                                                                  (d) 

Figure 5.5 Results of Wavelet decomposition at scale 2 on TMC image 
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The above results show the detected edges using Haar wavelet decomposition of the TMC 

image at scale 2. Figure 5.5 (a) shows the horizontal coefficient obtained after wavelet 

decomposition at scale 2. Figure 5.5 (b) shows the vertical coefficient obtained after wavelet 

decomposition at scale 2. Figure 5.5 (c) shows the diagonal coefficient obtained after 

wavelet decomposition at scale 2. Among all the three coefficients, vertical coefficient gives 

most clear and sharp edges. Figure 5.5 (d) shows the image reconstructed from the 

decomposition structure (matrix) at scale 2. The decomposition at scale 2 gave better results 

of crater detection than the decomposition at scale 1.  

 

 Decomposition of TMC image at scale (level) 3: 

 

          
(a) (b) 

 

          
(c)                                                               (d) 

 

Figure 5.6 Results of Wavelet decomposition at scale 3 on TMC image 
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The above results show the detected edges using Haar wavelet decomposition of the TMC 

image at scale 3. Figure 5.6 (a) shows the horizontal coefficient obtained after wavelet 

decomposition at scale 3. Figure 5.6 (b) shows the vertical coefficient obtained after wavelet 

decomposition at scale 3. Figure 5.6 (c) shows the diagonal coefficient obtained after 

wavelet decomposition at scale 3. Among all the three coefficients, vertical coefficient gives 

most clear and sharp edges. Figure 5.6 (d) shows the image reconstructed from the 

decomposition structure (matrix) at scale 3. The decomposition at scale 3 gave better results 

of crater detection than the decomposition at scale 1 and scale 2.  

 

 Decomposition of TMC image at scale (level) 4: 

 

            
(a)                                                                       (b) 

 

            
  (c)                                                                 (d)                       

 

Figure 5.7 Results of Wavelet decomposition at scale 4 on TMC image 
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The above results show the detected edges using Haar wavelet decomposition of the TMC 

image at scale 4. Figure 5.7 (a) shows the horizontal coefficient obtained after wavelet 

decomposition at scale 4. Figure 5.7 (b) shows the vertical coefficient obtained after wavelet 

decomposition at scale 4. Figure 5.7 (c) shows the diagonal coefficient obtained after 

wavelet decomposition at scale 4. Among all the three coefficients, vertical coefficient gives 

most clear and sharp edges. Figure 5.7 (d) shows the image reconstructed from the 

decomposition structure (matrix) at scale 4. The decomposition at scale 4 gave very coarse 

details of edges at pixel level. At this scale of decomposition, shape of craters got destroyed. 

Hence the craters are not detectable at scale 4. 

 

 Decomposition of TMC image at scale (level) 5: 

 

          
                          (a)                                                               (b) 

 

         
(c)                                                               (d) 

 

Figure 5.8 Results of Wavelet decomposition at scale 5 on TMC image 
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The above results show the detected edges using Haar wavelet decomposition of the TMC 

image at scale 5. Figure 5.8 (a) shows the horizontal coefficient obtained after wavelet 

decomposition at scale 5. Figure 5.8 (b) shows the vertical coefficient obtained after wavelet 

decomposition at scale 5. Figure 5.8 (c) shows the diagonal coefficient obtained after 

wavelet decomposition at scale 5. Among all the three coefficients, vertical coefficient gives 

most clear and sharp edges. Figure 5.8 (d) shows the image reconstructed from the 

decomposition structure (matrix) at scale 5. The edge details at scale 5 are coarser than the 

edge details at scale 4.  

 

Larger is the scale, the details are coarser. As the scale of decomposition increases, shape of 

craters is also getting destroyed. Hence the craters in the TMC image are not detectable at 

scale larger than 3. Craters are best detected at scale 3 with their preserved shapes in the 

TMC image. 

 

 Continuous Wavelet Transform (CWT) of TMC image: 

 

                 
                              (a)                                                                   (b) 

 
                                                                   (c) 

Figure 5.9 Results of Continuous Wavelet Transform on TMC image 
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The continuous wavelet coefficients have been visualized as 3D plot and surface plot. At 

lower value of s the image is compressed and high frequency (fine) details of the features 

(craters) are achieved. At higher value of s the image gets stretched and low frequency 

(coarse) details of the features are achieved. Figure 5.9 (a) shows the abrupt changes 

occurred in the TMC image in time-scale domain. These changes are due to the edges of 

craters. CWT finds the position of these changes with respect to scale varying from 1 to 32. 

Figure 5.9 (b) shows the 3-D plot of CWT, applied on the TMC image, with third variable 

as CWT coefficients. Figure 5.9 (c) shows the position of lines of maxima with respect to 

the scale for TMC image. The lines of maxima are calculated from the moduli of CWT 

coefficients.   

 Decomposition of North Pole MiniSAR image at scale (level) 1: 

 

          
                           (a)                                                                (b) 

 

          
 (c)                                                              (d) 

Figure 5.10 Results of Wavelet decomposition at scale 1 on North Pole MiniSAR image 
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The above results show the detected edges using Haar wavelet decomposition of the North 

Pole MiniSAR image at scale 1. Figure 5.10 (a) shows the horizontal coefficient obtained 

after wavelet decomposition at scale 1. The horizontal coefficient gives edge details in 

horizontal direction. Figure 5.10 (b) shows the vertical coefficient obtained after wavelet 

decomposition at scale 1. The vertical coefficient gives edge details in vertical direction. 

Figure 5.10 (c) shows the diagonal coefficient obtained after wavelet decomposition at scale 

1. The diagonal coefficient gives diagonal edge details. Among all the three coefficients, 

vertical coefficient gives most clear and sharp edges. Figure 5.10 (d) shows the image 

reconstructed from the decomposition structure (matrix) at scale 1. The decomposition at 

scale 1 is giving the edge details at pixel level of the image and the shape of craters is also 

preserved.   

 

 Decomposition of North Pole MiniSAR image at scale (level) 2: 

 

             
                              (a)                                                            (b) 

 

            
                                (c)                                                           (d) 

Figure 5.11 Results of Wavelet decomposition at scale 2 on North Pole MiniSAR image 
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The above results show the detected edges using Haar wavelet decomposition of the North 

Pole MiniSAR image at scale 2. Figure 5.11 (a) shows the horizontal coefficient obtained 

after wavelet decomposition at scale 2. Figure 5.11 (b) shows the vertical coefficient 

obtained after wavelet decomposition at scale 2. Figure 5.11 (c) shows the diagonal 

coefficient obtained after wavelet decomposition at scale 2. Among all the three 

coefficients, vertical coefficient gives most clear and sharp edges. The coefficients obtained 

at scale 2 give lesser details than the coefficients at scale 1. Figure 5.11 (d) shows the image 

reconstructed from the decomposition structure (matrix) at scale 2. The decomposition at 

scale 2 does not give fine edge details at pixel level and at this scale of decomposition, 

shape of craters got destroyed. Hence the craters are not detectable at scale 2. 

 

 Decomposition of North Pole MiniSAR image at scale (level) 3: 

 

           
                              (a)                                                             (b) 

 

           
           (c)                                                           (d) 

 

Figure 5.12 Results of Wavelet decomposition at scale 3 on North Pole MiniSAR image 
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The above results show the detected edges using Haar wavelet decomposition of the North 

Pole MiniSAR image at scale 3. Figure 5.12 (a) shows the horizontal coefficient obtained 

after wavelet decomposition at scale 3. Figure 5.12 (b) shows the vertical coefficient 

obtained after wavelet decomposition at scale 3. Figure 5.12 (c) shows the diagonal 

coefficient obtained after wavelet decomposition at scale 3. The coefficients obtained at 

scale 3 give lesser details than the coefficients at scale 1 and scale 2. Figure 5.12 (d) shows 

the image reconstructed from the decomposition structure (matrix) at scale 2. The 

decomposition at scale 3 gives lesser edge details at pixel level and at this scale of 

decomposition, shape of craters got more destroyed. Hence the craters are not detectable at 

scale 3. 

 

As the scale of decomposition increases, edge details are less and the shape of craters is also 

getting destroyed. Hence the craters in the North Pole MiniSAR image are not detectable at 

scale larger than 1. Craters of North Pole MiniSAR image are best detected at level 1 with 

the preservation of their shapes. 

 

 Continuous Wavelet Transform (CWT) of North Pole MiniSAR image: 

 

             
                                  (a)                                                         (b) 

                                             
                                                                      (c) 

Figure 5.13 Results of Continuous Wavelet Transform on North Pole MiniSAR image 
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The continuous wavelet coefficients have been visualized as 3D plot and surface plot. At 

lower value of s the image is compressed and high frequency (fine) details of the features 

(craters) are achieved. At higher value of s the image gets stretched and low frequency 

(coarse) details of the features are achieved. Figure 5.13 (a) shows the abrupt changes 

occurred in the North Pole MiniSAR image in time-scale domain. These changes are due to 

the edges of craters. CWT finds the position of these changes with respect to scale varying 

from 1 to 32. Figure 5.13 (b) shows the 3-D plot of CWT, applied on the North Pole 

MiniSAR image, with third variable as CWT coefficients. Figure 5.13 (c) shows the 

position of lines of maxima with respect to the scale for North Pole MiniSAR image. The 

lines of maxima are calculated from the moduli of CWT coefficients.   

 

 Decomposition of South Pole MiniSAR image at scale (level) 1: 

 

           
      (a)                                                                 (b) 

    

          
                                (c)                                                              (d) 

Figure 5.14 Results of Wavelet decomposition at scale 1 on South Pole MiniSAR image 
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The above results show the detected edges using Haar wavelet decomposition of the South 

Pole MiniSAR image at scale 1. Figure 5.14 (a) shows the horizontal coefficient obtained 

after wavelet decomposition at scale 1. The horizontal coefficient gives edge details in 

horizontal direction. Figure 5.14 (b) shows the vertical coefficient obtained after wavelet 

decomposition at scale 1. The vertical coefficient gives edge details in vertical direction. 

Figure 5.14 (c) shows the diagonal coefficient obtained after wavelet decomposition at scale 

1. The diagonal coefficient gives diagonal edge details. Among all the three coefficients, 

vertical coefficient gives most clear and sharp edges. Figure 5.14 (d) shows the image 

reconstructed from the decomposition structure (matrix) at scale 1. The decomposition at 

scale 1 is giving the edge details at pixel level of the image and the shape of the craters is 

preserved. 

 

 Decomposition of South Pole MiniSAR image at scale (level) 2: 

 

          
                             (a)                                                           (b) 

 

          
                             (c)                                                            (d) 

 

Figure 5.15 Results of Wavelet decomposition at scale 2 on South Pole MiniSAR image 



46 
 

The above results show the detected edges using Haar wavelet decomposition of the South 

Pole MiniSAR image at scale 2. Figure 5.15 (a) shows the horizontal coefficient obtained 

after wavelet decomposition at scale 2. Figure 5.15 (b) shows the vertical coefficient 

obtained after wavelet decomposition at scale 2. Figure 5.15 (c) shows the diagonal 

coefficient obtained after wavelet decomposition at scale 2. Among all the three 

coefficients, vertical coefficient gives most clear and sharp edges. The coefficients obtained 

at scale 2 give lesser details than the coefficients at scale 1. Figure 5.15 (d) shows the image 

reconstructed from the decomposition structure (matrix) at scale 2. The decomposition at 

scale 2 gives lesser edge details at pixel level and at this scale of decomposition, shape of 

craters also got destroyed. Hence the craters are not detectable at scale 2. 

 

 Decomposition of South Pole MiniSAR image at scale (level) 3: 

 

           
(a)                                                            (b) 

 

           
                             (c)                                                             (d) 

 

Figure 5.16 Results of Wavelet decomposition at scale 3 on South Pole MiniSAR image 
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The above results show the detected edges using Haar wavelet decomposition of the South 

Pole MiniSAR image at scale 3. Figure 5.16 (a) shows the horizontal coefficient obtained 

after wavelet decomposition at scale 3. Figure 5.16 (b) shows the vertical coefficient 

obtained after wavelet decomposition at scale 3. Figure 5.16 (c) shows the diagonal 

coefficient obtained after wavelet decomposition at scale 3. The coefficients obtained at 

scale 3 give lesser details than the coefficients at scale 1 and scale 2. Figure 5.16 (d) shows 

the image reconstructed from the decomposition structure (matrix) at scale 2. The 

decomposition at scale 3 gives lesser edge details at pixel level and at this scale of 

decomposition, shape of craters also got more destroyed. Hence the craters are not 

detectable at scale 3. 

 

As the scale of decomposition increases, edge details are less and the shape of craters is also 

getting destroyed. Hence the craters in the South Pole MiniSAR image are not detectable at 

scale larger than 1. Craters of South Pole MiniSAR image are best detected at level 1 with 

the preservation of their shapes. 

 

 Continuous Wavelet Transform (CWT) of South Pole MiniSAR image: 

 

        
(a) (b) 

 

 
                                                                 (c) 

Figure 5.17 Results of Continuous Wavelet Transform on South Pole MiniSAR image 
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The continuous wavelet coefficients have been visualized as 3D plot and surface plot. At 

lower value of s the image is compressed and high frequency (fine) details of the features 

(craters) are achieved. At higher value of s the image gets stretched and low frequency 

(coarse) details of the features are achieved. Figure 5.17 (a) shows the abrupt changes 

occurred in the South Pole MiniSAR image in time-scale domain. These changes are due to 

the edges of craters. CWT finds the position of these changes with respect to scale varying 

from 1 to 32. Figure 5.17 (b) shows the 3-D plot of CWT, applied on the South Pole 

MiniSAR image, with third variable as CWT coefficients. Figure 5.17 (c) shows the 

position of lines of maxima with respect to the scale for South Pole MiniSAR image. The 

lines of maxima are calculated from the moduli of CWT coefficients.   

5.2.2 Generalized Hough Transform 

 

           
(a)                                                                (b) 

 

          
 (c)                                                               (d)  

Figure 5.18 Results of Generalized Hough Transform on TMC image 
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These are the results of Generalized Hough Transform applied on TMC image. Figure 5.18 

(a) shows all the edges of craters of TMC image. These edges are detected using Sobel edge 

detector. These edges are sparse means they are not linked. Figure 5.18 (b) shows the 

horizontal component of the detected edges of TMC image. The horizontal component 

shows the edges in horizontal direction of the image. Figure 5.18 (c) shows the vertical 

component of the detected edges of TMC image. The vertical component shows the edges in 

vertical direction of the image. Figure 5.18 (a), (b), (c) show the intermediate results of 

Generalized Hough Transform. Figure 5.18 (d) shows the final result of Generalized Hough 

Transform on TMC image. In the final result, all the edges are linked (grouped) by Hough 

Tranform. Thus the image got segmented and hence the craters have been detected in TMC 

image using image segmentation technique (Generalized Hough Transform).  

 

          
(a)                                                            (b) 

 

          
                            (c)                                                              (d) 

 

Figure 5.19 Results of Generalized Hough Transform on North Pole MiniSAR image 
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These are the results of Generalized Hough Transform applied on the North Pole MiniSAR 

image. Figure 5.19 (a) shows all the edges of craters of North Pole MiniSAR image.These 

edges are detected using Sobel edge detector. These edges are sparse means they are not 

linked. Figure 5.19 (b) shows the horizontal component of the detected edges of North Pole 

MiniSAR image.The horizontal component shows the edges in horizontal direction of the 

image. Figure 5.19 (c) shows the vertical component of the detected edges of North Pole 

MiniSAR image. The vertical component shows the edges in vertical direction of the image. 

Figure 5.19 (a), (b) and (c) show the intermediate results of Generalized Hough Transform. 

Figure 5.19 (d) shows the final result of Generalized Hough Transform on North Pole 

MiniSAR image. In the final result, all the edges are linked (grouped) by Hough Tranform. 

Thus the image got segmented and hence the craters have been detected in North Pole 

MiniSAR image using image segmentation technique (Generalized Hough Transform).  

 

                        
                              (a)                                                           (b) 

 

           
                              (c)                                                            (d) 

Figure 5.20 Results of Generalized Hough Transform on South Pole MiniSAR image 
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These are the results of Generalized Hough Transform applied on the South Pole MiniSAR 

image. Figure 5.20 (a) shows all the edges of craters of South Pole MiniSAR image.These 

edges are detected using Sobel edge detector. These edges are sparse means they are not 

linked. Figure 5.20 (b) shows the horizontal component of the detected edges of South Pole 

MiniSAR image.The horizontal component shows the edges in horizontal direction of the 

image. Figure 5.20 (c) shows the vertical component of the detected edges of South Pole 

MiniSAR image. The vertical component shows the edges in vertical direction of the image. 

Figure 5.20 (a), (b) and (c) show the intermediate results of Generalized Hough Transform. 

Figure 5.20 (d) shows the final result of Generalized Hough Transform on South Pole 

MiniSAR image. In the final result, all the edges are linked (grouped) by Hough Tranform. 

Thus the image got segmented and hence the craters have been detected in South Pole 

MiniSAR image using image segmentation technique (Generalized Hough Transform).  

     

5.2.3 Watershed Transform 

 

            
(a)       (b)    

 

             
(c)                                                                   (d) 
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(e)                                                                (f) 

 

            
                               (g)                                                                (h) 

 

Figure 5.21 Results of Watershed Transform on TMC DEM 

The Marker controlled watershed transformation has segmented the TMC DEM using the 

foreground and background markers. Figure 5.21 (a) shows the gradient magnitude, 

calculated by Sobel filter, as segmentation function. Figure 5.21 (b) shows the 

oversegmentation problem occurred due to watershed transformation of gradient magnitude 

image. Hence preprocessing like maker computations has been done to avoid this problem. 

Figure 5.21 (c) shows the result of the operation ‘opening by reconstruction’ which is an 

erosion followed by a morphological reconstruction It is used to mark the foreground 

objects (craters). Figure 5.21 (d) shows the result of ‘opening-closing by reconstruction’ 

wich is dilation followed by reconstruction. Reconstruction based opening and closing is 
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working without affecting the overall shapes of the objects. The foreground objects 

(connected blobs) are more clear in this image. Figure 5.21 (e) shows the regional maxima 

which is calculated to get the foreground markers. Figure 5.21 (f) shows the image of the 

foreground markers superimposed on  the original image. Figure 5.21 (g) shows the 

thresholded binary image which is used for computing background markers. Finally the 

watershed transform has been computed. Figure 5.21 (h) shows the final result of watershed 

segmentation in which markers and object boundaries are superimposed on the TMC DEM.  

 

5.2.4 Estimation of terrain derivatives 

5.2.4.1 Slope and Aspect 

 

                                  
(a) (b) 

 

Figure 5.22 Results of Terrain Derivatives on TMC DEM 

Figure 5.22 (a) shows the slope of TMC DEM. Figure 5.22 (b) shows the aspect of TMC 

DEM. The boundaries of the craters are very clearly defined by slope and aspect which have 

been estimated from TMC DEM. Hence craters have been detected with their clear 

boundaries using DEM derivatives (slope and aspect).  

 

5.3 Decision 

 

For the purpose of integration of image based and DEM based crater detection approaches, 

decision has been taken on the basis of edge strength and correlation coefficient for 

selecting one of the better image segmentation techniques used under both image based 

crater detection approach as well as DEM based crater detection approach. 
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5.3.1 Edge Strength 

 

 For Image based crater detection approach 

The edge strength and edge density (normalized edge strength) have been calculated 

for image segmentation techniques (Wavelet Transform and Generalized Hough 

Transform) used under image based crater detection approach. Table 5.1 shows the 

values of edge strength and edge density. 

 

Table 5.1 Values of edge strength and edge density for the output of image segmentation 

techniques under image based crater detection approach 

Parameter Wavelet Transform 

(Vertical coefficient at scale 3) 

Generalized Hough 

Transform 

Edge Strength 2244595.7 2048280349 

Edge Density 24.18 350.90 

 

From Table 5.1, the values of edge strength and edge density are higher for Generalized 

Hough Transform than the values for Wavelet Transform.  

 

 For DEM based crater detection approach 

The edge strength and edge density (normalized edge strength) have been calculated 

for image segmentation techniques (Watershed Transform and Terrain Derivatives) 

used under DEM based crater detection approach. Table 5.2 shows the values of 

edge strength and edge density. 

 

Table 5.2 Values of edge strength and edge density for the output of image segmentation 

techniques under DEM based crater detection approach 

Parameter Watershed Transform Terrain Derivative 

(Aspect) 

Edge Strength 328470 14783551 

Edge Density 0.05 26.97 

 

Table 5.2 shows that the values of edge strength and edge density are higher for Terrain 

Derivative than the values for Watershed Transform.  

 

5.3.2  Image Details Preserving Coefficient (Correlation Coefficient) 

 

 For Image based crater detection approach 

The correlation coefficient has been calculated between the results of image 

segmentation techniques (Wavelet Transform and Generalized Hough Transform) 

used under image based crater detection approach and the original image. Table 5.3 

shows the values of correlation coefficient. 
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Table 5.3 Value of correlation coefficient for the output of image segmentation techniques 

under image based crater detection approach 

Parameter Wavelet Transform 

(Vertical coefficient at scale 3) 

Generalized Hough 

Transform 

Correlation Coefficient 0.05 -0.03 

 

Table 5.3 shows that the value of correlation coefficient is higher for Wavelet Transform 

than the value for Generalized Hough Transform. 

 

 For DEM based crater detection approach 

The correlation coefficient has been calculated between the results of image 

segmentation techniques (Watershed Transform and Terrain Derivatives) used 

under DEM based crater detection approach and the original DEM. Table 5.4 shows 

the values of correlation coefficient. 

 

Table 5.4 Value of correlation coefficient for the output of image segmentation techniques 

under DEM based crater detection approach 

Parameter Watershed Transform Terrain Derivatives 

(Aspect) 

Correlation Coefficient -0.03 0.32 

 

Table 5.4 shows that the value of correlation coefficient is higher for Terrain Derivative 

than the value for Watershed Transform.  

After evaluating the decision parameters under image based crater detection approach, it is 

found that the vertical coefficient of wavelet at scale 3 of TMC image show higher value of 

correlation coefficient as compared to that of Generalized Hough Transform. It means the 

image details of the original image are more preserved in the vertical coefficient at scale 3 

than the details preserved by the Generalized Hough Transform. But the value of edge 

strength and edge density for Wavelet Transform, vertical coefficient at scale 3, is found 

lesser than the value for Generalized Hough Transform. It means that the edges are less 

strongly linked by the vertical coefficient at scale 3 as compared to that of the Generalized 

Hough Transform. Finally, the image details have been given more preference in this case 

and hence, vertical coefficient is selected as the better technique for integration purpose. 

 

After evaluating the decision parameters under DEM based crater detection approach, it is 

found that Terrain Derivative, Aspect, of TMC DEM shows higher values of edge strength 

as well as correlation coefficient as compared to that of Watershed Transform technique. 

Hence, aspect is selected as the better technique for integration purpose.  

  

5.4 Integration 

 

The integrated approach of crater detection has been developed by integrating the result of 

crater detection using image and DEM. For this purpose, the result of Wavelet Transform 

technique under image based crater detection approach and the result of Terrain Derivatives 
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under DEM based crater detection approach have been integrated to do final detection of 

craters. These results act as inputs to the integration. The integration is done by 

multiplication of these inputs. Before doing integration, both these inputs have been 

converted into binary image format. Figure 5.23 (a) and (b) show the aspect and vertical 

coefficient of wavelet at level 3 respectively in binary image format. Hence both the binary 

images have been multiplied with each other and the output is the binary image of TMC 

shown in Figure 5.23 (c) with final craters detected. The multiplication is equivalent to the 

binary ‘AND’ operation. 

 

            
                                                        (a)                                                           (b) 

 

 
                                                                   (c) 

 

Figure 5.23 Results of Integration 
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5.5 Crater Attributes Measurement using Moment Measure Technique 

 

5.5.1  Moment Measures     

The shape and size attributes of crater have been computed using the moment measure 

technique in MATLAB. These attributes have been computed for the craters of the 

equatorial region as well as for the polar regions of moon. Hence the moment measure 

technique has been applied on the detected craters of TMC data and also on the North Pole 

and South Pole MiniSAR data.  

 

 For Equatorial Test site 

The crater attributes for equatorial test site of moon have been shown in Table 5.5. 

Table 5.5 shows the values of shape and size attributes for different craters in the 

equatorial test site of moon. 

 

Table 5.5 Crater attributes for equatorial test site of moon 

Centroid Diameter 

(m) 

Eccentricity Major 

Axis 

Length 

(m) 

Minor 

Axis 

Length 

(m) 

Area 

(pixel) X (m) Y (m) 

2.99E+02 5.92E+03 9.76E+02 9.72E-01 2.16E+03 5.05E+02 2.99E+04 

2.56E+02 8.57E+03 3.60E+02 8.13E-01 4.91E+02 2.86E+02 4.08E+03 

1.02E+03 9.71E+03 1.62E+03 8.62E-01 2.56E+03 1.30E+03 8.19E+04 

3.58E+02 1.38E+04 8.33E+02 9.47E-01 1.65E+03 5.30E+02 2.18E+04 

2.98E+02 1.52E+04 7.83E+02 9.41E-01 1.38E+03 4.67E+02 1.93E+04 

2.91E+02 1.89E+04 6.89E+02 9.15E-01 1.10E+03 4.44E+02 1.49E+04 

5.40E+02 4.61E+03 6.72E+02 8.73E-01 1.00E+03 4.88E+02 1.42E+04 

5.84E+02 1.25E+03 3.99E+02 6.53E-01 4.81E+02 3.64E+02 5.00E+03 

1.02E+03 2.95E+03 1.26E+03 9.05E-01 2.24E+03 9.52E+02 5.02E+04 

4.68E+03 1.28E+04 7.30E+03 9.13E-01 1.63E+04 6.63E+03 1.68E+06 

1.65E+03 1.91E+04 1.46E+03 7.78E-01 2.22E+03 1.39E+03 6.67E+04 

2.11E+03 1.33E+04 1.16E+03 9.20E-01 2.33E+03 9.12E+02 4.21E+04 

2.12E+03 5.70E+03 9.93E+02 8.32E-01 1.38E+03 7.65E+02 3.10E+04 

3.24E+03 7.65E+01 2.18E+02 7.41E-01 2.73E+02 1.83E+02 1.49E+03 

3.24E+03 3.22E+03 8.28E+02 3.69E-01 9.06E+02 8.42E+02 2.15E+04 

3.01E+03 6.28E+03 3.49E+02 7.84E-01 4.51E+02 2.80E+02 3.82E+03 

4.66E+03 2.30E+03 4.36E+02 4.68E-01 4.66E+02 4.12E+02 5.98E+03 

4.71E+03 4.28E+03 4.08E+02 5.12E-01 4.48E+02 3.85E+02 5.23E+03 

4.90E+03 1.07E+04 5.86E+02 8.39E-01 8.16E+02 4.43E+02 1.08E+04 

5.61E+03 1.33E+04 8.26E+02 6.62E-01 1.35E+03 1.01E+03 2.14E+04 

5.52E+03 1.33E+04 2.62E+02 7.46E-01 3.22E+02 2.14E+02 2.15E+03 

6.49E+03 9.04E+02 1.70E+03 2.97E-01 1.97E+03 1.88E+03 9.05E+04 

7.51E+03 2.41E+03 9.65E+02 9.14E-01 1.57E+03 6.37E+02 2.92E+04 
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Diameter and eccentricity describe the size and shape of craters respectively. Hence, the 

variation in the values of diameter and eccentricity parameters for different craters tells 

about the variation in the size and shape of craters in the equatorial test site of moon. From 

the Table 5.5, it clear that the size of craters varies from 218 m (0.22 km) to 7300 m (7 km). 

It means the equatorial region of the moon is having craters ranging from very small size to 

medium size. Similarly, the shape of the craters varies from 0.29 to 0.97. It means there are 

craters on the equatorial region having shape near circular to elliptical 

 

 For North Polar Test site 

The same crater attributes have been computed for North Polar test site of moon 

shown in Table 5.6. Table 5.6 shows the values of shape and size attributes for 

different craters in the North Polar test site of moon. Diameter and eccentricity 

describe the size and shape of craters respectively. Hence, the variation in the values 

of diameter and eccentricity parameters for different craters tells about the variation 

in the size and shape of craters in the North Polar test site of moon. From the Table 

5.6, it clear that the size of craters varies from 1610 m (1.6 km) to 13900 m (13.9 

km). It means the north polar region of the moon is having craters ranging from 

small size to large size. Similarly, the shape of the craters varies from 0.36 to 0.93. 

It means there are craters on the North Polar Region having shape near circular to 

near elliptical. 

 

Table 5.6 Crater attributes for North Polar test site of moon 

Centroid Diameter 

(m) 

Eccentricity Major 

Axis 

Length 

(m) 

Minor 

Axis 

Length 

(m) 

Area 

(pixel) X (m) Y (m) 

4.95E+03 2.66E+03 5.98E+03 3.64E-01 8.63E+03 8.03E+03 4.99E+03 

1.04E+04 1.20E+04 1.39E+04 5.36E-01 2.36E+04 1.99E+04 2.68E+04 

8.03E+03 2.26E+04 8.72E+03 8.56E-01 2.10E+04 1.09E+04 1.06E+04 

5.80E+03 2.40E+04 4.08E+03 3.96E-01 4.38E+03 4.03E+03 2.33E+03 

1.34E+04 2.79E+04 2.80E+03 8.76E-01 4.62E+03 2.23E+03 1.09E+03 

1.61E+04 2.40E+04 5.25E+03 5.98E-01 5.95E+03 4.77E+03 3.85E+03 

1.57E+04 5.31E+02 1.61E+03 8.64E-01 2.55E+03 1.29E+03 3.63E+02 

1.92E+04 6.09E+03 7.89E+03 9.33E-01 1.40E+04 5.02E+03 8.70E+03 

1.98E+04 2.65E+04 4.26E+03 8.96E-01 8.41E+03 3.74E+03 2.54E+03 

 

 For South Polar Test site 

The same crater attributes have been computed for South Polar test site of moon 

shown    in Table 5.7. Table 5.7 shows the values of shape and size attributes for 

different craters in the South Polar test site of moon. Diameter and eccentricity 

describe the size and shape of craters respectively. Hence, the variation in the values 

of diameter and eccentricity parameters for different craters tells about the variation 

in the size and shape of craters in the South Polar test site of moon. From the Table 

5.7, it clear that the size of craters varies from 1470 m (1.47 km) to 6360 m (6.36 

km). It means the south polar region of the moon is having craters ranging from 
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small size to medium size. Similarly, the shape of the craters varies from 0 to 0.82. 

It means there are craters on the South Polar Region having shape circular to 

elliptical. 

 

Table 5.7 Crater attributes for South Polar test site of moon 

Centroid Diameter 

(m) 

Eccentricity Major 

Axis 

Length 

(m) 

Minor 

Axis 

Length 

(m) 

Area 

(pixel) 
X (m) Y (m) 

1.16E+03 2.01E+03 3.19E+03 7.07E-01 3.92E+03 2.77E+03 1.42E+03 

1.28E+03 1.93E+04 3.43E+03 7.67E-01 4.70E+03 3.02E+03 1.64E+03 

4.40E+03 5.25E+03 6.36E+03 7.88E-01 8.93E+03 5.49E+03 5.65E+03 

3.92E+03 2.51E+04 1.47E+03 8.14E-01 1.97E+03 1.14E+03 3.00E+02 

4.05E+03 1.44E+04 1.52E+03 0.00E+00 1.52E+03 1.52E+03 3.21E+02 

7.04E+03 1.93E+04 4.14E+03 8.16E-01 5.59E+03 3.23E+03 2.39E+03 

5.67E+03 9.93E+03 1.59E+03 2.30E-01 1.62E+03 1.58E+03 3.55E+02 

7.03E+03 2.50E+04 1.55E+03 7.37E-01 1.94E+03 1.31E+03 3.35E+02 

7.67E+03 1.48E+04 1.76E+03 3.05E-01 1.81E+03 1.73E+03 4.33E+02 

1.10E+04 1.44E+04 3.52E+03 6.98E-01 4.55E+03 3.26E+03 1.73E+03 

1.12E+04 2.40E+04 3.01E+03 4.10E-01 3.21E+03 2.93E+03 1.26E+03 

1.14E+04 1.08E+04 1.91E+03 6.91E-01 2.26E+03 1.63E+03 5.10E+02 

1.32E+04 2.17E+04 2.65E+03 6.26E-01 3.11E+03 2.43E+03 9.84E+02 

1.30E+04 1.75E+04 1.69E+03 5.54E-01 1.86E+03 1.55E+03 3.97E+02 

 

 

5.6 Surface Age Dating   

 

The age of craters has been computed for the selected sites of Equatorial Region and Polar 

Regions of moon. Here, the age has been calculated on the basis of parameters (diameter 

and total area) of crater size frequency distribution (CSFD) calculated using Crater Tool as 

well as using Moment Measure Technique. 

 

 Age determination for equatorial test site using crater attributes  

The equatorial test site age has been derived from the crater attributes obtained from 

the moment measures technique. The surface age plot from the moment measures 

techniques for the equatorial test site is shown in Figure 5.24. The age calculated for 

the equatorial test site is 1.32 Ga and the crater density (number of craters per unit 

area) is                     
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Figure 5.24 Age determination for equatorial test site 

 

 Age determination for north polar test site using crater attributes 

The north polar test site age has been derived from the crater attributes obtained 

from the moment measures technique. The surface age plot from the moment 

measures techniques for the north polar test site is shown in Figure 5.25. The age 

calculated for the north polar test site is 4.11 Ga and the crater density (number of 

craters per unit area) is                    

 
Figure 5.25 Age determination for north polar test site 

 

 Age determination for south polar test site using crater attributes 

The south polar test site age has been derived from the crater attributes obtained 

from the moment measures technique. The surface age plot from the moment 

measures techniques for the south polar test site is shown in Figure 5.26. The age 

calculated for the south polar test site is 3.95 Ga and the crater density (number of 

craters per unit area) is 4                   
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Figure 5.26 Age determination for south polar test site 

Table 5.8 shows the age calculated for the Equatorial test site and Polar test sites (North 

Pole and South Pole) of moon. 

 

Table 5.8  Derived ages for all the three test sites of moon: 

Test Site Number 

of craters 

Diameter (km) 

 

 

Total Area 

(km
2
) 

Age (Ga) 

 

Crater 

Tools 

Moment 

Measures 

Crater 

Tools 

Moment 

Measures 

Equatorial 23 0.4 - 6.5 0.26 - 7 0.11013E+05 1.50 1.32 

North Pole 09 3 - 11 1.6 - 13.9 0.26177E+04 4.32 4.11 

South Pole 14 1.9 - 4.5 1.4 - 6.3 0.29643E+04 4.10 3.95 

 

From Table 5.8, it is clear that the age of the north polar test site of moon is highest and it is 

lowest for the equatorial test site. It means the lunar surface for the north polar test site is 

oldest while it is youngest for the equatorial test site.  

 

5.7 Validation 

 

The ages derived using Crater Tool and Moment Measure technique are compared with the 

USGS map as shown in Table 5.9. 

 

Table 5.9 Comparison between derived ages and ages from USGS map 

Test Site Crater Tool Moment Measures USGS Map 

Equatorial 1.50 Ga 1.32 Ga None 

North Pole 4.32 Ga 4.11 Ga 3.92 - 4.53 Ga 

South Pole 4.10 Ga 3.95 Ga 3.92 - 4.53 Ga 



62 
 

6 Conclusions and Recommendations 

6.1 Conclusions 

  

The study confines to the following objectives: (a) Detection of craters automatically, (b) 

Morphological attributes measurement, (c) Analysis of spatial variation in the shape, size 

and density of impact craters over the lunar surface, (d) Analysis of variation in lunar 

surface age for selected test sites. This chapter summarizes the findings obtained from the 

adopted techniques and answers to the relevant research questions. 

 

(a) Which algorithm is best suited for image-based and topography-based crater 

detection? 

Image based crater detection has been done using Wavelet Transform and 

Generalized Hough Transform techniques. As per the decision parameters 

calculated for the results obtained from these two techniques, Wavelet Transform is 

best suited for image based crater detection. Topography (DEM) based crater 

detection has been done using Marker Controlled Watershed Transformation and 

Terrain (DEM) Derivatives. As per the decision parameters calculated for these two 

techniques, Terrain Derivatives are best suited for topography based crater 

detection. 

 

(b) How efficiently the regional descriptor based algorithm work for automatic 

retrieval of crater shape and size? 

Crater attributes (shape, size) have been computed using Moment Measure 

technique which uses the concept of regional shape descriptor. The algorithm based 

on this technique retrieved nine parameters (centroid, diameter, eccentricity, major 

axis length, minor axis length, perimeter, area, orientation, extent) for the craters in 

the image automatically. On the basis of the attributes like diameter and area, lunar 

surface age has been achieved successfully. 

 

(c) What is the spatial variation pattern of crater shape, size and density for the 

selected test sites over the lunar surface? 

As per the results, the shape of the craters on the lunar surface is found circular, 

near circular and near elliptical. The size (diameter) varies from 0.26 km to 7 km for 

the equatorial test site, 1.6 km to 13.9 km for the north polar test site and 1.4 km to 

6.3 km for the south polar test site. As per the results, the crater density is highest 

for the north polar test site and lowest for the equatorial test site.  

  

(d) How does the age vary for the selected test sites over the lunar surface? 

Higher is the crater density, higher is the age. Lower is the crater density, lower is 

the age. As per the results, the lunar surface for the equatorial test site is youngest 

while it is oldest for the north polar test site. The age of south polar test site is in 

between the age of equatorial test site and north polar test site means it is middle 

aged. 
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6.2 Recommendations 

 

Some limitations are there for which recommendations have been suggested for the future 

improvement in this work.  

 

 Shadow is a major issue while retrieving the shape of craters from optical images. 

Shape retrieval of craters from the optical image (TMC image) can be improved by 

applying shape from shadow (SFS) technique. 

 Microwave (MiniSAR) image and DEM can be used for detecting craters from 

polarimetric data using the integrated approach.  

 Craters can be detected with more accuracy and details by fusion of multisensor 

data like optical (TMC) and microwave (MiniSAR) data. 

 The Lee or Frost filter can be used as noise filters for better removal of speckle 

noise from SAR images. 

 The microwave (MiniSAR) data has problems of layover and foreshortening which 

create problems in retrieving correct boundary (shape) of craters. These problems 

can be sorted out using ISIS (Integrated Software for Imagers and Spectrometers) 

software which is planetary image processing software. 
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