
INTEGRATION OF COMPUTER VISION ALGORITHMS AND GNSS FOR 

GEOREFERENCED POINT CLOUD GENERATION FROM VIDEO 

Thesis submitted to the Andhra University, Visakhapatnam in partial fulfillment of the requirement for 

the award of Master of Technology in Remote Sensing and GIS 

 

 

Submitted By: 

Mayank Sharma 

  

Supervised By: 

Mr. S. Raghavendra 

 

 

 

Indian Institute of Remote Sensing, ISRO, 

Dept. of Space, Govt. of India Dehradun – 248001 

Uttarakhand, India        

August, 2014 

 

 

 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Disclaimer 
 

This work has been carried out in partial fulfilment of Masters in Technology program in Remote Sensing and 

Geographic Information System at Indian Institute of Remote Sensing, Dehradun, India. The author is solely 

responsible for the contents of the thesis. 

 



iii 
 

 

 

 

 

 

 

Dedicated to my Parents… 
 

 

 

 

 

 

 

 

 

 

  



iv 
 

Certificate 

 

This is to certify that Mayank Sharma has carried out the dissertation entitled “Integration of Computer 

Vision Algorithms and GNSS for Georeferenced Point Cloud Generation from Video” in partial 

fulfilment of the requirements for the award of M. Tech. in Remote Sensing and GIS. This work has 

been carried out under the supervision of Mr. S. Raghavendra, Scientist/Engineer ‘SD’, PRSD, Indian 

Institute of Remote Sensing, ISRO, Dehradun, Uttarakhand, India. 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

  

…..............…………………… 
 

(Mr. S. Raghavendra) 
Project Supervisor 

……………………….......... 
 

(Ms. Shefali Aggarwal) 
Head, PRSD, IIRS 

       .............................................. 
 

(Dr. S. K. Saha) 
Dean Academics and Group 

Director ERSSG, IIRS 



v 
 

ACKNOWLEDGEMENT 

I take this opportunity to express my profound gratitude to my guide Mr. S. Raghavendra, Scientist ‘SD’ 

at IIRS, Dehradun who has provided me with tremendous support throughout my thesis, and has offered 

his expertise, knowledge, patience, and kindness, all of which has assisted me in the completion of this 

thesis. Without his guidance and help, this thesis may not have been completed. I could not ask for a 

better supervisor. 

 

I would especially like to express my gratitude to my all-time favourite senior Jayson Jariwala for his 

continuous and valuable guidance during the project work, without whom this work would not be 

possible. I am grateful to him for his cooperation and support during my project work. It is he, who taught 

me vast knowledge of computer vision and digital photogrammetry field. 

 

I would like to thank my roommate Ankur Dixit, for the motivation and encouragement environment 

provided by him. His positive attitude, caring and cheerful nature supported me to complete this research 

work. My special thanks to Apoorva Tripathi, B.Tech student, Thapar University, for her full support and 

cooperation during my field work. I am highly obliged to Col. Sanjay Mohan, from Indian Army, for the 

valuable information provided by him whenever I needed. 

 

I am also deeply grateful to Dr. S.K. Saha (Dean Academics and Group Director) and Shri P.L.N. Raju 

(Group Director, RSGG) for their comments and suggestions during the various presentations of the 

research work. I wish to express my sincere gratitude to Ms. Shefali Agrawal (Course Director and Head, 

PRSD), for motivating me to choose this topic of research and her guidance during the research work. I 

would also like to thank Mr. Ashutosh Bhardwaj, Scientist ‘SE’, IIRS, for his support and guidance. I am 

grateful to Dr. Y.V.N. Krishna Murthy, the Director, IIRS for providing excellent research environment 

and infrastructure to carry out this research work. 

 

I would also like to express my gratitude to the Andhra University for affording me this opportunity to 

carry out this research work. I also wish to thank my fellow students: Anant Nautiyal, Unmesh Khati, 

Vaibhav Kumar and Vivek Singh for their support and camaraderie during the tenure of this research. I 

take this opportunity to express my gratitude towards the positive attitude and ever eagerness of the non-

teaching staff in offering a helping hand needs a special mention in facilitating my research efforts. 

 

At last, I thank my younger brother Pranay Sharma and my parents for their immense support and 

blessings that helped me throughout to carry out this research work. 

     

  

(MAYANK SHARMA) 

  



vi 
 

Declaration 

 

 

I, Mayank Sharma, hereby declare that this dissertation entitled “Integration of Computer Vision 

Algorithms and GNSS for Georeferenced Point Cloud Generation from Video” submitted to Andhra 

University, Visakhapatnam in partial fulfilment of the requirements for the award of M. Tech in Remote 

Sensing and GIS, is my own work and that to the best of my knowledge and belief. It is a record of 

original research carried out by me under the guidance and supervision of Mr. S. Raghavendra, 

Scientist/Engineer ‘SD’, PRSD,  Indian Institute of Remote Sensing, Dehradun. It contains no material 

previously published or written by another person nor material which to a substantial extent has been 

accepted for the award of any other degree or diploma of the university or other institute of higher 

learning, except where due acknowledgment has been made in the text. 

 

 

 

Place:   Dehradun                                           Mayank Sharma 

Date:       Aug, 2014 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

ABSTRACT 

Mobile Mapping is recently the most emerging area for research and development. The research in this 

field started in early 1990s and since then it has created a revolution in the Remote Sensing and GIS. It is 

an efficient and flexible approach for rapid GIS data collection. However, the disadvantage of being an 

expensive technique always acts as an obstacle in its further development. The integration of Computer 

Vision based image processing techniques along with the digital photogrammetric techniques in the field 

of Mobile Mapping can overcome this disadvantage. This research work focusses on the development of 

the technology to generate the georeferenced point cloud of an object by capturing the video of the object 

along with the GPS coordinates of the trajectory of the camera. This research also focusses on the 

development of a GPS integrated Mobile Mapping System (MMS) for rapid acquisition of the data in 

kinematic mode. The development of such a model is going to be highly beneficial in terms of low cost, 

easy and rapid data collection with less constraints for data storage. Although, the 3D georeferenced point 

cloud generated through the image based approach is less accurate as compared to the other terrestrial 

based techniques like laser scanner but it is highly cost efficient. 

 In this study, the image frames are extracted from the video and processed using the OSM bundler 

software in which the estimation of the position of exposure station and point cloud generation is done 

using Structure from Motion (SfM) algorithm. The georeferencing of the point cloud is done by using the 

collinearity equations for space intersection. Few target points are measured on the test scene by the Total 

Station and are used as a reference to perform the accuracy assessment of the point cloud generated using 

the video and images. The images are taken using different grades of conventional camera to compare 

their accuracy for point cloud generation. The study has shown that the point cloud generated using the 

image frames extracted from the video is denser in comparison to the point cloud generated using the 

static images. The georeferencing accuracy obtained in the point cloud generated by the video is 3.46m, 

7.06m, 3.04m in Easting, Northing and Height respectively. Also it is observed that the CMOS cameras 

produces far better results in comparison to the CCD cameras. 

 

 

Keywords: Computer Vision Algorithms, Camera Calibration, Terrestrial Laser Scanner, Mobile 

Mapping, Collinearity equations, Global Positioning System, Android Application.  

 

 

 

 

 

 



viii 
 

TABLE OF CONTENTS 

LIST OF FIGURES……………………………………………………………………………………..- x - 

LIST OF TABLES ........................................................................................................................... - xii – 

CHAPTER 1: INTRODUCTION ........................................................................................................ - 1 - 

1.1 Background……………………………………………………………………………………….- 1 - 

1.1.1Mobile Mapping ..................................................................................................................- 1 - 

1.1.2 Computer Vision Algorithms...............................................................................................- 2 - 

1.1.3 Navigational Sensors ...........................................................................................................- 3 - 

1.1.4 Android...............................................................................................................................- 4 - 

1.2 Motivation and Problem Statement……………………………………………………………….- 4 - 

1.3 Research Identification……………………………………………………………………….- 6 - 

1.3.1 Research Objective .......................................................................................................- 6 - 

1.3.2 Sub Objectives .............................................................................................................- 6 - 

1.3.3 Research Questions ......................................................................................................- 6 - 

1.4 Thesis Structure…………………………………………………………………………………...- 6 - 

CHAPTER 2: LITERATURE REVIEW AND THEORETICAL CONCEPTS ..................................... - 8 - 

2.1 Literature Review…………………………………………………………………………………- 8 - 

2.1.1 Mobile Mapping System .....................................................................................................- 8 - 

2.1.2 Computer Vision Algorithms and Image Based 3D Reconstruction......................................- 8 - 

2.2 Theoretical Background…………………………………………………………………………- 11 - 

2.2.1 Camera Calibration ........................................................................................................... - 11 - 

2.2.3 Structure from Motion ....................................................................................................... - 13 - 

CHAPTER 3: MATERIALS AND METHODOLOGY...................................................................... - 18 - 

3.1 Study Area……………………………………………………………………………………….- 18 - 

3.2 Datasets………………………………………………………………………………………….- 18 - 

3.3 Hardware Used………………………………………………………………………………….- 19 - 

3.4 Software Used…………………………………………………………………………………..- 19 - 

3.4 Methodology…………………………………………………………………………………….- 20 - 

3.4.1 Field Planning ................................................................................................................... - 20 - 

3.4.2 Data Collection ................................................................................................................. - 21 - 

3.4.3 Data Processing................................................................................................................. - 22 - 

3.4.4 Methodology to handle the GPS unavailability .................................................................. - 26 - 



ix 
 

CHAPTER 4: RESULTS AND DISCUSSION .................................................................................. - 28 - 

4.1 Field Planning……………………………………………………………………………………- 28 - 

4.1.1 Camera Parameters ........................................................................................................... - 28 - 

4.1.2 Parameters for Field Planning............................................................................................ - 29 - 

4.2 Data Collection………………………………………………………………………………….- 30 - 

4.3 Data Processing……………………………………………………………………….…………- 31 - 

4.4 Accuracy Assessment……………………………………………………………………………- 34 - 

4.4.1 Internal Accuracy Assessment ........................................................................................... - 34 - 

4.4.2 External Accuracy Assessment .......................................................................................... - 46 - 

4.4 Results for the GPS unavailability problem…………………………………………………….- 48 - 

4.5 Android App for geo-tagging…………………………………………………………………..- 52 - 

4.6 Software tool for Point cloud processing………………………………………………………- 52 - 

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS .......................................................... - 53 - 

5.1 Conclusion……………………………………………………………………………………….- 53 - 

5.1.1 Answers to Research Questions ......................................................................................... - 53 - 

5.2 Recommendations……………………………………………………………………………….- 55 - 

REFERENCES.................................................................................................................................. - 56 - 

APPENDICES .................................................................................................................................. - 59 - 

Appendix-1 Exposure Station coordinates…………………………………………………………..- 59 - 

Appendix-2 Accuracy assessment between TLS points and Generated point cloud using NIKON 

D60………………………………………………………………………………………………….- 60 - 

Appendix-3 Accuracy assessment between TLS points and Generated point cloud using NIKON 

D90………………………………………………………………………………………………....- 61 - 

Appendix-4 Accuracy assessment between TLS points and Generated point cloud using NIKON 

CoolPix L810………………………………………………………………………………………- 62 - 

Appendix-5 Accuracy assessment between TLS points and Generated point cloud using Sony 

Cybershot DCS-H55……………………………………………………………………………….- 63 - 

Appendix-6 Accuracy assessment between TLS points and Generated point cloud using Video - 64 - 

 

  



x 
 

LIST OF FIGURES 

 

Figure 1.1 Mobile Mapping System Architecture - 2 - 

Figure 1.2 GPS Segments - 3 - 

Figure 2.1 Pin hole Camera Model - 11 - 

Figure 2.2 Block Diagram of SIFT - 14 - 

Figure 2.3 Generation of DoG images - 15 - 

Figure 2.4 Gradient image patch  - 16 - 

Figure 3.1 Study area, (a) IIRS main building, (b) Godavari Building - 18 - 

Figure 3.2 Flowchart of Methodology - 20 - 

Figure 3.3 Camera and GPS for data acquisition - 22 - 

Figure 3.4 Flowchart showing the working of Bundler - 23 - 

Figure 3.5 Collinearity for Space Intersection - 24 - 

Figure 3.6 Methodology to handle the GPS unavailability - 26 - 

Figure 3.7 Figure depicting unknown camera station - 27 - 

Figure 4.1 Calibration Sheet - 28 - 

Figure 4.2 Shapefile of IIRS campus - 29 - 

Figure 4.3 Field data collection & GPS post processing - 31 - 

Figure 4.4 Number of Matches in different pair of Images - 32 - 

Figure 4.5 Point Cloud generated using the extracted frames from a video - 32 - 

Figure 4.6 Top view of the point cloud generated from image frames extracted from the video - 33 - 

Figure 4.7 Point Cloud from the images taken from different grades of cameras, (a) point cloud by 

NIKON D60, (b) point cloud by NIKON D90, (c) point cloud by NIKON CoolPix L810, (d) point cloud 

by Sony Cybershot DSC-H55 - 33 - 

Figure 4.8 Georeferenced Point Cloud - 34 - 

Figure 4.9 Test planes for Internal Accuracy Assessment - 35 - 

Figure 4.10 (a) Outliers in point to plane matching, (b) scattering of samples in Part 1 sample - 36 - 

Figure 4.11 (a) Outliers in point to plane matching, (b) scattering of samples in Part 2 samples - 36 - 

Figure 4.12 (a) Outliers in point to plane matching, (b) scattering of samples in Part 3 samples - 36 - 

Figure 4.13 Histograms representing the Points to Plane Distance in Part 1, Part 2 and Part 3 samples- 37 

- 

Figure 4.14 Box plot of sample parts for Points to plane distances - 37 - 

Figure 4.15 (a) Outliers in point to plane matching, (b) scattering of samples in Part 1 sample - 39 - 

Figure 4.16 (a) Outliers in point to plane matching, (b) scattering of samples in Part 2 samples - 39 - 

Figure 4.17 (a) Outliers in point to plane matching, (b) scattering of samples in Part 3 samples - 40 - 

Figure 4.18 Histograms representing the Points to Plane Distance in Part 1, Part 2 and Part 3 samples - 40 

- 

Figure 4.19 Box plot of sample parts for Points to plane distances - 41 - 

Figure 4.20 (a) Outliers in point to plane matching, (b) scattering of samples in Part 1 sample (c) Outliers 

in point to plane matching, (d) scattering of samples in Part 2 sample (e) Outliers in point to plane 

matching, (f) scattering of samples in Part 3 sample - 42 - 

Figure 4.21 Histogram and box plot for three samples - 43 - 



xi 
 

Figure 4.22 (a) Outliers in point to plane matching, (b) scattering of samples in Part 1 sample (c) Outliers 

in point to plane matching, (d) scattering of samples in Part 2 sample (e) Outliers in point to plane 

matching, (f) scattering of samples in Part 3 sample - 45 - 

Figure 4.23 Histogram and box plot for three samples - 46 - 

Figure 4.24 Point Location used for external accuracy assessment - 47 - 

Figure 4.25 RMSE in Triangulation - 49 - 

Figure 4.26 RMSE in Triangulation after 5 iterations - 50 - 

Figure 4.27 RMSE in Triangulation with 4 images - 50 - 

Figure 4.28 RMSE in triangulation when two unknown camera station are present - 51 - 

Figure 4.29 (a) Home screen of Android App, (b) Software tool for point cloud processing - 52 - 

Figure 5.1 Geotagging technique - 54 - 

 

  

 

 

 

 

 

 

 

 

 

  



xii 
 

LIST OF TABLES 

Table 3.1 Details of the Hardware used .............................................................................................. - 19 - 

Table 3.2 Details of the Software Used .............................................................................................. - 19 - 

Table 4.1 Statistics of internal accuracy assessment of NIKON D60 .................................................. - 38 - 

Table 4.2 Statistics for internal accuracy assessment of NIKON D90 ................................................. - 41 - 

Table 4.3 Statistics for internal accuracy assessment of NIKON CoolPix L810 .................................. - 44 - 

Table 4.4 Statistics for internal accuracy assessment of Sony Cybershot DSC-H55 ............................ - 44 - 

Table 4.5 RMSE in Easting, Northing and Height .............................................................................. - 47 - 

Table 4.6 Error in Coordinates when 25 control points are taken ........................................................ - 49 - 

Table 4.7 RMSE after 5 iterations ...................................................................................................... - 49 - 

Table 4.8 Error in coordinates of 4th frame ......................................................................................... - 51 - 

Table 4.9 Error in coordinates of 3rd frame ......................................................................................... - 51 - 

Table 4.10 Error in coordinates of 3rd and 4th camera station ............................................................... - 51 - 

Table 5.1 Accuracy Comparison of different grades of camera ........................................................... - 54 - 

Table A.1 Coordinate of the Exposure Station locations marked in front of Godavari Building .......... - 59 - 

Table A.2 Coordinates of Test points taken for Accuracy Assessment ................................................ - 60 - 

Table A.3 Error in Easting, Northing and Height ............................................................................... - 60 - 

Table A.4 Coordinates of Test points taken for Accuracy Assessment ................................................ - 61 - 

Table A.5 Error in Easting, Northing and Height ............................................................................... - 61 - 

Table A.6 Coordinates of Test points taken for Accuracy Assessment ................................................ - 62 - 

Table A.7 Error in Easting, Northing and Height ............................................................................... - 62 - 

Table A.8 Coordinates of Test points taken for Accuracy Assessment ................................................ - 63 - 

Table A.9 Error in Easting, Northing and Height ............................................................................... - 63 - 

Table A.10 Coordinates of Test points taken for Accuracy Assessment .............................................. - 64 - 

Table A.11 Error in Easting, Northing and Height.............................................................................. - 64 - 



Integration of Computer Vision Algorithms & GNSS for Georeferenced Point Cloud Generation 
from Video 

 
 

- 1 - 
 

CHAPTER 1: INTRODUCTION 

1.1 Background 

Photogrammetry and Mobile Mapping are very broad terms in themselves. Mobile Mapping and 
3D reconstruction is recently the most emerging area for research and development. The research 
work in the field of Mobile Mapping started since last  three decades and there is still much to do, 
(Li, 1997). The major advancements in the field of Digital Photogrammetric technology and 
Remote Sensing have proven it the most cost effective technique in comparison to the 
conventional surveying technique. The integration of computer vision based image processing 
techniques, digital photogrammetry and Mobile Mapping have created a milestone in the field of 
3D GIS. Less time consumption, easy data acquisition, and high flexibility are the certain 
advantages that are the results of the development in the Mobile Mapping technologies, (Li, 
1997) . Also the Videogrammetry i.e. capturing the videos of an object to perform some 
measurement related tasks is in huge demand these days. It is currently the best way to overcome 
the limitations of the conventional methods used in terrestrial photogrammetry, (Fathi & Brilakis, 
2011).  

This research work focusses on the development of the technology to generate the georeferenced 
3D point cloud of an object by capturing the video of the object along with the GPS coordinates 
of the trajectory of the Mapping sensor. A point cloud is a set of data points in some coordinate 
system and each point in the point cloud has a well-defined three dimensional position in that 
coordinate system, .This research also focusses on the development of a 
GPS integrated Mobile Mapping System (MMS) for rapid acquisition of the data in kinematic 
mode. The development of such a model is going to be highly beneficial in terms of low cost, 
easy and rapid data collection with less constraints for data storage. This project work attempts to 
find out the best possible solution for the 3D reconstruction at a very low cost, using the 
conventional camera for data acquisition and open source software for the data processing. 
Computer Vision Algorithm in mobile mapping is been largely attempted for 3D reconstructs and 
trajectory estimation. Apart from it, it is also used in various well known fields like games, image 
processing, artificial intelligence and augmented reality. Although, the 3D georeferenced point 
cloud generated through the image based approach is less accurate as compared to the other 
terrestrial based techniques like laser scanner but it is highly cost efficient, (Yang, Chao, Huang, 
Lu, & Chen, 2013). Furthermore, the following sections will provide the details about the 
technologies used in this research work. 

1.1.1Mobile Mapping 
Mobile Mapping is the most emerging technique for spatial data acquisition in the field of GIS 
and gaining the high importance because of the advantages like time consumption is less, easy 
data acquisition and high flexibility, (Li, 1997). As the name signifies, the mobile mapping 
comprises of a moving or mobile platform, navigation (GPS, INS etc.) and mapping sensors. An 
aircraft or any other land based vehicle can be used as the mobile platform. To capture the 
information of the objects to be surveyed, mapping sensors are employed that can be metric or 
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non-metric cameras, laser scanners or radars. Navigational sensors like Global Positioning 
Systems (GPS) and Inertial Navigation Systems (INS) are used to provide the position and 
orientation information of the mapping sensor, (Li, 1997). Figure 1.1 shows a common example 
of MMS. 

 

Figure 1.1 Mobile Mapping System Architecture(Source: http://www.easypano.com/images/city8/street-view-
car-structure.jpg) 

1.1.2 Computer Vision Algorithms 
Even after the tremendous development in the technology towards virtual world and 3D 
visualization, there is no comparison of any technology with human vision. We (human beings) 
have the capability to perceive the objects around us in 3D very easily and can judge the shape, 
size, texture and pattern of the objects. Computer vision algorithms can be defined in many ways 
like Computer Vision is an area that deals with the development of algorithms and other 
mathematical techniques to reconstruct the three dimensional structure of the objects through the 
two dimensional images, (Szeliski, 2010), Computer Vision is a field that includes methods for 
acquiring , processing, analyzing and understanding images and, in general, high-dimensional 
data from the real world in order to produce numerical or symbolic information, e.g., in the 
forms of decisions  .  

Structure from Motion (SfM) is among the most widely used computer vision algorithms for 3D 
reconstruction and trajectory estimation. The SfM approach is based on the principle to form the 
relation between the images by applying relative and absolute orientation. The use of the 
photogrammetric techniques in SfM enable the estimation of the camera parameters,  (Yang et al., 
2013). The ability of SfM to estimate the camera parameters (interior and exterior orientation 
parameters) is of main importance, as it can directly replace the high cost Inertial Navigation 
Sensors (INS). Scale Invariant Feature Transform (SIFT) for feature detection, Approximate 
Nearest Neighbors (ANN) for feature Matching and Random Sample Consensus (RANSAC) for 
outlier Removal are also used in SfM. 

SIFT algorithm is used for detection and description of the features present in the images,  (Lowe, 
1999).  The extracted features from the images are further stored into the database for the 

This approach has been named the Scale 
Invariant Feature Transform (SIFT), as it transforms image data into scale-invariant coordinates 
relative to local features  (Lowe, 2004). ANN or Approximate Nearest Neighbor is used to 
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enhance the feature matching process between the detected features in the pair of images and thus 
leads to identify the motion of the camera, (Yang et al., 2013). RANSAC algorithm is used for 
the removal of outliers and for finding the F-matrix for all the pair of images, (Yang et al., 2013). 
RANSAC is highly efficient and robust method for outlier removal which works on the basis of 
model fitting approach. It takes a small set of data and analyses the parameters of the predefined 
models. If the parameters obtained by the taken data set do not satisfies the predefined model, 
then data points are treated as outliers, (Fischler & Bolles, 1981). 

1.1.3 Navigational Sensors 
The navigational sensors play a vital role in Mobile Mapping for accurate positioning and 
orientation information of the mapping sensors. INS or Inertial Navigation Sensor and Global 
Navigation satellite System (GNSS) are the major navigational sensors implemented in Mobile 
Mapping systems for orientation estimation and proper positioning of the mapping sensors. INS 
is a high cost device used for getting the orientation parameters of the mapping sensor. 
Accelerometers and gyroscopes are used in INS to find the orientation parameters of the mapping 
sensor. Its accuracy decreases with the increase in time.  GNSS is the system of satellites to find 
out the location or position of any point anywhere in the world. The various global navigation 
satellite systems that are available these days are NAVSTAR GPS of USA, GLONASS of Russia, 
BEIDOU of China, and IRNSS of India, . Among all these 
mentioned navigation systems, Global Positioning System (GPS) of USA is widely used. It was 
developed by US Department of Defense for military operations and is available for civilians with 
very low accuracy, (GPS Positioning Guide, 1995). All these systems require high cost receivers 
and complex processing for accurate positioning and navigational information. 

 

Figure 1.2 GPS Segments(Marry E. Greece, 2000) 

These navigation systems are divided into three segments 

 Space Segment 
 Ground Control Segment 
 User Segment 

Space segment consists of the group of satellites in the space and are dispersed in such a way that 
a minimum of 4 satellites are visible from any point on the earth. These satellites are continuously 
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monitored by the ground control stations, (GPS Positioning Guide, 1995). Figure 1.2 shows the 3 
segments of GPS. 

Ground segment consists of the controlling stations on the earth, which continuously monitor 
these satellites. These stations are responsible for determining the location of the satellites in 
space and confirming that they are suitably operational.  If a satellite is not working suitably, 

soon as it becomes suitably operational, (GPS Positioning Guide, 1995).  

Anyone who handles the GPS signal receivers to find out the locational information comes under 
the user segment. A large variety of GPS signal receivers is available. Even, the mobile phones 
are well equipped with the GPS facility these days. The antenna, processing and display unit, 
power supply, RF section are the major constituents of GPS receivers,  (GPS Positioning Guide, 
1995). 

The positioning methods of GPS are mainly single point positioning and relative positioning, 
(GPS Positioning Guide, 1995). Both these methods are distinguishable in terms of working as 
well as accuracy. In single point positioning, the coordinates of an unknown are determined in a 
defined projection system by the help of the known positions of at least 4 satellites, however, in 
relative positioning, the receiver coordinates of the unknown point are determined in reference to 
the receiver coordinates of a known point. Relative positioning is also known as Differential 
Positioning or Differential GPS (DGPS), (GPS Positioning Guide, 1995). In Relative Positioning, 
the accuracy is very high as compared to the single point positioning method.  

GPS positioning methods are also classified as static and kinematic positioning method.  The 
GPS receiver is kept fixed in the static mode while the receiver is in the state of continuous 
motion in kinematic mode. The processing of the GPS data can be done either in the real time as 
well as after the acquisition of whole data is done, (GPS Positioning Guide, 1995). 

1.1.4 Android 
Android-a well-known operating system for touch screen mobiles, tablets PCs is primarily 
designed on Linux kernel, . It was developed by the 
Android Inc. which was founded by Andy Rubin (co-founder of Danger), Rich Miner (co-founder 
of Wildfire Communications, Inc.), Nick Sears (once VP at T-Mobile), and Chris White (headed 
design and interface development at WebTV) and later it was supported by the Google, 

. It supports a wide range of devices and applications. It has 
millions of applications that are freely downloadable from Google Play. Its fully customizable 
feature has attracted a lot of application developers towards open source technology.  

1.2 Motivation and Problem Statement 

Earlier the 3D reconstruction is mainly done by the aerial photogrammetry and LiDAR 
technology. The implementation of the terrestrial photogrammetry for 3D reconstruction was 
quite difficult, (Yang et al., 2013). The evolution of Digital Photogrammetry and its integration 
with modern image processing techniques has given a new direction to the researchers. It has 
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resulted in the simplification of the sophisticated photogrammetric techniques, such that complex 
photogrammetric task can be accomplished quickly and easily. Now it is possible to use the non-
metric or conventional cameras for mobile mapping and 3D modelling such that a highly cost 
effective solution is now available to the users. This all is the result of the advancement in the 
field of digital photogrammetry and image processing techniques. Also with the help of terrestrial 
mobile mapping and the close range photogrammetry, the reconstruction of the outer facades of 
the building is quite easy as it provides much information of the building facades as compare to 
the aerial photogrammetry,(Tian, Gerke, Vosselman, & Zhu, 2010). Although the Terrestrial 
Laser Scanners are highly efficient in dense 3D point cloud generation, however, they are very 
expensive. The development and use of open source software in photogrammetric applications 
has made it a truly cost effective technique for mobile mapping and 3D modelling. 

In most of the earlier Mobile Mapping systems the equipment used are very costly, for example 
the VISAT (Tao, Chapman, & Chaplin, 2001) system developed by the Department of Geomatics 
engineering at The University of Calgary, produces good results with high accuracy however uses 
a range of mapping and navigational sensors (GPS & INS) that are very costly. These 
technologies require a large and complex set up which makes the installation and operational 
expenditure very high. Also the Photogrammetric software available commercially are very 
expensive.  

This research work focusses on the development of the cost effective technology for the 
generation of the georeferenced 3D point cloud of a scene from a video captured through the 
consumer grade cameras along with the positional information recorded by the GPS. The use of 
consumer grade cameras and the open source software make it truly a cost effective and 
beneficial technology. The motivation for this project is as follows: 

 GPS Outage Problem and Accuracy of the Navigation Sensor: There might be the situations 
when the GPS signals are not available or having poor GDOP in the intermittent areas of 
MMS trajectory. So, the actual position and orientation of the points cannot be determined, 
(Hassan, Ellum, & El-Sheimy, 2006). Mostly in the urban areas due to dense, high and 
complex structure of buildings, the navigation sensors do not provide high accuracy or 
possess poor dilution of precision(DOP). In this case, the coordinates of the exposure station 
cannot be determined accurately. Thus it is difficult to perform the georeferencing of the 3D 
point cloud. Therefore a methodology needs to be developed to find the coordinates of the 
exposure station in the intermittent GPS unavailable areas. 

 Image Overlap Problem: As per the literature available most of the work in close range 
photogrammetry is carried out by capturing the images from different locations. So, there 
might be the situation of no or less overlap between the successive images. A video is a 
sequence of image frames that are moved at a very high rate up to 8 to 25 frames per second 
or even more. Thus, the video coverage of the area will provide the solution to ensure enough 
overlap. 

  In this project, a low cost solution for 3D georeferenced point cloud using consumer grade 
camera and GPS is attempted and evaluated. 
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The cost effectiveness, easy and rapid acquisition of data are the major advantages of terrestrial 
mobile mapping. The point cloud generated by the terrestrial mobile mapping image sequences 
provide finer results as compared to those generated with aerial imagery. It is also beneficial 
when compared to the data acquisition with ground based Laser scanners which is very expensive 
process, however, the point density is not as good as that of the Terrestrial Laser Scanner. The use 
of open source software is really the main advantage of this research work. A wide range of open 
source software are used in this research work for data processing. This project attempts to 
develop a common platform to integrate all the tasks in a single software to reduce the processing 
time. This forms the basis to easy, rapid and cost effective approach for the geospatial data 
collection. 

1.3 Research Identification 

1.3.1 Research Objective 
To apply the Bundle block adjustment for the integration of SfM technique with GNSS for direct 
geo-referencing of point cloud. 

1.3.2 Sub Objectives 
 Developing methodology for field planning using CARTOSAT 1 DEM for data 

acquisition. 
 To generate the geo-referenced point cloud from video (Frame of Images) using SfM 

technique. 
 Developing methodology for generation of geo-referenced point cloud from GNSS 

unavailable intermittent camera stations. 
 To develop an Android based App for Geotagging and GUI based Tool for point cloud 

Processing. 

1.3.3 Research Questions 
 Does video frame sampling improve the performance of SfM GNSS integration over the 

static images?  
 How to geo-tag the video frames? 
 What is the effect of changing the camera resolution in SfM-GNSS integration? 
 How to geo-reference the point cloud from camera station under GNSS unavailable 

environment? 

1.4 Thesis Structure 

The research work is organized as follows:   

Chapter 1: Introduction 

It explains about the general aspects and scope of the research work along with a little description 
of the past work done in this field. It covers the background, motivation and problem statement, 
research objectives, research questions of the project work. 
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Chapter 2: Literature Review and Theoretical Concepts 

It explains the little background of the research field and the summarized description of the 
previous research in this field. It also explains the theoretical concepts implemented in this 
research work.   

Chapter 3: Material and Methodology 

This chapter gives a brief description of the study area in which the research is carried out. It 
gives the details of the software and hardware used in this research work. It also explains the 
whole workflow or methodology that is adopted to carry out this research work. It gives the 
detailed explanation of the processes involved in this research work. 

Chapter 4: Results and Discussion  

This section gives the description of the obtained results and provides the answer to each research 
question along with the discussion in support to that answer. 

Chapter 5: Conclusion and Recommendation 

It gives the answer of the research questions in concluded form and recommendations for further 
study.   
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CHAPTER 2: LITERATURE REVIEW AND THEORETICAL 
CONCEPTS 

2.1 Literature Review 

2.1.1 Mobile Mapping System  
The work in the field of Mobile Mapping started in the early 1990s. The major 
advancements in the field of Digital Photogrammetric technology and Remote Sensing 
have proven it the most cost effective technique in comparison to the conventional 
surveying and mapping technique. Now days, mobile mapping is getting the popularity in 
both aerial and terrestrial mapping applications. High accuracy, fast acquisition of data 
and cost effectiveness are its major advantages, (Li, 1997).  
Mobile Mapping always being a significant area for research and development have seen 
a lot of advancements since last three decades. In 1992, Department of Geomatics 
Engineering at The University of Calgary along with the Geofit Inc. started developing a 
Mobile Mapping System (MMS) called VISAT (Video, Inertial and Satellite GPS) and 
was implemented in 1995, (Tao et al., 2001).  
(Tao et al., 2001) explains the automatic way to process an array of images implementing 
the visual motion theory. Image and object domain limits are especially considered. 
Various methods for automatic processing of image sequences are classified into two 
parts namely as Information extraction and Image based trajectory determination or 
Bridging, (Tao et al., 2001).  
(Hassan et al., 2006) utilizes the VISAT MMS of The University of Calgary and 
explained the advantages of the land based MMS over aerial photogrammetry and 
traditional surveying. This paper presented the photogrammetric approach to 
georeference the array of images captured through MMS when there is unavailability of 
GPS signals or weak signals are available. Even the proposed method produces good 
results, however, the use of VISAT MMS makes it an expensive approach because of its 
complex setup and high cost instruments like INS. 

2.1.2 Computer Vision Algorithms and Image Based 3D Reconstruction 
Computer Vision Algorithm in mobile mapping is been largely attempted for 3D reconstructs and 
trajectory estimation. Apart from it, it is also used in various well known fields like games, image 
processing, artificial intelligence and augmented reality. According to (Szeliski, 2010), Computer 
Vision is an area that deals with the development of algorithms and other mathematical 
techniques to reconstruct the three dimensional structure of the objects through the two 
dimensional images. Computer Vision Algorithm especially Structure from Motion (SfM) is 
implemented in this research work to estimate the camera parameters. There are two types of 
camera parameters, one is intrinsic parameters and the other is extrinsic parameters. Intrinsic 
parameters are obtained through camera calibration and for obtaining the extrinsic parameters 
SfM is used. Conventionally, high cost Inertial Navigation System (INS) is used to obtain the 
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camera orientation information. Thus, SfM is implemented to make the technique cost effective. 
All these terms are explained in the upcoming Theoretical Background section. 

3D reconstruction is recently the most emerging area for research
and research articles about image based 3D reconstruction. Earlier the 3D reconstruction is 
mainly done by the aerial photogrammetry and LiDAR technology. The implementation of the 
terrestrial photogrammetry for 3D reconstruction was quite difficult, (Yang et al., 2013). The 
evolution of Digital Photogrammetry and its integration with modern image processing 
techniques has given a new direction to the researchers. It has resulted in the simplification of the 
sophisticated photogrammetric techniques, such that complex photogrammetric task can be 
accomplished quickly and easily. Now it is possible to use the non-metric or conventional 
cameras for mobile mapping and 3D modelling such that a highly cost effective solution is now 
available to the users. This all is the result of the advancement in the field of digital 
photogrammetry and image processing techniques.  

Camera Calibration is the most important step for the 3D reconstruction based on the image 
sequences. Several techniques have been developed to perform the automatic camera calibration. 
(Zhang, 2000) proposed a flexible and easy technique to perform the camera calibration with 
modeling of radial lens distortion. In this approach a planar design is observed by the camera 
from at least two distinct orientations. 

The disadvantages such as ignoring lens distortion, knowledge of calibration environment in the 
camera calibration techniques based on single images are described by (Zhou, Cui, Gao, & Wang, 
2013). To overcome these advantages, (Zhou et al., 2013) proposed a new technique for camera 
calibration especially considering the lens distortion parameters.  

(Pollefeys, Koch, & Van Gool, 1999) proposed a self-calibration technique for the estimation 
intrinsic camera parameters. The orthogonality of image rows and columns is the common 
constraint for this approach. 

(Karras & Mavrommati, 2002) describes a simple calibration technique for non-metric cameras. 
Several regular grids as well as manmade linear features are used in this technique. Simple 
adjustment of images captured from different locations is done and the radial distortion is 
modeled.  

(Han, Paulson, & Wu, 2011) illustrates the procedure for 3D reconstruction from two dimensional 
(2D) video sequence. Surface fitting approach is suggested for 3D reconstruction in order to 
preserve the geometric structures. To segment the 3D point cloud into proper 3D geometric 
structures (Han et al., 2011)  developed an expanded deterministic annealing algorithm. Present 
Feature extraction, feature matching, and projective reconstruction techniques are involved for 
3D reconstruction, (Han et al., 2011). 

3D Z-string-a knowledge structure for tracking the motion of an object and change in its 
size, obtaining the spatial and temporal relation between the objects in a video is 
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developed by (Lee, Yu, Chiu, & Hong, 2005). This technique produces good result and is 
very effective in terms of storage and processing time, (Lee et al., 2005). 
An aerial mapping system with digital camera and GPS is described by (Novak, 1993). 
GPS is operated in kinematic mode to continuously record the position of the exposure  
station. Aerotriangulation is applied to find out the other camera parameters and then 
finally the data is processed, (Novak, 1993).  
(Fathi & Brilakis, 2011) describes a method to generate sparse 3D point cloud using two 
videos captured through the calibrated cameras. Stereo vision approach is applied for 3D 
sparse point cloud generation. SURF algorithm for feature detection and matching, 
RANSAC is used for outlier removal and finally the bundle adjustment is applied for 
automatic registration of point clouds, (Fathi & Brilakis, 2011). 
 Different techniques for surface reconstruction like SfM, Clustering View for Multi-
View Stereo (CMVS), Patch based Multi-View Stereo (PMVS) and Poisson surface 
reconstruction are clearly discussed by (Yang et al., 2013). 3D reconstruction from the 
images taken by conventional digital cameras, smartphones is well explained. The results 
are verified on various indoor and outdoor objects, (Yang et al., 2013). 
(Tian et al., 2010) explains an automatic way for the 3D reconstruction from a video. 
They have implemented the structural knowledge of buildings into the reconstruction in 
order to have the topological relationships between the reconstructed points and edges. 
The mentioned procedure for reconstruction applies to complex building too and helps in 
obtaining the building structures in the areas of obstruction, (Tian et al., 2010). 
(Lowe, 2004) developed an algorithms for feature detection called Scale Invariant 
Feature transform (SIFT). The detected features are independent of the scale of the image 
and rotation. These diverse detected features can be used for feature matching and 
identification, (Lowe, 2004). This patented algorithm is accepted worldwide and provides 
good accuracy along with the advantages of scale and rotation independency.  
Multiple images of an object, taken from distinct points are used by (Jayson Jayeshkumar 
Jariwala, 2013) to obtain the 3D point cloud using the SfM approach. Camera positions 
are obtained through the DGPS survey. The mentioned approach uses the space 
intersection technique to georeference the 3D point cloud. 
(Tissainayagam & Suter, 2005) describes the procedure implementing the Bayesian 
Multiple Hypothesis Tracking (MHT) method to track the objects in the sequence of 
images. Two MHT based algorithm, one for time-based tracking of a particular object 
and another for contour segmentation are used. Several key points are detected using 
edge map on an object to represent it and are tracked on the sequence of images. The 
major disadvantage of this approach is of contour grouping that occurs due to the 
blocking of the object on the image scene. 
Bundle adjustment is used to generate the optimal 3D geometries with the help of camera 
parameters. To overcome the non-linearity and localization problem during optimal 3D 
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generation, (Lourakis & Argyros, 2009) developed a Sparse Bundle Adjustment Package (SBA) 
based on C/C++.  

mre et al., 2007) developed the system for 3D reconstruction from a broadcast video, presuming 
the relative motion between the camera and the object. Ability to estimate the internal and 
external camera parameters, estimation of dense depth field and performing 3D model based 
segmentation are its distinctive advantages. However, its accuracy degrades in presence of small 
independently moving objects especially in indoor sequences, . 

2.2 Theoretical Background 

All the keypoints or major terms used in this research work are explained in the following 
subsections: 

2.2.1 Camera Calibration 
Camera calibration is the most important procedure for 3D reconstruction using computer vision 
algorithms. Generally there are two type of cameras, one is metric and the other is non-metric. 
Metric cameras are expensive and are mostly used for photogrammetric applications. Their 
camera parameters are accurately known and are fixed. However, the Non-metric cameras are not 
suitable to carry out the image based measurement until they are well calibrated or their camera 
parameters are known. Camera calibration is necessary so as to obtain the geometrical 
characteristics of the camera. In simpler terms it is a method of retrieval of camera parameters 
that are in the image coordinate system, (Horn, 2000). Intrinsic and Extrinsic parameters are two 
types of camera parameter. Intrinsic parameters are obtained through camera calibration while 
SfM is used to obtain the extrinsic parameters. According to (Zhang, 2000), a camera is always 
modeled as a pin hole camera model. A pin hole camera model is used to explain the link 
between a point in 3D world coordinate system and its location in 2D image plane 
mathematically, . In terms of pinhole camera model, camera 
calibration is done for finding out the parameters to establish a link between the features on the 
ground to their two dimensional representation on an image, (Zhou et al., 2013). These 
parameters are used to express the 3D position of a point in world coordinate system to camera 
coordinate system. A simple pinhole camera model is shown in Figure 2.1 below, 

 

Figure 2.1 Pin hole Camera Model (Source: http://perso.ensta-paristech.fr/~filliat/Courses/2011_projets_C10-
2/BRUNEAU_DUBRAY_MURGUET/monoSLAM_bruneau_dubray_murguet_en.html) 

According to (Zhang, 2000), a pinhole camera model is expressed as in equation 2.1. 
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    (2.1) 

Here  is the scale factor, is the augmented vector representing the position of a point 
in 2D image,  is the intrinsic parameter matrix, [ ] are the rotational and translational 
parameters,  is the position of the same point in 3D space. Rotational parameters, 
translational parameters and scale are the extrinsic parameters. Intrinsic and Extrinsic parameters 
are explained below: 

2.2.1.1 Intrinsic Parameters 
Intrinsic parameters are those that are used to determine the internal geometry of the camera and 
its visual features, (Zhou et al., 2013). Focal length, principal point location and lens distortion 
parameters are the intrinsic parameters that are retrieved in the process of camera calibration and 
are used for the interior orientation of the camera, (Horn, 2000). These are generally expressed as 
shown below in equation 2.1 

                                                 (2.2)       

Here   and  are the scale factors in  and  axis of image, ,  are the location of the 
principal point, and skew factor is considered zero. 

2.2.1.2 Extrinsic Parameters: 
Extrinsic parameters are used to determine the relationship between the world coordinate system 
to the camera coordinate system, (Zhang, 2000). It can also be explained as the parameters to 
determine to determine the position and orientation of the camera with respect to a world 
coordinate system, (Zhou et al., 2013). Rotational parameters , translational parameters  and 
scale  are the extrinsic parameters. These parameters are used for the transformation of a point 
from camera coordinate system to the world coordinate system, (Zhou et al., 2013). Here SfM is 
used to obtain the extrinsic parameters which is explained in section 2.2.3. 

Intrinsic and Extrinsic parameters together constitutes the Projection matrix. The transformation 
of the pixel coordinate system to the world coordinate system is done with the help of projection 
matrix as mentioned in equation 2.3, (Jayson Jayeshkumar Jariwala, 2013). 

     (2.3) 

Here  is the intrinsic parameter matrix,  is the extrinsic parameter matrix. 

                (2.4)  

Here  is the identity matrix. 

      (2.5) 
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Here P is the projection matrix. 

   (2.6) 

As per the literature available, there are various techniques available to perform the camera 
calibration. According to (Zhang, 2000), all the techniques for camera calibration can be 
categorized into Photogrammetric camera calibration and Self-calibration. An object whose 3D 
geometrical information is known accurately is used to perform the Photogrammetric camera 
calibration. However, due to the requirement of exclusive calibration arrangement, this approach 
is not so common, (Zhang, 2000). Self-calibration can be performed by capturing at least three 
images of a stationary scene with fixed internal camera parameters. Image data alone is sufficient 
to obtain camera parameters without any need of calibration object. This technique is also not 
popular as it does not provide the accurate results, (Zhang, 2000). A new method independent of 
the motion of the camera or the scene is proposed by (Zhang, 2000) to perform the camera 
calibration in which a 2D plane is captured by the camera from at least two distinct angles.  

(Zhou et al., 2013) discussed the disadvantages of the single view based procedure to perform the 
camera calibration. Flouting the lens distortion and depending upon a particular situation for 
calibration were certain disadvantages with single view method. To overcome these problems  
(Zhou et al., 2013) Line based camera calibration with lens 
distortion correction from a single image using three squares of unknown length . Firstly the 
radial distortion parameters were estimated and the inaccurate lines associated with the squares 
were rectified at the same time. Intrinsic parameters were estimated through the Homography 
matrix calculated using these lines, (Zhou et al., 2013). 

2.2.3 Structure from Motion 
Structure from Motion (SfM) is among the most widely used computer vision algorithms for 3D 
reconstruction and trajectory estimation. The SfM approach is based on the principle to form the 
relation between the images by applying relative and absolute orientation. The use of the 
photogrammetric techniques in SfM enable the estimation of the camera parameters, (Yang et al., 
2013). The ability of SfM to estimate the camera parameters (interior and exterior orientation 
parameters) is of main importance, as it can directly replace the high cost Inertial Navigation 
Sensors (INS).  

SfM acts as a medium to integrate the fields of Computer vision and Photogrammetry. By 
obtaining the pattern of the camera and 3D points, SfM can estimate the position and orientation 
of the exposure station along with the geometrical properties of the scene, (Yang et al., 2013). 
(Yang et al., 2013) mentioned the three main tasks of SfM as follows: 

 Motion investigation of camera and target detection. 
 Estimating the trajectory of moving camera. 
 3D reconstruction of the scene. 
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In SfM, firstly the feature detection is done using Scale Invariant Feature Transform (SIFT). SIFT 
algorithm is used for detection and description of the features present in the images, (Lowe, 
1999).  The extracted features from the images are further stored into the database for the 
estimation of the camera motion and tracking purpose. ANN or Approximate Nearest Neighbor is 
used to enhance the feature matching process between the detected features in the pair of images 
and thus leads to identify the motion of the camera, (Yang et al., 2013). RANSAC algorithm is 
used for the removal of outliers and for finding the Fundamental matrix for all the pair of images, 
(Yang et al., 2013). As determined by the Fundamental matrix, the primarily accurate image pairs 
are chosen for initializing the reconstruction process and the process of adding the new cameras 
starts to enhance the sparse bundle adjustment for the generation of sparse 3D point cloud, (Yang 
et al., 2013). All these processes and their theoretical background is given below: 

2.2.3.1 Epipolar Geometry and Fundamental Matrix 
Fundamental matrix is used to express the relationship between the same points imaged in two 
different images. It estimates the projection information of a point in one image to the 
corresponding point in the other image. In simpler terms, Fundamental matrix expresses the 
epipolar geometry. reo view of two cameras when cameras view a 

,(Jayson Jayeshkumar Jariwala, 2013).  

2.2.3.2 Feature detection and matching using SIFT 
Scale invariant feature transform (SIFT) was developed by David Lowe in 1999 and it is used to 
convert the image into the image into a group of local descriptors or features, -invariant 
feature t This approach has been named the Scale Invariant Feature 
Transform (SIFT), as it transforms image data into scale-invariant coordinates relative to local 
features (Lowe, 2004). hich 
the local features called keypoints, found in the reference image are stored. Then the features in 
the new image are compared with this database and are matching is done on the basis of 
Euclidean distance of their feature vectors. 

The basic steps in SIFT as mentioned by (Lowe, 2004) are shown in the block diagram below in 
Figure 2.2: 

 

Figure 2.2 Block Diagram of SIFT 

Detection of positions of interest that are independent of the variations in scale is the initial step 
in the process of scale space extrema detection and this is done by implementing the scale space 
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kernel for examining the features which are steady across all the probable changes in scales, 
(Lowe, 2004). (Lowe, 1999) describes the method that uses the Difference of Gaussian (DoG) 
scale space kernel for effective feature detection. To obtain the scale space images separated by a 
constant factor, the starting image is increasingly convolved with the Gaussian scale space 
function and then the neighboring  images are subtracted to produce the DoG images, (Lowe, 
2004). This procedure is shown below in Figure 2.3  

 

Figure 2.3 Generation of DoG images (Source: (Lowe, 2004)) 

Each pixel in an image is compared to its neighbors in the 3×3 region in the same image as well 
as in the adjacent scale space images above and below, conclusively each pixel is compared with 
26 neighbors to obtain the maxima or minima of DoG images,(Lowe, 2004). If the result of 
comparison shows that the pixel is either maximum or minimum of its neighbors then it is marked 
as the candidate key point.  

Keypoint localization is performed by the technique proposed by (Matthew Brown & David 
Lowe, 2002). For the localization of Keypoints, a 3D quadratic function is fitted to the local 
sample points in order to determine the estimated position of the maxima by applying the 
Taylor
contrast and resides on the edges are discarded. The obtained value of the second order Taylor 
expansion of DoG scale space function is used to reject the points with low contrast if it is found 
less than the predefined threshold. Eigen values of the second order Hessian matrix ( ) are 
calculated to obtain the principal curvatures which helps in determining the response of the DoG 
scale space function along and across the edges. Here only the ratio of the Eigen values is 
significant. The trace and determinant of the matrix are used to evaluate the Eigen values, (Lowe, 
2004). (Lowe, 2004) explained it mathematically as 
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Here D is the DoG scale space function 

 

Where  is the trace of ( ) and  is the determinant of ( ) and are expressed as  

 

 

 

Here  and  are the Eigen values of ( ) and  is their ratio. 

So if for a candidate keypoint  is greater than , then it is poorly localized and hence 
rejected.  

Based on the local image characteristics an orientation is assigned to all the keypoints. With 
reference to this orientation a keypoint is made independent of the image rotation. This is done by 
obtaining the gradient magnitude and orientation for each pixel around the candidate keypoint. 
This gradient orientation data is used to plot an orientation histogram of 36 bins in which each 
added sample is weighted by gradient magnitude and Gaussian weighted circular window. 
Gradient image patch weighted by Gaussian window is shown in Figure 2.4.  

 

Figure 2.4 Gradient image patch (Source: (Lowe, 2004)) 

The direction of the local gradient are determined by the peaks in the histogram. The orientation 
is assigned to the highest peak and to the local peaks having the value equal to or within 80% of 
the highest peak. Many keypoints at same location are assigned multiple orientation because of 
the multiple peaks of identical magnitude. This confirms the image scale, rotation and position 
invariance. To obtain the more accurate results, a parabola is fitted to the 3 histograms values 
neighboring to each peak to obtain the interpolated peak position, (Lowe, 2004). 
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A keypoint descriptor is estimated for each keypoint which is independent of the illumination and 
viewing direction. It is already mentioned that the gradient image region around the sample 
keypoint is weighted by the Gaussian window. Descriptor coordinates are rotated by the 
orientation angle of the keypoint to gain rotation independency. Sub division of the region around 
the keypoint is done into 4×4 squares. For each sub divided region an 8 bin orientation histogram 
is plotted. This constitutes to the 16 sub orientation histogram which are used to form a 128-D 
vector called SIFT descriptor and is used for similarity matching among different SIFT features, 
(Lowe, 2004).  

To enhance the process of feature matching Approximate Nearest Neighbor (ANN) is used. 
(Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, & Angela Y. Wu, 1998) 
describe the ANN technique for feature matching. In simpler terms, ANN is a searching 
algorithm which works on a data structure to locate the nearest neighbors. In image feature 
matching, an ANNkd tree is built consisting of all the keypoints of the image. It creates a 
database storing the information of each keypoint in the image. Then the keypoints of other image 
is compared with this database to perform the feature matching. Newly detected points are also 
added to the database and the process continues up to the last image. This approach is very fast 
and produces efficient results.  

Outlier removal is done by using the Random sample consensus (RANSAC). RANSAC is highly 
efficient and robust method for outlier removal which works on the basis of model fitting 
approach. It takes a small set of data and analyses the parameters of the predefined models. If the 
parameters obtained by the taken data set do not satisfies the predefined model, then data points 
are treated as outliers, (Fischler & Bolles, 1981). 

2.2.3.3 Bundle adjustment 
Bundle adjustment is the procedure based on non-linear least squares to minimize the reprojection 
errors, (Yang et al., 2013). Here the term bundle refers to the  leaving 3D points 
and converging onto the camera station. Bundle adjustment is used to generate the optimal 3D 
geometries with the help of camera parameters. As mentioned by (Yang et al., 2013), nonlinear 
problems are generated in applying SfM due to the rotation, perspective division and radial 
distortion.  It is implemented in Structure from Motion approach for the optimization of the point 
position estimation using multiple overlapped images. Levenburg- Marquardt algorithm is 
exclusively used to handle the nonlinearity problem in SfM, however its disadvantage is that it 
only confirms the local minimum and does not take care of the global minimum in large scale 
issues, (Yang et al., 2013). To overcome this localization problem the (Lourakis & Argyros, 
2009) developed a sparse bundle adjustment package.  
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CHAPTER 3: MATERIALS AND METHODOLOGY     

3.1 Study Area 

This research is carried out at IIRS (Indian Institute of Remote Sensing, Dehradun) campus. IIRS 
is a premier institute under Indian Space Research Organization (ISRO), Department of Space, 
and Government of India. This beautiful campus is situated at Kalidas Road, Dehradun, 
Uttarakhand. It was established in 1966 and is a renowned name in the field of Remote Sensing 
and GIS with capacity building in the areas of Remote Sensing and GIS as the quality policy of 
IIRS.  

The main building and Godavari Hostel building of the IIRS campus shown in Figure 3.1(a) and 
3.1(b) respectively are chosen as the test scene. The average height of the terrain in front of the 
building is 652m in geodetic coordinate system with reference to WGS 84 datum. 

 
Figure 3.1 Study area, (a) IIRS main building (Source: Jayson Jayeshkumar Jariwala, 2013), (b) Godavari 

Building 

 
3.2 Datasets 

The datasets used in this research are as follows: 
 Digital Elevation Model (DEM) of CARTOSAT 1 is used to extract the height of the 

target object for field planning. 
 Videos and images captured using the conventional cameras of different resolutions 

are used for the point cloud generation. 
 GPS data in static and kinematic mode is used for geo-referencing the 3D point cloud. 
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3.3 Hardware Used  

The details of the hardware involved in this study is given in Table 3.1 

Table 3.1 Details of the Hardware used 

S. No. Hardware Model No. Used for 
1. Cameras NIKON D60,D90, Coolpix L810, Sony 

Cybershot DSC-H55, Nokia Asha 305, 
Canon PowerShot SX100 IS 

acquiring images and videos of 
scene 

2. GPS system Trimble R7 GNSS Obtaining the position of the 
exposure station 

3. Total Station Leica TPS 1200 Accuracy assessment of the 
georeferenced point cloud 

4.  Laptop HP 2000, (Intel core i3, 64 bit, 2.20GHz, 
4GB RAM) 

Data integration and processing 

 
3.4 Software Used 

A wide range of open source and commercial software have been used to perform this study. 
Table 3.2 gives the details of all the software used in this research work. 

Table 3.2 Details of the Software Used 

S. No. Software/Packages Used for 

1. Format Factory 3.00 rescaling of images 

2. Trimble Business Center  the post processing of GPS data in static and kinematic mode 

3. Arc GIS 10.1 height extraction using Cartosat DEM 

4. OSM Bundler point cloud generation 

5. SfM_georef_v2.3 georeferencing of point cloud 

6.  SQLite manager updating the camera database 

7. MATLAB 2012a coordinate transformation, georeferencing and statistical analysis 

8. Cloud Compare v2 visualizing the 3D point cloud 

9. LPS of ERDAS Imagine 
2013 

bundle adjustment 

10. Python v2.7 geotagging of image frames 

11. NetBeans v7.3 tool development for the generation of georeferenced point cloud 

12. MS office reports and presentation slides preparation 
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3.4 Methodology 

The adopted methodology for this study is divided into three segments and they are shown as 
flowchart in Figure 3.2. The workflow begins with the field planning followed by the data 
collection and data processing segments.  All these segments and the complete methodology 
adopted to carry out this study is explained in the further sections. 

 

Figure 3.2 Flowchart of Methodology 

3.4.1 Field Planning 
As per the guidance of (ISPRS, 2010) for field Planning for close range photogrammetry, field 
planning includes site visiting, planning for the position of the exposure station (distance 
estimation from object, baseline estimation), note making, checking the weather suitability, 
taking care of safety measures etc. There are certain prerequisites for data collection like scale, 
minimum distance between the object and the exposure station and baseline. The minimum 
distance is calculated by the help of equation 3.1 

     (3.1) 

Where D is the distance of exposure station from the object, H is object height, f is focal length of 
the camera and h is the sensor height. 
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Estimation of focal length f of a camera is done in camera calibration and sensor height h is 
obtained from the specifications of camera given in its user manual. As per the adopted 
methodology, CARTOSAT DEM is used to extract the object height H.  

Since f is the intrinsic parameter of the camera, so camera calibration is performed to obtain f. 
Camera calibration is the first process which is very necessary to obtain the camera parameters. 
Here, a calibration sheet i.e., a chessboard is taken. Then, the images of this calibration sheet are 
taken from 12 different positions. The calibration is done by using openCV library in Python(x, 
y) environment. The calibration code displays the camera matrix, distortion parameters as output. 
It should be noted that the camera covers 80% of the calibration sheet and the focal length should 
be fixed or else there occurs error in the output of resultant parameters. The focal length is 
displayed in pixels which needs to be converted into millimeter using the formula,  

Focal Length (in mm) = sensor width (in mm) * (focal pixels / width)   

Where, focal pixels and width, both are in pixels. As mentioned in section 2.2.1.1 focal length, 
principal point and lens distortion parameters are obtained in camera calibration process.  

Now, scale factor ( ) can be calculated by using equation 3.2 

                                                                             (3.2) 

To obtain the baseline i.e. the distance between the two exposure stations can be calculated by 
using equation 3.3 

      (3.3) 

Here,  is the baseline. 

Sensor width can be obtained through camera specifications. 

3.4.2 Data Collection 
Once the minimum distance between the exposure station and the object and the baseline are 
known after proper field planning, then, data collection is the next step. Firstly, the GPS base is 
installed at the roof of the URSD building of IIRS campus and is kept on for 74 hours so as to 
obtain the accurate coordinates. For the data acquisition a mobile mapping system is developed as 
shown in Figure 3.3. In this MMS, Camera is mounted on a wooden frame and GPS antenna is 
mounted on the top of the camera. Video of the object is captured using the conventional cameras 
along with the GPS operating in the kinematic mode to obtain the coordinates of the camera 
trajectory. Images of the object from different locations are also captured with different grades of 
cameras to compare their accuracy. Coordinates of these different positions of exposure station 
are obtained by operating the GPS in fast static mode and with Leica total station.  
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Figure 3.3 Camera and GPS for data acquisition 

3.4.3 Data Processing 
This section deals with the generation of point cloud and transforming it from local to global 
coordinate system. Bundler software of Noah Snavely is used to generate the 3D sparse point 
cloud. Bundler uses the SfM computer vision algorithm for 3D sparse reconstruction. SIFT, ANN 
and RANSAC libraries are included in it along with the SBA package of (Lourakis & Argyros, 
2009). The basic working of Bundler is shown as flowchart in Figure 3.4. As shown in the 
flowchart of methodology in Figure 3.1, the various steps involved in the data processing are 
explained in the further sub sections. 

3.4.3.1 Frame Extraction 
A video is a sequence of image frames that are moved at very high rate up to 8 to 25 frames per 
second or more. These image frames are extracted from the video using openCV library of 
python.  

3.4.3.2 GPS Post Processing and Geo-Tagging of Image Frames 
Once the image frames are extracted, the next task is to geotag them. Geo-tagging is the 
procedure to add the geographical information to various media such as images and videos etc. A 
python code is developed for the geo-tagging of these image frames. EXIF (Exchangeable Image 
Format) tags are used to tag the latitude and longitude on the images. The coordinates of the 
exposure stations obtained through the GPS in UTM format are firstly post processed in the 
Trimble business center software. The data of both the base and rover is transferred to the 
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computer through the data cable using the Trimble data transfer utility. The IGS (International 
GNSS Service) data of few stations is downloaded along with the final orbits ephemeris data to 
process the base data to obtain the accurate coordinates of base. This corrected value of base 
coordinates is used to process the rover data. The GPS coordinates of the exposure stations are   
converted to the degree decimal format and then added to the image metadata by executing the 
python code developed for geo-tagging. 

 

 

 

Figure 3.4 Flowchart showing the working of Bundler (Source: (Yang et al., 2013) ) 

3.4.3.3 Feature Extraction 
Feature extraction or keypoints identification on the images is the first process to generate the 
point cloud. Key features are extracted from the images by using the SIFT algorithm which is 
developed in C/C++. Working of SIFT algorithm is already explained in Chapter 2.  

3.4.3.4 Feature Matching and Outlier Removal 
Once the feature extraction is complete, ANN is used to enhance the feature matching task. ANN 
is a library developed in C++ and thus a C++ compiler is needed to execute it. Feature matching 
is performed between the extracted features of every pair of images. 
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RANSAC is used to increase the accuracy of feature matching by removing the outliers or bad 
matches. Python, Matlab as well as C++ version of RANSAC are available. All the wrong 
matches are removed after outlier removal and further the fundamental matrix computation is 
done. 

3.4.3.4 Bundle Adjustment 
Bundle adjustment is applied using the SBA package of (Lourakis & Argyros, 2009). It is very 
efficient package that process images simultaneously to reconstruct the scene. By using the 
matched keypoints and the projection matrices, SBA reconstructs the scene and calculates the 
orientation of camera and transformation parameters. Thus, it generates the 3D sparse point cloud 
of the scene along with the camera parameters file in local coordinate system. 

Bundler provides the PMVS (Patch based multi view stereo) software of Dr. Yasutaka 
 to convert the sparse point to dense 3D point cloud. It uses the camera parameter file 

generated during sparse reconstruction as the input file for the sparse to dense reconstruction.  

3.4.3.5 Coordinate Transformation 
The point cloud generated using Bundler is in the arbitrary coordinate system and needs to be 
transformed to global coordinate system with proper scale. Space Photo Intersection technique is 
used to obtain the global coordinates of the 3D points of the point cloud. Space intersection 
technique estimates the global coordinates of a point on the basis of the known camera 
parameters, (Jayson Jayeshkumar Jariwala, 2013). Space intersection technique uses the 
collinearity equations to obtain the ground coordinates of a point.  

 

Figure 3.5 Collinearity for Space Intersection 
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Collinearity equations 3.4 and 3.5 are used to establish the relationship between the ground point, 
image point and camera point as shown in Figure 3.5 

    (3.4) 

    (3.5) 

Here, ( are image coordinates of the points, ( are the principal point locations,  is 
the focal length of the camera, are the exposure station coordinates,  are the 
ground control points, are the rotation parameters.  

In collinearity equations, the principal point location can be obtained through the camera 
calibration and image coordinates, rotation parameters are obtained through the camera 
parameters file generated through the bundler and the global coordinates of the exposure station 
are obtained through the GPS. The global coordinates of the points can be calculated by using 
equation 3.4 and 3.5. In this case, there are three unknowns  so at least three equation 
are required to solve these equations. Since, a point is available in at least two images, so four 
equations are obtained for a point (two from each image). Then least square adjustment is applied 
to obtain the solution.  

3.4.3.6 Accuracy Assessment 
There are various factors like environmental factors, camera orientation and resolution of images 
etc. that contributes to the error in the point cloud. Accuracy assessment of the point cloud is 
done as internal and external assessment.  

For performing the internal accuracy assessment few test planes are chosen. These test planes are 
fitted on a reference plane. Principal component analysis (PCA) that represents the axis of 
extreme deviation of the data is applied to obtain the parameters of the reference plane. Then the 
robust plane fitting of the reference frame is done using the RANSAC algorithm and the point to 
plane distances are obtained. This point to plane distance is used to perform the statistical 
analysis. Statistical parameters like mean, standard deviation, maximum distance, minimum 
distance, median,, 25th percentile and 75th percentile of the random errors are calculated.  Here, 
the systematic errors in the data are represented by the mean while standard deviation represents 
the random errors of the observables and the exactitude of the obtained parameters. 

External accuracy assessment can be performed in many ways. The global coordinates of few 
target points are measured with the help of Total Station. The total station is oriented by using the 
coordinates of two points that are already known by the help of GPS. The point cloud generated 
through the images taken by the conventional cameras is georeferenced and then viewed in the 
Cloud Compare software and the known target points are identified to measure the external 
accuracy. The error estimation is done by comparing the coordinates of the target points in the 
point clouds to the coordinates obtained by the total station. 
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3.4.3.7 Tool Development for point cloud processing 

Finally a Graphical Users Interface (GUI) tool is developed on Java to perform all the data 
processing task. The codes written in Matlab and Python to perform various tasks are integrated 
on this GUI to form a common platform to perform all the data processing. An android based 
application is also developed to perform the task of Geo-
and GPS. 

3.4.4 Methodology to handle the GPS unavailability 
As shown in the Flowchart of methodology in Figure 3.1, frames are geotagged based on the 
known camera station coordinates. During the data collection, the problems of poor GDOP 
(Geometric dilution of precision) or satellite unavailability may occur. In this case, few extracted 
frames remain untagged and thus it requires that the unknown locations of the camera stations 
should be determined. So in Figure 3.1, B represents both the geotagged and untagged frames. In 
this research, an attempt is made to address the issue of unavailability of GPS signals by 
developing the methodology shown in Figure 3.6.  

 

Figure 3.6 Methodology to handle the GPS unavailability 
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Figure 3.7 Figure depicting unknown camera station 

Due to the unavailability of GPS signals or poor GDOP, the coordinates of few of the camera 
stations are unknown and this situation is shown in Figure 3.7. The collinearity equations for 
space intersection are used to obtain the unknown coordinates of the camera stations. The 
unknown coordinates of the camera station can be determined using the equations 3.4 and 3.5. In 
these equations, the camera coordinates  are unknown. Image coordinates are obtained 
through bundler output files, focal length is determined through camera calibration. In Figure 3.7, 
the camera coordinates of two camera stations are known so the global coordinates of the points 
belonging to image 1 and image 2 can be determined. Same common points on image 3 are taken 
so as to determine the unknown coordinates of the third camera station. Minimum two points are 
required to obtain the solution for the collinearity equations. Each point generates two equations 
such that four equations are obtained from two points. So, least square adjustment solution of 
these equations provide the location of exposure station where GPS signals are not available.  
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Field Planning 

As per the Methodology explained in Chapter 3, the height extraction of the object using the 
CARTOSAT DEM was the primary task for field planning. The objective of the field planning is 
to analyze the study area and identify the approximate locations of the points (path for the camera 
motion) from where the photographs could be taken. Any satellite stereo pair could be used based 
upon the optimum resolution required to view the study area for proper field planning. In this 
study, Cartosat data is used due to the availability of the data and to develop a methodology for 
field planning showing the application of satellite data in Close Range Photogrammetry. Based 
upon the scene visibility and availability of the data any satellite stereo pair could be used. The 
methodology developed for the field planning uses the IIRS main building as test study area and 
the same approach was used in the field planning for Godavari building. The extracted heights of 
the main building and the administrative building of the IIRS campus are 9.97m and 3.37m 
respectively. The height of the main building of IIRS obtained through GPS is 11.36m. The 
difference of the extracted height and height obtained through GPS was calculated for finding the 
error between two heights and the calculated error is 1.39m. The focal length obtained through 
the camera calibration was used with the extracted height to find the other parameters for field 
planning.  

4.1.1 Camera Parameters 
Different grades of camera used in this research work are firstly calibrated to obtain the intrinsic 
parameters. PhotoModelerScanner software was used to perform the camera calibration task. 
NIKON D90 camera was used to obtain the parameters for field planning and its intrinsic 
parameters estimated were estimated using camera calibration. 10 Images of a calibration sheet 
(36 inches × 36 inches) consisting of 140 grid points and 4 control points taken by NIKON D90 
at different angles were used for the camera calibration. Images of the calibration sheet are shown 
in Figure 4.1.  

 

Figure 4.1 Calibration Sheet 
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Focal length, lens distortion parameters and location of the principal point are obtained through 
the camera calibration.  

Parameters obtained through camera calibration are as follows: 

Focal Length Value: 20.31 mm 
Pixel Size, Sx=5.50µm, Sy=5.50µm 
Xp - principal point x Value: 11.753564 mm Deviation: Xp: 0.007 mm 
Yp - principal point y Value: 8.04432 mm Deviation: Yp: 0.010 mm   
K1 - radial distortion 1 Value =-0.1136932061321540 
K2 - radial distortion 2 Value=0.1195857117314250 
K3 - radial distortion 3 Value=-0.0525860556555812  
P1 - decentering distortion 1 Value: 0.000e+000 
P2 - decentering distortion 2 Value: 0.000e+000 
Point Marking Residuals Overall RMS: 0.688 pixels 

As per the calibration manual of the PhotoModelerScanner the overall point marking residual 
should be less than 1pixels and the estimated overall point marking residual was 0.688pixels 
which was as per the standard. Using these intrinsic parameters the parameters for the field 
planning are estimated. 

4.1.2 Parameters for Field Planning 
Field planning is necessary for proper data acquisition and the steps included in it are already 
explained in section 3.4.1. Figure 4.2 Shows the shape file of IIRS campus which is digitized 
from Cartosat 1 imagery and is used along with cartosat DEM for calculating the zonal statistics 

 

Figure 4.2 Shapefile of IIRS campus 
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The parameters obtained for the field planning for data acquisition are as follows: 

Extracted height of building H=9.97m. 
Focal length of camera f=20.31mm. 
Sensor width w=23.6mm. 
Sensor height h=15.8mm. 
Minimum distance between camera and object was calculated using equation 3.1, 
D=12.81m. 
Scale Mb 630.73. 
Baseline= (20/100)*(630.73*23.6) =2.98m 
Thus, the minimum distance between the camera station and the object is taken 15m for this 
study. Following the same methodology the points were marked in front of the Godavari Building 
of IIRS for taking the images. 

4.2 Data Collection 

The points marked in the field planning were used to capture the images of the object by different 
grades of conventional cameras. The coordinates of these points were also obtained through GPS. 
The cameras NIKON D60, D90, Coolpix L810, Sony Cybershot DSC-H55 and Canon PowerShot 
SX100 IS were used to capture the images. A total of 35 images were taken from each camera to 
cover the front face of Godavari building of IIRS campus. A video is also captured by NIKON 
D90 camera along with the GPS working in kinematic mode obtain the trajectory information of 
the camera.  

To measure the GPS coordinates, base was installed at the roof of URSD building of IIRS 
campus and the rover was used to take the readings at the points from where the photographs 
were taken. The coordinates of two points were measured with the GPS and the rest coordinates 
of the other points were measured by the Total Station. Total Station was oriented by the help of 
the points measured by the GPS. The GPS data was post processed in Trimble Business center to 
obtain the corrected coordinates. The horizontal and vertical precision obtained in the processed 
GPS data of base station is 0.6cm and 0.7cm respectively. The horizontal and vertical precision 
obtained in the processed GPS data of the first rover point is 0.6cm and 0.8cm respectively 
whereas for the second point, the horizontal and vertical precision is 0.6cm and 0.9cm. The post 
processing of the GPS data provides the coordinates of the marked points on the ground and for 
that reason the tripod offset of 1.50m and camera electronic center height 6.50cm is added to the 
GPS height to obtain the position of exposure station.  
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Figure 4.3 Field data collection & GPS post processing 

The coordinates of base station was corrected by post processing the base station data with the 
few IGS stations data. The baselines are shown in Figure 4.3(a). Then the corrected coordinate 
values of the base station were used for the post processing of the rover data. Figure 4.3(b) 
represents the trajectory of the camera path followed for capturing the video of the Godavari 
building. The points used for capturing the images from different grades of conventional cameras 
are shown in Figure 4.3(c). Figure 4.3(d) and 4.3(e) shows the images of data collection. 

The Terrestrial Laser Scanner RIEGL VZ-400 is used to for obtaining the highly dense point 
cloud of the object. The accuracy mentioned in the datasheet of RIEGL VZ-400 is 5mm with 
precision of 3mm. The laser point cloud was georeferenced by the known target point coordinates 
measured by total station and was used as a reference to compare the accuracy of the 
georeferenced point cloud generated through the video and images captured through the 
conventional cameras. 

4.3 Data Processing 

As mentioned in the section 3.4.3, firstly the image frames were extracted from the video and 
were geo-tagged using the python code. These geo-tagged frames were then processed in bundler 
software of Noah Snavely to generate the 3D point cloud. The processing of the bundler software 
involves feature detection and matching, outlier removal and bundle adjustment which were 
already explained in chapter 2. The Number of matched features is maximum in the adjacent 
images and decreases between any other pair of images. The graph showing the variation in 
number of matched features in different pair of images is shown in Figure 4.4. There were total 
35 images. Feature matching was done by making the all possible pairs of images. This graph is 
showing the number of matched features in the image pairs formed using the first image. It can be 
easily seen that the number of matched features is maximum in image pair (0, 1) i.e. between the 
first and the second image. This value decreases between the first and third image i.e. image pair 
(0, 2) and keeps on decreasing with the other pair of images. This happens because of the lack of 
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overlap of images in the image pairs. The first pair of images has maximum overlap between 
them and thus the number of matched features for this pair is maximum. 

 

Figure 4.4 Number of Matches in different pair of Images 

The output of the bundler contains the .txt, .out and .ply files. The information related to the 
matched features and camera parameters (rotational and translational) is present in these files. 
The .ply files contains the generated 3D point cloud and it can be viewed in the Cloud Compare 
software. The generated point cloud was sparse and therefore converted to dense point cloud by 
running the PMVS on bundler output. The same approach was applied to generate the 3D point 
cloud from the images taken from the different grades of conventional cameras.

 

Figure 4.5 Point Cloud generated using the extracted frames from a video 

The point cloud generated using the 198 extracted frames from a video is shown in Figure 4.5. Its 
top view is shown in Figure 4.6. The point cloud generated using the bundler was in the local 
coordinate system. It needs to be transformed into the global coordinate system. The 
transformation of the 3D point cloud from the local coordinate system to the global coordinate 
system was done using the collinearity equations for the space photo intersection as explained in 
the section 3.4.3.5. The global coordinates of the exposure stations measured through the GPS 
were used for the transformation of the 3D point cloud from the local coordinate system to the 
global coordinate system.  
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Figure 4.6 Top view of the point cloud generated from image frames extracted from the video 

The images taken from different grades of conventional camera were also processed using the 
bundler to generate the 3D point cloud. PMVS was used to convert the generated point cloud to 
dense point cloud. The output of the bundler was used as an input to the PMVS for dense 
reconstruction. PMVS is available in the OSM Bundler package. The generated point cloud for all 
the cameras was georeferenced and the accuracy assessment was also done. The comparison of 
all the cameras was done on the basis of the external accuracy assessment. 

 

Figure 4.7 Point Cloud from the images taken from different grades of cameras, (a) point cloud by NIKON D60, 
(b) point cloud by NIKON D90, (c) point cloud by NIKON CoolPix L810, (d) point cloud by Sony Cybershot 

DSC-H55 
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The point clouds generated from the images taken from the different grades of conventional 
cameras are shown in Figure 4.7. Figure 4.7(a) shows the point cloud of the Godavari building of 
IIRS, generated from the images taken by NIKON D60 camera. Figure 4.7(b) represents the point 
cloud generated from the images taken by NIKON D90 camera. Point clouds generated by the 
images taken from NIKON CoolPix L810 and Sony Cybershot DSC-H55 are shown in Figure 
4.7(c) and 4.7(d) respectively. 

The georeferenced point cloud is shown in Figure 4.8. 4 Points along with their global 
coordinates are shown in it. In the label showing the coordinates of a point, first line represents 
the point id, second line displays the global coordinates of that point and third line shows the 
color vector of the point. Since the global coordinates of the camera exposure station were used 
for georeferencing the point cloud, this method of georeferencing is called direct georeferencing. 

 

Figure 4.8 Georeferenced Point Cloud 

4.4 Accuracy Assessment 

As mentioned in the section 3.4.3.6, accuracy assessment of the point cloud is done in two ways, 
internal accuracy assessment and external accuracy assessment.  

4.4.1 Internal Accuracy Assessment 
In the internal accuracy assessment, the point cloud is analyzed to check the accuracy of the 
discrete points, density of the point cloud and gaps. It is generally done to check whether the 
generated points are forming a surface or not. The process to perform the internal accuracy 
assessment is already explained in section 3.4.3.6. As per methodology adopted for internal 
accuracy assessment, the points were chosen from three different areas. The estimation of the 
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points to plane distance was done by performing plane fitting on them. Several statistical 
parameters like mean, standard deviation, minimum and maximum distances, median distance 
were also estimated to perform the internal accuracy assessment. Figure 4.9 shows the areas from 
where the points are taken for internal accuracy assessment. The selected point samples are 

 

 

 

 

Figure 4.9 Test planes for Internal Accuracy Assessment 

4.4.1.2 Internal accuracy assessment of NIKON D60 
The internal accuracy assessment of the point cloud was done by taking the sample points from 
three different parts of the point cloud. The number of points in part 1 sample, part 2 sample and 
part 3 sample were 964, 568 and 1197 respectively. Figure 4.10(a) shows the outliers in blue 
color in point to plane matching and Figure 4.10(b) scattering of samples in Part 1 sample. The 
color bar in the Figure 4.10(b) represents the scattering of points from the reference plane in the 
northing direction. The outliers in point to plane matching and scattering of samples for part 2 are 
shown in Figure 4.11(a) and 4.11(b) respectively, Figure 4.12(a) and 4.12(b) shows the same 
information for part3. 
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Figure 4.10 (a) Outliers in point to plane matching, (b) scattering of samples in Part 1 sample 

 

Figure 4.11 (a) Outliers in point to plane matching, (b) scattering of samples in Part 2 samples 

 

Figure 4.12 (a) Outliers in point to plane matching, (b) scattering of samples in Part 3 samples 
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Figure 4.13 Histograms representing the Points to Plane Distance in Part 1, Part 2 and Part 3 samples 

Figure 4.13 shows the plots of the histograms representing the points to plane distance in part 1, 
part 2 and part 3 samples. For performing the statistical analysis, box plots for all the sample parts 
are shown in Figure 4.14.  

 

Figure 4.14 Box plot of sample parts for Points to plane distances 
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Table 4.1 Statistics of internal accuracy assessment of NIKON D60 

NIKON D60 
 Part 1(m) Part 2(m) Part 3(m) 

Mean -0.01017 -0.00254 0.001252 
Standard Deviation 0.31802 0.036364 0.034448 
Maximum Distance 0.64703 0.10341 0.62175 
Median 0 0 0 
Minimum Distance -0.62585 -0.15177 -0.13281 
Variance 0.10114 0.001322 0.001187 
 

Table 4.1 shows the statistical parameters calculated for the internal accuracy assessment of the 
point cloud generated using the images taken from the NIKON D60 camera. As per (Jayson 
Jayeshkumar Jariwala, 2013), the red line in the boxplot shown in Figure 4.14 indicates that the 
50% of the data is greater than the median value, the blue line  at the bottom represents the lower 
quartile and indicates that the 25% of the data is less than this value whereas the blue line at the 
top represents the upper quartile and  indicates that the 25% of the data is above this value. The 
red plus sign at the top and the bottom indicates that the outliers which is greater than 1.5 times 
the upper quartile and lesser than 1.5 times of the lower quartile respectively. The black lines at 
the top and the bottom represents the greatest values excluding outliers and least values excluding 
outliers respectively.  

On the analysis of the histograms and box plots, it is clear that there exist both the symmetrical 
and asymmetrical distribution (positive skewed or negative skewed) in the point cloud. The box 
plot analysis is done to identify the scattering and skewness in the point cloud and for the 
identification of the outliers. In Table 4.1, the range of the points to plane distances in part 1, part 
2 and part3 is -0.62585m to 0.64703m, -0.15177m to 0.10341m and -0.13303m to 0.62059m 
respectively. From Table 4.1, it is clear that the part 1 and part 2 are left skewed whereas the part 

 As per the histograms in Figure 4.13 and box plots in 
Figure 4.14, the part 3 sample has normal distribution. The errors in the point cloud occurs due to 
the distortion in the positions of the epipolar lines in the overlapping images.  

4.4.1.3 Internal accuracy assessment of NIKON D90 
The procedure is same as applied for the internal accuracy assessment of the point cloud 
generated from the images taken from NIKON D60 camera. The number of points in part 1 
sample, part 2 sample and part 3 sample were 987, 507 and 986 respectively. 
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Figure 4.15 (a) Outliers in point to plane matching, (b) scattering of samples in Part 1 sample 

Figure 4.15(a) shows the outliers in blue color in point to plane matching and Figure 4.15(b) 
scattering of samples in Part 1 sample. The color bar in the Figure 4.15(b) represents the 
scattering of points from the reference plane in the northing direction. The outliers in point to 
plane matching and scattering of samples for part 2 are shown in Figure 4.16(a) and 4.16(b) 
respectively, Figure 4.17(a) and 4.17(b) shows the same information for part3. 

 

Figure 4.16 (a) Outliers in point to plane matching, (b) scattering of samples in Part 2 samples 
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Figure 4.17 (a) Outliers in point to plane matching, (b) scattering of samples in Part 3 samples 

 

Figure 4.18 Histograms representing the Points to Plane Distance in Part 1, Part 2 and Part 3 samples 
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Figure 4.19 Box plot of sample parts for Points to plane distances 

Figure 4.18 shows the plots of the histograms representing the points to plane distance in part 1, 
part 2 and part 3 samples. Box plots for all the sample parts are shown in Figure 4.19.  

Table 4.2 Statistics for internal accuracy assessment of NIKON D90 

NIKON D90 
 Part 1(m) Part 2(m) Part 3(m) 

Mean 0.000992 -0.00051 2.73E-05 
Standard Deviation 0.30697 0.037081 0.044191 
Maximum Distance 0.56777 0.099002 0.30836 
Median 0 0 0 
Minimum Distance -0.60311 -0.1208 -0.24738 
Variance 0.094228 0.001375 0.001953 
 

Table 4.2 shows the statistical parameters calculated for the internal accuracy assessment of the 
point cloud generated using the images taken from the NIKON D90 camera. The analysis is same 
as that performed for the NIKON D60. 
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4.4.1.4 Internal accuracy assessment of NIKON CoolPix L810 
The procedure is same as applied for the internal accuracy assessment of the point cloud 
generated from the images taken from NIKON D60 camera. The number of points in part 1 
sample, part 2 sample and part 3 sample are 474, 296 and 666 respectively. 

 

Figure 4.20 (a) Outliers in point to plane matching, (b) scattering of samples in Part 1 sample (c) Outliers in 
point to plane matching, (d) scattering of samples in Part 2 sample (e) Outliers in point to plane matching, (f) 

scattering of samples in Part 3 sample 
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Figure 4.21 Histogram and box plot for three samples 

Figure 4.20(a) shows the outliers in blue color in point to plane matching and Figure 4.20(b) 
scattering of samples in Part 1 sample. The color bar in the Figure 4.20(b) represents the 
scattering of points from the reference plane in the northing direction. The outliers in point to 
plane matching and scattering of samples for part 2 are shown in Figure 4.20(c) and 4.20(d) 
respectively, Figure 4.20(e) and 4.20(f) shows the same information for part3. The histogram and 
box plot for these sample parts are shown in Figure 4.21. Table 4.3 shows the statistical 
parameters calculated for the internal accuracy assessment of the point cloud generated using the 
images taken from the NIKON CoolPix L810 camera. The analysis is same as that performed for 
the NIKON D60. 
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Table 4.3 Statistics for internal accuracy assessment of NIKON CoolPix L810 

NIKON CoolPix L810 
 Part 1(m) Part 2(m) Part 3(m) 

Mean 0.001522 -0.01302 -0.10392 
Standard Deviation 0.33359 0.099645 0.68255 
Maximum Distance 0.69742 0.088208 0.953 
Median -5.82E-11 0 0 
Minimum Distance -0.72074 -0.73796 -4.296 
Variance 0.11128 0.009929 0.46587 
 

4.4.1.5 Internal accuracy assessment of Sony Cybershot DSC-H55 
The procedure is same as applied for the internal accuracy assessment of the point cloud 
generated from the images taken from NIKON D60 camera. The number of points in part 1 
sample, part 2 sample and part 3 sample are 723, 266 and 737 respectively.  

Figure 4.22(a) shows the outliers in blue color in point to plane matching and Figure 4.22(b) 
scattering of samples in Part 1 sample. The color bar in the Figure 4.22(b) represents the 
scattering of points from the reference plane in the northing direction. The outliers in point to 
plane matching and scattering of samples for part 2 are shown in Figure 4.22(c) and 4.22(d) 
respectively, Figure 4.22(e) and 4.22(f) shows the same information for part3. The histogram and 
box plot for these sample parts are shown in Figure 4.23. Table 4.4 shows the statistical 
parameters calculated for the internal accuracy assessment of the point cloud generated using the 
images taken from the NIKON CoolPix L810 camera. The analysis is same as that performed for 
the NIKON D60. 

Table 4.4 Statistics for internal accuracy assessment of Sony Cybershot DSC-H55 

Sony Cybershot DSC-H55 
 Part 1 Part 2 Part 3 

Mean 0.002959 0.001465 -0.50378 
Standard Deviation 0.32856 0.039163 4.9879 
Maximum Distance 0.61673 0.12329 13.272 
Median 0 0 0 
Minimum Distance -0.70932 -0.10461 -38.891 
Variance 0.10795 0.001534 24.879 
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Figure 4.22 (a) Outliers in point to plane matching, (b) scattering of samples in Part 1 sample (c) Outliers in 
point to plane matching, (d) scattering of samples in Part 2 sample (e) Outliers in point to plane matching, (f) 

scattering of samples in Part 3 sample 
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Figure 4.23 Histogram and box plot for three samples 

4.4.2 External Accuracy Assessment 
As explained in section 3.4.3.6, the global coordinates of few target points were measured with 
the help of Total Station. The total station was oriented by using the coordinates of two points 
that were already known by the help of GPS. The georeferenced point cloud generated through 
the images taken by the conventional cameras is viewed in the Cloud Compare software and the 
known target points are identified to measure the external accuracy. The locations (Easting, 
Northing and Height) of few points of the point cloud generated from the images is compared 
with the corresponding points measured by the Total Station. The locations of total 8 well 
distributed points are taken from the image point cloud for the comparison with the target points. 
The errors in the easting, northing and height are estimated for the point clouds generated from 
the images taken by different grades of conventional cameras. Figure 4.24 shows the chosen 
target points used for the external accuracy assessment.  
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Figure 4.24 Point Location used for external accuracy assessment 

Table 4.5 shows the RMSE in Easting, Northing and height in meters for different grades of 
conventional camera used for image data acquisition. 

Table 4.5 RMSE in Easting, Northing and Height 

 
Camera Model 

RMSE 
Easting(m) Northing(m) Height(m) 

NIKON D60 0.29 0.21 0.61 
NIKON D90 0.28 0.26 0.50 
NIKON CoolPix L810 0.83 0.62 0.97 
Sony Cybershot DSC-H55 0.26 0.27 0.50 
Video from NIKON D90 3.46 7.07 3.05 



Integration of Computer Vision Algorithms & GNSS for Georeferenced Point Cloud Generation 
from Video 

 
 

- 48 - 
 

4.4 Results for the GPS unavailability problem 

For handling the problem of GPS outage or poor GDOP the developed methodology is explained 
in chapter 3. A matlab code to determine the coordinates of the unknown camera station was 
developed by implementing the collinearity equations for space intersection. As explained in 
section 3.4.4, the image coordinates, global coordinates of minimum two points and rotational 
parameters, principal point location and focal length of the camera were required to obtain the 
unknown coordinates of camera stations. The coordinates of the required two points were 
obtained by processing the GPS data in Trimble Business Center software. The horizontal and 
vertical precision obtained for the first point is 0.6cm and 0.8cm respectively and 0.6cm and 
0.9cm respectively for second point. More number of points provide better results. For this study, 
the main building of IIRS campus was chosen as the test scene. A total of 19 images of the main 
building were taken for this study. The location of camera station corresponding to the image 
number 8 was assumed to be unknown. 

Image coordinates of two points used =  

Principal Point coordinates =  

Rotation Parameters=  

GCPs=  

Calculated coordinates of exposure station=  

This method gives an error of 12.65m, 11.12m and 0.54m in Easting, Northing and Height. To 
improve the solution, triangulation and bundle adjustment was applied using the Leica 
Photogrammetric Suite of Erdas Imagine. For solving the bundle adjustment, the global 
coordinates of the exposure station ( ) and the rotation parameters (omega, phi, kappa) are 
required.  For finding the initial values for the unknown exposure station coordinates few (at least 
two) few tie points are required on the adjacent images whose exposure station coordinates are 
known. The coordinates of these tie points are estimated by solving the collinearity equations for 
space intersection.  The same tie points are used to calculate the coordinates of the unknown 
exposure station by solving the collinearity equations for space intersection. Once the point cloud 
is generated by using the bundler software the rotation parameters and image coordinates of the 
tie points are obtained from the bundle.out file. These values are used as the initial values for 
bundle adjustment in Leica Photogrammetry Suite (LPS). 

When 25 control points were taken the error in Easting, Northing and Height of camera station 
corresponding to image number 8 is shown in Table 4.6. 
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Table 4.6 Error in Coordinates when 25 control points are taken 

Frame No. Easting(m) Northing(m) Height(m) 

8 3.25 4.66 2.18 

  

From Table 4.6 it is clear that the bundle adjustment improves the accuracy and also with more 
number of control points accuracy improves. Figure 4.25 shows the total RMSE obtained after 
applying triangulation in LPS. This result was obtained in 10 iterations. 

 

Figure 4.25 RMSE in Triangulation 

By reducing the iterations to 5, accuracy is further improved and is shown in Table 4.7. 

Table 4.7 RMSE after 5 iterations 

Frame No. Easting(m) Northing(m) Height(m) 

8 2.20 2.43 1.40 
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Figure 4.26 RMSE in Triangulation after 5 iterations 

Figure 4.26 shows the RMSE in triangulation after 5 iterations. 

Approach is also analyzed by reducing the number of Images. Now, total 4 images were taken 
and the coordinates of forth camera station were assumed to be unknown. Figure 4.27 shows the 
RMSE in triangulation for the 4 images. Error in Easting, Northing and Height is shown in Table 
4.8. 

 

Figure 4.27 RMSE in Triangulation with 4 images 
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Table 4.8 Error in coordinates of 4th frame 

Frame No. Easting(m) Northing(m) Height(m) 

4 0.90 2.65 1.19 
 

Now, the approach is applied when a middle camera station is unknown. Here, it is assumed that 
the third camera station is unknown and the obtained error is shown in Table 4.9. 

Table 4.9 Error in coordinates of 3rd frame 

Frame No. Easting(m) Northing(m) Height(m) 

3 0.19 0.99 0.50 
 

It is clear from the Table 4.9 that the accuracy improves if the coordinates of the adjacent camera 
stations around the station whose coordinates are unknown.  

Consider the case when the coordinates of the two camera stations are unknown. It is assumed 
that the coordinates of third and fourth camera station are unknown. The error obtained in the 
coordinates of 3rd and 4th camera station are shown in Table 4.10 and RMSE in triangulation is 
shown in Figure 4.28. 

Table 4.10 Error in coordinates of 3rd and 4th camera station 

Frame No. Easting(m) Northing(m) Height(m) 

3 0.84 1.95 0.50 
4 1.14 3.24 1.72 
 

 

Figure 4.28 RMSE in triangulation when two unknown camera station are present 
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It is clear from the Table 4.10 and Figure 4.28 that as the number of unknown camera stations 
increases the accuracy reduces. The error in the coordinates of fourth camera station indicates that 
the error increases if the adjacent camera stations are unknown. 

4.5 Android App for geo-tagging 

An android application is developed using Eclipse SDK. The application allows the user to 
capture geotagged images. It uses the GPS feature of the android phone to obtain the current 
location. The home screen of the application is shown in Figure 4.29(a).  The home screen 
displays a button which when presses allow the user to capture the images. Once the image is 
captured, it is stored in the memory card and can be seen on the image viewer available in the 
home screen of the android app. 

 

Figure 4.29 (a) Home screen of Android App, (b) Software tool for point cloud processing 

4.6 Software tool for Point cloud processing 

A GUI (Graphical User Interface) tool is developed in Java to perform the point cloud processing 
task. GUI consists of a tabbed pane providing different features like frame extraction, sparse point 
cloud generation, dense reconstruction, georeferencing of the point cloud and internal accuracy 
assessment. Figure 4.29(b) shows the GUI of the software tool. For the generation of point cloud 
is exe file of OSM bundler is used. For performing the georeferencing of the point cloud 
SfM_Georef software is used. The task of geotagging and frame extraction is done using the exe 
file of code written in Python for geotagging and frame extraction. 
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

This research focuses on the development of the technology to generate the georeferenced point 
cloud from a video.  Structure from Motion approach is used to generate the point cloud and 
estimate the extrinsic parameters of the camera. Collinearity equations for space intersection are 
used to georeference the point cloud. Point cloud is also generated from the static photos taken 
from different grades of conventional cameras. The point cloud generated by using the extracted 
video frames produces denser point cloud as compare to the static images due to more number of 
image frames and higher overlap between them. There are 253010 points in the point cloud 
generated from 442 frames, 298174 points from 552 frames and 24004 points from 35 frames. 
However, the georeferencing accuracy is very poor as compare to the georeferenced point 
generated through static images. This is because of the improper geotagging of extracted image 
frames due to the mismatch between the frame rate of video and logging rate of GPS.  Accuracy 
may improve if proper geotagging is done. The RMSE obtained in Easting, Northing and Height 
is 3.46m, 7.06m, 3.04m respectively. 

5.1.1 Answers to Research Questions 
1) Does video frame sampling improve the performance of SfM GNSS integration over the 

static Photos?  
The point cloud generated using the image frames extracted from a video produces 
denser point cloud as compare to the point cloud generated using the static images.  The 
point density increases with the increase in the number of frames and vice-versa. There 
are 253010 points in the point cloud generated from 442 frames, 298174 points from 552 
frames and 24004 points from 35 frames. However, the georeferencing accuracy is much 
degraded in comparison to the georeferenced point cloud generated from the static 
images. This occurs due to the following reasons: 

 Mismatch between the frame rate of camera and data logging rate of GPS results 
in the improper geotagging of image frames extracted from the video. 

 Poor accuracy of GPS in kinematic mode. 

The RMSE obtained in Easting, Northing and Height is 3.46m, 7.06m, 3.04m 
respectively. 

2) How to geo-tag the video frames? 
A python code using the openCV library is written to automatically extract the image 
frames from a video and geotag the extracted image frames. This code provides the 
flexibility to control the frame extraction rate. Figure 5.1 shows the flowchart to geotag 
the video frames and also shows a geotagged frame. The latitude and the longitude are 
added to the image metadata by using the EXIF tags. 
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Figure 5.1 Geotagging technique 

3) What is the effect of changing the camera resolution in SfM-GNSS integration? 
Four cameras (NIKON D60, NIKON D90, NIKON Coolpix L810 and Sony cybershot 
DSC-H55) with different resolutions are used to acquire the images from the same 
locations. All the images are taken with constant focal lengths. A total of 35 images are 
taken from each camera and processed to generate the point cloud. Point clouds are 
georeferenced and the accuracy assessment is done individually for each camera. The 
results of accuracy assessment are shown in Table 4.5 in chapter 4. The accuracy 
comparison is shown in Table 5.1. The data shown in the table concludes that the type of 
camera or sensor type (CMOS or CCD) plays a major role in the accuracy of the point 
cloud. Also it is clear that improving the camera resolution with same camera type may 
not improve the accuracy and it is found that around 10-12MP cameras are sufficient to 
get an accuracy of around 25cm, 27cm and 50cm in easting, northing and height 
respectively. 
 

Table 5.1 Accuracy Comparison of different grades of camera 

Parameters NIKON D90 NIKON D60 Sony Cybershot 
DSC-H55 

NIKON Coolpix 
L810 

Resolution 12.9MP 10.2MP 14.1MP 16.1MP 
Type of 
camera 

CMOS CCD CMOS CCD 

Focal Length 20mm 18mm 4mm 4mm 
Sensor Width 23.6mm 23.6mm 6.17mm 6.16mm 
Resolution 
(pixels) 

3872*2592 4288*2848 4320*2432 4608*3456 

No. of points 
generated 

133904 128191 87206 86606 

Feature 
identification 

Possible Possible Possible Possible 

Accuracy Easting: 0.2870031m 
Northing: 0.26563m 
Height: 0.496374m 

Easting: 0.297368m 
Northing: 0.20900m 
Height: 0.611031m 

Easting: 0.259153m 
Northing: 0.27398m 
Height: 0.50123m  

Easting: 0.82854m 
Northing: 0.6194m 
Height: 0.97407m 
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4) How to geo-reference the point cloud from camera station under GNSS unavailable 
environment? 
The methodology is developed to find out the unknown locations of camera point. The 
unknown location is estimated using the collinearity equations for space intersection. To 
improve the accuracy bundle adjustment is applied. Once the unknown location of the 
camera points is obtained then the georeferencing of the point cloud is done. 

5.2 Recommendations 

1) The accuracy of the point cloud generated from the video frames is very low because of 
the improper geo-tagging due to the mismatch between frame rate of video and the data 
logging rate of the GPS. Either use the camera that provides automatic video tagging or 
use the GPS that have high logging rate. 

2) In this study, the frames that are extracted from the video have poor resolution. An 
approach should be developed to extract the frames without degrading the resolution. 

3) Instead of extracting the image frames, an approach could be develop to directly generate 
the point cloud. 
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APPENDICES 

Appendix-1 Exposure Station coordinates  

Table A.1 Coordinate of the Exposure Station locations marked in front of Godavari Building 

Exposure Station ID Easting(m) Northing(m) Height(m) 
1 215930.509 3360196.52 656.785 
2 215935.158 3360202.059 656.969 
3 215939.101 3360202.105 656.972 
4 215938.476 3360206.048 656.999 
5 215940.439 3360208.179 657.055 
6 215942.411 3360209.569 656.984 
7 215942.803 3360212.885 657.014 
8 215943.476 3360216.543 657.129 
9 215942.906 3360219.216 657.16 
10 215945.966 3360223.486 656.88 
11 215947.794 3360226.643 656.977 
12 215950.975 3360228.72 656.984 
13 215951.713 3360231.268 657.086 
14 215952.76 3360232.963 657.081 
15 215956.744 3360232.809 656.078 
16 215956.405 3360235.492 656.329 
17 215959.449 3360239.308 656.481 
18 215960.691 3360242.633 656.492 
19 215962.122 3360244.377 656.5 
20 215962.679 3360246.154 656.488 
21 215963.623 3360248.982 656.478 
22 215964.072 3360251.359 656.507 
23 215964.943 3360253.81 656.499 
24 215965.861 3360256.136 656.491 
25 215966.448 3360257.87 656.495 
26 215967.008 3360259.712 656.492 
27 215967.424 3360262.106 656.524 
28 215968.652 3360264.149 656.502 
29 215972.411 3360265.069 656.355 
30 215973.296 3360268.339 656.394 
31 215972.208 3360271.872 656.68 
32 215973.081 3360274.272 656.667 
33 215974.244 3360276.696 656.638 
34 215975.426 3360279.512 656.475 
35 215976.5 3360283 656.557 
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Appendix-2 Accuracy assessment between TLS points and Generated point cloud 
using NIKON D60 

Table A.2 Coordinates of Test points taken for Accuracy Assessment 

 
Point Id 

TLS Point Cloud D60 
Easting(m) Northing(m) Height(m) Easting(m) Northing(m) Height(m) 

1 215977.794 3360252.548 658.551 215977.7969 3360252.5 657.523621 
2 215977.663 3360250.292 661.731 215977.7031 3360250 660.997803 
3 215969.314 3360228.815 664.224 215969.8438 3360228.75 662.330688 
4 215976.927 3360234.806 671.039 215977.375 3360234.25 668.827026 
5 215967.533 3360213.327 671.096 215968.1094 3360213.5 668.929321 
6 215969.459 3360238.096 659.973 215969.5313 3360238 659.21167 
7 215976.532 3360250.11 671.101 215977.4375 3360249.75 669.026306 
8 215973.041 3360237.896 663.25 215973.2813 3360237.75 662.190674 

 

Table A.3 Error in Easting, Northing and Height 

Error in Easting (m) Error in Northing(m) Error in Height (m) 
0.002875 -0.048 -1.027379 
0.040125 -0.292 -0.733197 
0.52975 -0.065 -1.893312 
0.448 -0.556 -2.211974 
0.576375 0.173 -2.166679 
0.07225 -0.096 -0.76133 
0.9055 -0.36 -2.074694 
0.24025 -0.146 -1.059326 
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Appendix-3 Accuracy assessment between TLS points and Generated point cloud 
using NIKON D90 

Table A.4 Coordinates of Test points taken for Accuracy Assessment 

 
Point Id 

TLS Point Cloud D90 
Easting(m) Northing(m) Height(m) Easting(m) Northing(m) Height(m) 

1 215977.794 3360252.548 658.551 215977.7969 3360252.25 657.3943 
2 215977.663 3360250.292 661.731 215977.9531 3360250.25 660.5467 
3 215969.314 3360228.815 664.224 215969.4063 3360228.75 662.2935 
4 215976.927 3360234.806 671.039 215977.1563 3360234.5 669.2051 
5 215967.533 3360213.327 671.096 215967.6406 3360213.75 669.1592 
6 215969.459 3360238.096 659.973 215969.4844 3360237.75 659.4269 
7 215976.532 3360250.11 671.101 215977.4844 3360250.25 669.1552 
8 215973.041 3360237.896 663.25 215973.375 3360237.5 662.1696 

 

Table A.5 Error in Easting, Northing and Height 

Error in Easting (m) Error in Northing(m) Error in Height (m) 
0.002875 -0.298 -1.156713 
0.290125 -0.042 -1.184346 
0.09225 -0.065 -1.930482 
0.22925 -0.306 -1.833861 
0.107625 0.423 -1.936759 
0.025375 -0.346 -0.54612 
0.952375 0.14 -1.945758 
0.334 -0.396 -1.080383 
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Appendix-4 Accuracy assessment between TLS points and Generated point cloud 
using NIKON CoolPix L810 

Table A.6 Coordinates of Test points taken for Accuracy Assessment 

 
Point Id 

TLS Point Cloud CoolPix L810 
Easting(m) Northing(m) Height(m) Easting(m) Northing(m) Height(m) 

1 215977.794 3360252.548 658.551 215977.75 3360252 657.0601 
2 215977.663 3360250.292 661.731 215977.5469 3360249.25 660.1569 
3 215969.314 3360228.815 664.224 215969.7656 3360229.25 661.71 
4 215976.927 3360234.806 671.039 215976.625 3360234 667.1805 
5 215967.533 3360213.327 671.096 215969.7813 3360214 667.7358 
6 215969.459 3360238.096 659.973 215969.2656 3360238 659.0425 
7 215976.532 3360250.11 671.101 215977.7969 3360249 668.0498 
8 215973.041 3360237.896 663.25 215973.2656 3360237.75 661.5591 
 
 

Table A.7 Error in Easting, Northing and Height 

Error in Easting (m) Error in Northing(m) Error in Height (m) 
-0.044 -0.548 -1.49088 
-0.116125 -1.042 -1.57414 
0.451625 0.435 -2.513978 
-0.302 -0.806 -3.858519 
2.24825 0.673 -3.36016 
-0.193375 -0.096 -0.930458 
1.264875 -1.11 -3.051195 
0.224625 -0.146 -1.690918 

 

 

 

 

 

 

 

 



Integration of Computer Vision Algorithms & GNSS for Georeferenced Point Cloud Generation 
from Video 

 
 

- 63 - 
 

Appendix-5 Accuracy assessment between TLS points and Generated point cloud 
using Sony Cybershot DCS-H55 

Table A.8 Coordinates of Test points taken for Accuracy Assessment 

 
Point Id 

TLS Point Cloud Sony Cybershot 
Easting(m) Northing(m) Height(m) Easting(m) Northing(m) Height(m) 

1 215977.794 3360252.548 658.551 215977.7969 3360252.25 657.5537 
2 215977.663 3360250.292 661.731 215977.8438 3360250 660.8886 
3 215969.314 3360228.815 664.224 215970.0156 3360228.75 662.3153 
4 215976.927 3360234.806 671.039 215977.1406 3360234.75 669.531 
5 215967.533 3360213.327 671.096 215968.1563 3360213.75 669.1948 
6 215969.459 3360238.096 659.973 215969.4844 3360238 659.532 
7 215976.532 3360250.11 671.101 215977.0156 3360249.5 669.5792 
8 215973.041 3360237.896 663.25 215973.1094 3360237.75 662.3564 

 

Table A.9 Error in Easting, Northing and Height 

Error in Easting (m) Error in Northing(m) Error in Height (m) 
0.002875 -0.298 -0.99735 
0.18075 -0.292 -0.842389 
0.701625 -0.065 -1.908692 
0.213625 -0.056 -1.507994 
0.62325 0.423 -1.901237 
0.025375 -0.096 -0.441018 
0.483625 -0.61 -1.521776 
0.068375 -0.146 -0.893555 
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Appendix-6 Accuracy assessment between TLS points and Generated point cloud 
using Video 

Table A.10 Coordinates of Test points taken for Accuracy Assessment 

 
Point Id 

TLS Point Cloud by Video 
Easting(m) Northing(m) Height(m) Easting(m) Northing(m) Height(m) 

1 215977.794 3360252.548 658.551 215965.0469 3360248 657.0753 
2 215977.663 3360250.292 661.731 215965.2188 3360246.75 658.2596 
3 215969.314 3360228.815 664.224 215961.4063 3360237.5 660.84 
4 215976.927 3360234.806 671.039 215962.0781 3360242.5 661.9763 
5 215967.533 3360213.327 671.096 215964 3360230.75 662.1576 
6 215969.459 3360238.096 659.973 215962.4531 3360241.25 657.8248 
7 215976.532 3360250.11 671.101 215965.1094 3360246.75 662.0427 
8 215973.041 3360237.896 663.25 215964.2656 3360241.5 659.1089 
 

Table A.11 Error in Easting, Northing and Height 

Error in Easting (m) Error in Northing(m) Error in Height (m) 
-12.747125 -4.548 -1.475683 
-12.44425 -3.542 -3.471356 
-7.90775 8.685 -3.384034 
-14.848875 7.694 -9.062682 
-3.533 17.423 -8.938407 
-7.005875 3.154 -2.148232 
-11.422625 -3.36 -9.058336 
-8.775375 3.604 -4.141052 
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