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Abstract 
 
The information in a pixel of satellite data within the instantaneous Field of View (IFOV) of the sensor 
is a mixture of different land cover types, and the individual land cover components can be estimated 
using soft classification techniques. However these techniques do not account for the spatial 
distribution of the class proportions, the information itself has a great relevance. Over the years 
techniques have been developed in attempting to provide an improved spatial distribution of land 
cover. Few studies have been tested on the difficult task of mapping the land cover from real satellite 
images, and more over a very few attempts have been done in a heterogeneous urban environment. 
Over the years the Markov Random Field (MRF) based Super Resolution Mapping (SRM) technique 
has been used for land cover classifications, and found to be an effective tool for the generation of land 
cover maps from remotely sensed images and it consider the spatial distribution of class proportions 
with in and between the pixels. 
 
In this study MRF based SRM with certain modifications have been analysed for its performance with 
respect to the linear unmixing technique applied on hyperspectral data. To standardize the application 
of these techniques the urban environment was defined by the Vegetation, Impervious surface and soil 
(V-I-S) model which has been used as an accepted alternative in characterising the urban land cover 
components. Linear unmixing technique with a hyperspectral remote sensing image (Hyperion) has 
been used to generate fractions according to the spectral variability of the V-I-S classes. Modified 
MRF based SRM technique was applied on IKONOS, ASTER MSS and Landsat images with 
markedly different spatial and spectral resolutions. Those are the 3 band with 15m spatial resolution 
and 6 bands with 30m spatial resolution of the ASTER image, 4m spatial resolution of IKONOS 
image and the 6 bands with 30m spatial resolution of the Landsat image. Reference maps for the 
validation were created from the IKONOS MSS image using hard Maximum likelihood classification. 
And the super resolution maps which contain the spatial information were again turned in to fractions 
representing each class (V-I-S). The results of MRF based SRM technique and the linear unmixing 
technique were validated using three measures of accuracy with respect to the reference fractions of 
the IKONOS image, the Area error proportion (AEP), Root Mean Square Error (RMSE) and the 
Correlation Coefficient (CC). The results shows the improvement in the classification results by the 
proposed SRM methods over the Linear unmixing method and it also reveals the improvement of the 
class proportions due to the consideration of the spatial distribution of classes.  
 
Several experiments were also carried out to understand the effects of different input image 
characteristics on MRF based SRM parameters. And the results suggest the parameters depend more 
on the spatial resolution than the spectral resolution of the images. The outcome of this study can be 
used for the better application of the MRF based SRM technique in super resolution land cover 
mapping. 
 
 
Key words: Linear spectral unmixing, MRF based SRM, Smoothness parameter, Neighbourhood size, 
Kappa coefficient, RMSE, AEP, CC 
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ANALYSIS OF THE EFFECTIVENESS OF SPECTRAL MIXTURE ANALYSIS AND MARKOV RANDOM FIELD BASED SUPER RESOLUTION MAPPING IN 
THE CONTEXT OF URBAN COMPOSITION 

 

1. Introduction 

1.1. Background 

The highly dynamic and heterogeneous nature, diverse material content (eg.Concrete, asphalt, metal, 
water, vegetation, and soil), and biophysical composition of an urban environment should be studied 
for important implications such as larger environmental system process controlling the cycling and 
processing of water, nutrients, carbon, and energy, issues related to human quality of life and the 
conservation of biodiversity [1]. With the increment of the world human population, urbanization is 
continuing to accelerate [2]. For sustainable urban development and to understand and manage the 
urban environment, accurate information about this urban land cover classes are very important. But 
the identification of these classes in a heterogeneous urban environment is a very difficult task. Under 
such circumstances remote sensing act as a highly productive tool in monitoring and understanding the 
urban morphology and its environment. In remote sensing several models and highly advance 
techniques have been developed for the study of urban land cover. One of the models developed to 
understand and to standardise the urban environment is described with the Vegetation- Impervious 
surface-soil (V-I-S) model [3]. This model is becoming an accepted alternative to parameterize 
biophysical composition of urban environments [4,5,6]. The model helps in understanding the 
urban/suburban environments in urban analysis. But the productivity of the remote sensing techniques 
depends on the ability of the technique to correctly categorize these land cover components for there 
spatial and spectral arrangement from the remote sensing images. Studying these techniques for there 
accuracies and productivity is also very important for the future of urban land cover studies.  
 
Studies using Remote Sensing (RS) use different type of imageries. Hyperspectral images which 
correspond hundreds of wavelength channels for the same area on the surface of the earth have the 
ability to detect and identify individual materials or land cover classes in a highly efficient manner. 
With its high spectral resolution (narrow and continuous bands) hyperspectral images have an 
advantage over multispectral images to address the spectral variation of each V-I-S components in a 
heterogeneous urban environment. This is the pre requisite of its use in urban composition studies. But 
the problem associated with this is that images contain mixed pixels. Mixed pixels are the pixels in an 
image which represents a reflectance value corresponding to a combination of reflectances of several 
individual materials with in the Instantaneous Field Of View (IFOV) of the sensor. When a pixel 
observed by a sensor covering a large (low spatial resolution images) heterogeneous area on earth 
surface it tend to become a heavily mixed pixel.   
 
Conventional classification techniques assign a single pixel into one land cover class, in the case of a 
coarse spatial resolution images this will directly effect the information extracted by the remote 
sensing image. Spectral Mixture Analysis (SMA) is utilized to calculate the land cover fraction within 
a pixel and model a mixed spectrum as combination of spectra for pure land cover types, called 
endmembers [7]. It does not show the spatial distribution of class proportions (spatial contextual 
information) within a pixel. Modelling the contextual information in land cover classification can 
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improve the accuracy of the classification significantly [8]. In this regard super resolution mapping 
(SRM) split the pixel into sub pixels and assigned the classes to the sub pixels depending on there 
spatial and spectral information, generating an image with higher resolution than the original image. A 
range of algorithms based upon knowledge-based analysis procedures, Hopfield neural networks, and 
linear optimization methods have been proposed for super resolution mapping [9,10]. Markov random 
field model is another method [11,12] of super resolution mapping and it describes the spatial 
dependencies quite accurately. 
 

1.1.1. The V-I-S Model 

The spatial composition of a segment of urban landscape may be classified by the Vegetation-
Impervious Surface-Soil (V-I-S) model. Along the V-I axis lies a typical residential area, traditional 
commercial and industrial areas lie near I-S axis, the S-V axis along the bottom represents the land not 
yet urbanized, or the urban land undergoing changes. The V-I-S diagram demonstrates the need for a 
composition based (land cover) classification because it is land cover that can be sensed remotely not 
the land use that does not generate a signature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 1. 1 Some urban and near urban features placed in the V-I-S model (Ridd, 1994) 
 
Urban Impervious surface is a combination of low albedo (e.g. asphalt) and high albedo (e.g. glass and 
plastic). Due to the leaf characteristics, amount of chlorophyll content and the canopy elements (e.g. 
density shape, angle) the spectra of the vegetation may vary substantially. Similarly due to the water 
content, grain size, and the Iron concentration different type of soils demonstrate significant spectral 
variations. Due to these reasons, modelling such classes with the use of end-members is inadequate. 
 

1.1.2. Spectral mixture analysis (SMA) and Super resolution mapping (SRM) 

Remotely sensed data with the use of land cover classification can be used to characterise urban 
environment for its land cover components. In this discipline mostly a single image pixels is treated as 
the smallest unit in the image to be assigned to an independent land cover class. The problem 
encountered in characterizing land cover features (particularly in urban environment) using remote 
sensing data is to assign each pixels to exclusive classes which is difficult due to the mixed pixel 
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effect.  Sub-pixel classification techniques in contrast overcome the problem of mixed pixels with 
respect to the conventional per pixel classification techniques. It has being utilized for calculating the 
land cover fractions within a pixel and involves modelling a mixed spectrum as a combination of 
spectra for pure land cover types called endmembers [4]. Depending on the complexity of the 
scattering SMA can also be subdivided into linear and non linear SMA techniques. For each class 
SMA techniques will provide its proportion within a pixel for the whole image as a fraction image. 
 
Super-resolution mapping (SRM) is a technique that transforms a soft classification result into a finer 
scaled hard classification result [11]. Models which describes he movement of neighbouring particles 
has being tried to define the spatial dependence (i.e. spatially closer pixels tend to be more alike than 
the more distant ones [11]) between pixels which leads to the SRM. The “Ising Model” is one of them 
which says the neighbouring particles are more likely to rotate in the same direction or why intensity 
values of adjacent pixels of an image are more likely to be the same than different values. Later 
Markov random field models (MRF) has been implemented to describe the problems which were 
modelled by the Ising models. MRF model is a spatial-domain extension of a temporal Markov chain 
where an event at the current time instant depends only on events of a few previous time instants [13]. 
 

1.2. 

1.3. 

 Problem Statement 

Spectral mixture analysis technique with multispectral remote sensing images has been widely applied 
in the past to study the urban composition. Lot of technical difficulties has being arisen due to the 
spectral variation of each of the V-I-S components due to brightness differences and the limitations in 
the spectral resolution of the multispectral imageries. Hyperspectral images with their high spectral 
resolution have the ability to account for these brightness variations over the multispectral imageries. 
Very little attention in the past has been done to use the hyperspectral images to model the V-I-S 
components using SMA techniques over an urban environment. 
 
The out put of SMA technique is set of fraction images each describing the proportion of a particular 
land cover class with in a pixel with respect to its pure spectra. Though the mixed pixel problem of the 
course spatial resolution images is addressed well by the SMA techniques, they do not account for the 
spatial distribution of the class proportions within the pixel. The ability of MRF to account for the 
spatial distribution, complexity of the scene and multiple land cover classes needs to be tested to 
identify the complex V-I-S components in a heterogeneous urban environment. According to 
Kasetkasem et al., 2003 the properties of MRF based super resolution mapping approach to accurately 
characterize the spatial distribution of the classes might give better classification results over the sub 
pixel classification techniques and this needs to be analyzed. 
 

 Research Objectives 

The main objective of this research is to analyze the effectiveness of MRF base SRM approach in the 
context of urban subpixel composition analysis. It includes several sub objectives. 
 

• Use the existing Markov Random Field based super resolution mapping method and modify it 
in order to apply on different spatial and spectral resolution images 
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• To integrate the advantages of hyperspectral images for the study of urban composition 
 

• To study the effect of different input image characteristics on super resolution mapping and 
the determination of model parameters in the context of urban composition study 

 
• Finally to compare the effectiveness of super resolution methods with the standard SMA 

techniques (Linear Unmixing) 

 

1.4. 

1.5. 

Research questions 

 
With the objectives of the study and past research outcomes several research questions were identified 
 
1. Depending on the class definition and different resolution images how does the neighbourhood size 
relates to the scale factor for a best output results? 
 
2. How do the optimal values of MRF based super resolution mapping internal parameters, i.e. 
neighbourhood size, normalized smoothness parameter change for different spatial and spectral 
resolution images?  
 
3. How do the local specifics (e.g. smog and dust) affect the classification results? 
 
4. What is the best method to asses the accuracy of the results (in the context of sub pixel 
classification)? 
 
5. What is the effectiveness of MRF based SRM technique with respect to the linear unmixing 
technique? 
 
 

 Research approach 

The area of study is a part of the Dehradun city, India. The area was chosen for several reasons. One is 
the availability of the images for that site, the proximity of the area in the case of a field check and its 
fast growing nature.  This area contains most of the representative land cover classes like high and low 
density impervious, water, vegetation, exposed soil, etc. It has a high population growth and rapid 
urban expansion so it forms the basis of a complex urban environment which is also a prerequisite for 
the proposed study.  
 
This research mainly focuses on two techniques of subpixel classification, the linear spectral mixture 
analysis and the Markov random field based super resolution mapping. These techniques will be tested 
in a complex urban environment and their performance will be compared. Multispectral images from 
ASTER, Landsat, and IKONOS sensor as well as hyperspectral image form Hyperion sensor will be 
used for this purpose. The conceptual frame work involved in the study for accomplishing its 
objectives is as follows. 
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Fig 1. 2 The general methodology adopted for the study 
 

1.6  Structure of the thesis 

This thesis contains six chapters. The first chapter describes the background, objective and the 
conceptual frame work of the study. Chapter two describes the concepts of urban land cover mapping, 
image classification, limitations with the mixed pixels, and the methods developed to address it, and 
also some super resolution mapping techniques. Chapter three highlights the study area involved and 
the description of the data used and there pre-processing steps. Chapter four describes the Markov 
random field mathematical background, parallely with the method adopted in the application of it for 
this study. Chapter five review the results of the research with an analysis and discussion with respect 
to the data used. Chapter six conclude the study with some recommendation for the further research. 
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2. Urban-land cover mapping, spectral 
mixture analysis and super resolution 
mapping techniques. 

2.1. Urban land cover mapping 

Understanding the urban landscape for its structure with its rapidly alliterating manmade and natural 
objects is indeed a challenging task. Urban land is a composition of different land cover classes, 
ranging from natural to semi natural or totally man made, which can be directly observable on the land 
surface and it tend to change frequently within a small distance making it difficult to characterise 
them. Remote sensing technique with its moderate resolution satellite images helps to understand these 
as it capture the urban land cover types in timely and cost effective manner [14]. Traditional and most 
frequent, per pixel classification methods assigns an image pixel to a class which it has a high 
likelihood of being a member. Normally, this has been used to map the urban land cover types using 
the remote sensing images. Due to the heterogeneous nature of the urban landscape, an image pixel 
record more than one land cover class (mixed pixels) and these mixed pixels make the per pixel 
classification techniques inadequate for an urban land cover mapping. In order to solve the problem of 
mixed pixels [15], sub pixel classification techniques helps to retrieve the land cover information 
within the inherited pixel resolution. 
 
Sub pixel classification techniques for the urban land cover mapping, work by quantifying the multiple 
class memberships for each pixel, which decompose the mixed pixel into required number of land 
cover classes. Spectral mixture analysis (SMA) has been widely used to divide these mixed pixels into 
its components. The linear SMA has so far been the most popular approach among the SMA family. It 
generates fractions of urban land cover classes according to the spectral variability inherited in the 
multi spectral or hyper spectral images [4]. To standardize the application of linear SMA in the urban 
land cover mapping, Ridd (1995) [3] first proposed the V-I-S model to represent the biophysical 
composition of an urban environment as vegetation impervious and soil. This model was later widely 
adopted as a scheme for choosing appropriate end members in linear SMA model for urban land cover 
mapping [16]. In the context of urban composition determination by sub pixel classification methods 
several attempts were made in the past but a study leading towards the super resolution mapping of 
these V-I-S components have not being tried.  Literature review also suggests that the use of 
hyperspectral images has never been attempted for this purpose. 
  
According to Ridd, V-I-S model helps to parameterize the biophysical composition of the urban 
environment and it can serve as the foundation for characterizing the urban/near-urban environments 
universally [3]. Further he proposed these models for urban change detection, growth modelling, 
environmental impact analysis from urbanization, energy and water related investigations and for 
certain dimensions of human echo system analysis of the cities. 
 
Phinn in 2002 [16] used constrained spectral unmixing approach with Landsat Thematic Mapper data 
to identify the V-I-S composition. He stated that per pixel classification techniques do not produce 
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accurate results for urban land cover mapping and image data should have higher spatial resolutions 
for per pixel classification. He also pointed out that due to higher spectral variance of high spatial 
resolution images can create more problems.  
 
In 2002 Wu and Murray [4] used spectral mixture analysis methods to investigate the impervious 
surface distribution using Landsat ETM+. They identified impervious surface as a major component of 
the V-I-S model and the difficulties in estimating it. They used fully constrained linear spectral 
mixture model to estimate the impervious surface distribution and pointed out the problem of 
assigning single pixel into one land cover type when a pixel contains multiple ground cover types. 
 
Wu in 2004 [6] proposed a normalized spectral mixture analysis method to examine the urban 
composition. Using the brightness normalization method, brightness variability within each V-I-S 
component was reduced or eliminated. From the normalized image, three end members (vegetation, 
impervious surface, and soil) were chosen to model the heterogeneous urban composition.  
 

2.1.1.  Class Separability in image classification 

Satellite image based land cover mapping and pattern recognition can be done through digital image 
classification techniques. Image classification techniques sort all the pixels in the digital image into a 
finite number of individual classes associated to number of land cover features on the ground given a 
pixel to satisfy certain number of conditions depending on the classes definitions, and this process is 
also known as image segmentation [17] . 
 
Class separability is a statistical measure that indicates how well the classes can be separated during 
the classification process. For the Euclidean distance evaluation, the spectral distance between the 
mean vectors of each pair of class signatures is computed, if this distance is not significant for any pair 
of bands available they may not be distinct enough to produce a successful classification. In this study 
two main statistical parameters, the transformed divergence (TD) and the Jeffries-matusita distance 
(JM) for class separability has being used. Both these statistical measures take into account the co-
variances of the signatures and there mean vectors for the bands being compared. 
 
Transform Divergence (TD) is estimated as, 

cd
cd

-1 -1 -1 -1 T
cd c d d c c d c d c d

c

c

-DiverTDiver =2000[1-exp( )]
8

1 1Diver = tr[(V -V )(V -V )]+ tr((V +V )(μ -μ )(μ -μ ) )
2 2

Where:
c,d=the two signatures(classes) being considered
V =the covariance matrix of signature c 
μ =the mean vector of signature c
tr=the trace of a matrixc (i.e.,the sum of diagonal eliments)
T=the transpose function

                           

The TD gives an exponentially decreasing weight to increasing distance between the classes [17]. The 
scale of the divergence values range from 0 to 2000, and a general rule suggests that if the result is 
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greater than 1900 then the classes can be separated, between 1700 and 1900 separation is fairly good 
and TD below than 1700 means that the separation is poor. 
 
Jeffries-matusita distance (JM) is estimated as, 
 

cd-Bhat
cd

T c d c d
cd c d c d

c d

cd

c c

JM = 2(1-e )

V +V |(V +V )/2|1 1Bhat = (μ -μ ) ( )(μ -μ )+ ln
8 2 2 |V |× |V |

W here:
Bhat =Bhattacharyya distance
ln=the natural logarithm  function
|V |=the determ inant of V (m atrix algebra)

⎛ ⎞
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⎝ ⎠  

 
JM has a saturating behaviour with increasing class separation like TD [17,18], but less efficient than 
the TD. The scale of the value ranges from 0 to 1.414. 
 

2.1.2 Mixed pixels spatial scale and spatial-spectral trade off in urban land cover 
mapping 

A mixed pixel is a result of the content of land cover types in the ground represented with in the 
instantaneous field of view (IFOV) of the sensor. Depending on the spatial resolution of the remote 
sensing system and the spatial scale of the surface features interested the amount of mixed pixels with 
in an image varies. Though with the high spatial resolution sensors such as IKONOS MSS provides 
images with 4m spatial resolution its limited number of spectral bands adds limitations in the 
production of an accurate land cover map. In contrast medium spatial resolution sensors such as 
ASTER MSS and hyper spectral sensors such as Hyperion provide larger range of spectral bands. But 
these images contain large number of mixed pixels depending on the scale of the surface features it 
maps.  

 

 

 
 
 
 
 
 
 
 
 
 
Fig 2. 1 Four cases of mixed pixels (Fisher 1997) 

16 



ANALYSIS OF THE EFFECTIVENESS OF SPECTRAL MIXTURE ANALYSIS AND MARKOV RANDOM FIELD BASED SUPER RESOLUTION MAPPING IN 
THE CONTEXT OF URBAN COMPOSITION 

 

Figure 2.1 shows four types of mixed pixel occurrence. The presence of sub pixel objects, the spatial 
frequency of some urban land cover classes such as soil, built-up, and the mixed pixel response of the 
edge, pixels makes this medium resolution images contain large number of mixed pixels. 

2.2. Linear Spectral Mixture Analysis 

If the land cover classes are represented by there mean m and variance-covariance matrix N, with n 
being the number of spectral bands of the multispectral sensor, linear mixture modelling assumes that 
the spectral distributions of each land cover class are n-dimensional Gaussian distributions [1]. 
Assuming a normal distribution, the spectra of mixed pixel with land cover proportions 

 is given by. Tfcff ),.....,1(=
 

1

( )
c

i
i

m f f i m
=

= ×∑  
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Where m(f) and N(f) can be considered as the mean vector and variance-covariance matrix of the 
multivariate normal distribution under the condition of the central limit theorem. The variance-
covariance matrix will be valid only if the variables relating to the spectra of different land cover 
classes 
are statistically independent [1].  This statistical independence means no multiple scattering between 
different land cover types, so that all photons within the instantaneous field of view (IFOV) of the 
satellite sensor are reflected from just one land cover type. This assumption may oversimplify the 
complex reflectance process of many land cover types, but most urban land covers like asphalts, roads 
or buildings show strong linear reflectance properties [1]. The land cover proportion of the mixed 
pixel can be approximated by inverting the statistical model, m(f) and N(f) shown above. The spectral 
signature of a mixed pixel is expressed as  
 

 
eMfx +=

 

Where, for n spectral bands and c is the reflectance components (represents the end member spectrum 
for each land cover type) of the endmembers for each of the spectral band.  M is a matrix of the 
end member spectra; f is the vector of land cover class proportions, and e is a zero mean noise 
term. Endmember spectrum is defined from the reflectance properties of pure land cover type. The 
error vector, e, measures the statistical fluctuation around the mean value, and satisfies the condition 
of the multivariate normal distribution with a mean of zero and a variance-covariance of N(f). Model 
fitness is assed by the RMS error. 

cn×
lc×

  

                                                  
2/12 )/( NeRMS ∑=  
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2.2.1. Endmember Extraction 

Endmembers represents the pure features in a mixed pixel. Determining the endmember spectra, which 
consist of the columns of the matrix M is the most critical step in spectral unmixing process. This 
extraction of endmembers is involved in identifying the number of endmembers and their 
corresponding spectral signature [6]. When the end members are defined the spectral signature for the 
endmembers can be determined by different ways. Principle component analysis (PCA), linear 
regression analysis and K-mean clustering [1], the most common two methods involved and taken into 
consideration in this study are: 
 
1. Optical approach using laboratory-based spectra from the field  
 
2. From the pure pixels in the image itself (Supervised selection). 
 
The advantage of the second method is that the endmembers can be collected with the similar 
atmospheric conditions. End-members can be collected from an image by various techniques. Pixel 
purity Index (PPI) which finds the most spectrally pure pixels in an image which corresponds to the 
unmixing endmembers. The PPI is calculated by plotting the n-dimensional scatter plots to 2-D space 
and noting down the most extreme pixels in each projection. The Endmember spectra consist of the 
columns of the M matrix, the final urban land cover proportion information is extracted from a 
remotely sensed image based on these end member spectra. 
 

2.2.2. Singular Value Decompositioning for Linear Unmixing 

In this study the linear unmixing was done through the Singular Value Decompositioning (SVD) 
technique. A singular value decomposition of a matrix X can be illustrated as follows.  
 

                                                 aaa VUdVUDX ′=′= ∑
Here U is a  matrix. Its columns are the eigenvectors of AN × XX ′  a  AK ×  matrix. They are 
orthonormal. V is a AK ×  matrix. Its columns are eigenvectors of XX ′ . They are orthonormal.V is a 
diagonal matrix of size AA× . The diagonal elements are the singular values, the square roots of 

the eigenvalues 
ad

aλ  of XX ′ .A is the rank of X. The relationship with PCA is easily established: 

 

PTptX aa ′=′= ∑  

 
This means that the from PCA are nothing but the from SVD.  The  from PCA are the 

products from SVD [20]. 
ap av at

aaUd

2.3. Super resolution mapping and Markov random field models 

Generation of a fine resolution land cover map from a coarse resolution image based on an accurate 
characterization of the spatial distribution of classes with in the mixed pixels is called sub-pixel 
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mapping or super resolution mapping. This approach accounts for the spatial distribution of the class 
proportions within the pixel [12]. 
 
MRF models have being applied for the various image processing tasks such as image classification, 
segmentation and change detection. The ability of MRF models to account for the spatial dependence 
between the classes proportions of the neighbouring pixels, in a very accurate manner can be used to 
refine the results from a subpixel classification more accurately. Under MRF models, the intensity 
values of pixels in a particular spatial structure (i.e. neighbourhood) are allowed to have higher 
probability (i.e. weight) than others [12]. In a remotely sensed land cover classification, when the 
spatial structure is usually in the form of homogeneous regions of land cover classes, a MRF model 
assigns higher weights to these regions than to the isolated pixels there by accounting for spatial 
dependence in the dataset. 
 
The pioneering work by Geman and Geman (1984) [21] introduced a statistical methodology based on 
an MRF model. They assumed that a noiseless image contains MRF properties. Atkinson et.al [22] 
attempted to obtain the most suitable locations for the different class fractions within a pixel, assuming 
the spatial dependence, i.e. the tendency of neighbouring pixels to have closer value than distant ones. 

 
 
Fig 2. 2 Super resolution mapping (Atkinson 1997) 
 
As above figure shows the SRM works by dividing the coarse spatial resolution pixels by a scale 
factor ( ), the scale factor is the ratio between coarse and fine spatial resolution pixels in the row and 
column directions. Then these resulting sub pixels will be allocated with the land cover in a way which 
maximizes the spatial dependency between them. Above it is shown how the sub pixels are assigned to 
particular land cover proportion.  

S

 
Sub pixel classification methods were applied to urban composition studies most of the times. It 
addresses the mixed pixels problem in course spatial resolution images. In 2003 Kasetkasem et al., 
[12] introduced Markov random fields to generate sub-pixel land cover maps. He pointed out that the 
ability of MRF to accurately characterize the spatial distribution of the classes might give better 
solutions over the sub pixel classification methods. In his study he has generated a fine resolution land 
cover map from the course resolution images. Kasetkasem mentioned that the sub pixel maps 
generated from MRF approach have the Markovian property i.e., two adjacent pixels are more likely 
to belong to the same land cover class than different classes which is likely to make a significant 
improvement in the accuracy of the sub pixel map over the conventional and most widely used 
methods. 
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Kasetkasem 2005 [23] used Markov random field based approach to generate super resolution land 
cover maps using IKONOS MSS and Landsat ETM+ images. He states that MRF models are well 
suited to represent the spatial dependence within and between pixels. He further studied the 
effectiveness of this method with the integration of the different spatial resolution images. Finally he 
concludes that accuracy of land cover mapping is significantly improved by this method. 
 
Neher and Srivastava in 2005 [24] used the Markov random field base frame work to label the terrain 
using hyper spectral Images. They stated that hyper spectral data are more naturally treated as random 
and requires a statistical analysis. They identify two main goals of hyper spectral images namely 
libelling imaged terrains (Classification) or regions and target recognition. 
 
Hailu 2006 [11] studied the suitability of Markov Random Field for land cover mapping with certain 
modifications on the existing method. She did modifications on the neighbourhood size with respect to 
the scale factor and also some modifications on the Gibbs potential parameter estimations. Then went 
on to  conclude that with the proper parameters best results can be gained and also the capability of the 
method to cope with complexity of the scene and the multiple land cover classes makes it a highly 
potential method for the super resolution land cover mapping application.  
 
This study tries to analyze the effectiveness of MRF based SRM techniques over the subpixel 
classification technique the linear unmixing. The study will take these two techniques to address the 
heterogeneous urban environment through the urban composition, which defines the urban landscape 
through V-I-S model. A detail discussion about the application of these methods will be provided in 
Chapter 4. 
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3. Study area and Data preprocessing 

 
This chapter briefly describes the study area, the data involved in the study and there preprocessing 
steps. Mainly multispectral and hyperspectral data has being used for the study. The validation data set 
was also created from the remote sensing data. Section 3.1 describes the study area, section 3.2 and 3.3 
describe the pre-processing of Hyperion data set. Subsequent section describes the pre-processing of 
ASTER, Landsat and IKONOS data sets, a brief introduction about the usage of R programming 
language in the study will be provide in the end.  
 

3.1. Study area 

Dehradun is the capital of Uttarakhand state, as well as it is the district headquarters. Uttarakhand is 
one of the newly formed states of India, out of the total population, 18.98% of the state is living in 
slums [25]. Among the six towns of this state Dehradun is one, which is situated in the Shiwalik 
ranges of the Himalaya, between and . The city enjoys its strategic 
location and undulating topography. Dehradun is a fast growing area and it contains most of the 
representative land cover and land use classes like high and low density residential, water, vegetation, 
exposed soil, business areas. It has a high population growth and rapid urban expansion. Many remote 
sensing images acquired over this area are subjected to mixing of spectral signatures. This is mainly 
due to high frequency of the land cover as a result of spatially mixed nature of most natural land cover 
classes, the frequency of sampling due to sensor spatial resolution, Point spread function (PSF) and 
resampling for geometric rectification [26]. Figure 3.1 shows the location of the study area. Because of 
the availability of the images, accessibility and the availability of the prior information of its urban 
land cover this area was selected for this study. 

0 078 00'E to 78 10'E 0 030 15'N to 30 25'E

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3.1 Location of the study area Dehradun, India, showing the heterogeneous urban environment 
(source Google Earth) 
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3.2. Hyperion Data 

The data set of Hyperion over Dehradun was acquired on December 25, 2006. It contains a spectral 
range of 356-2576 nm at 10 nm band width and 220 unique bands. The Level 1 radiometric (L1R) 
product used in the study has 242 bands; only 198 of them are calibrated (band 8 to 57 for visible-to-
near-infrared (VNIR) and 77 to 224 in shortwave-infrared (SWIR) regions). The over lap between the 
focal planes of VNIR and SWIR makes only 196 unique channels available. Due to low detector 
response all 242 bands are not calibrated and they are set to zero. The Hyperion sensor has a nominal 
ground instantaneous field of view (GFIOV) of 30m and 16 bit radiometric quantization [27]. Sensor 
characteristics of Hyperion are shown in the table 3.1. 
  
Table 3.1 Hyperion sensor characteristics 
 
Sensor altitude 705Km No. of rows 256 
Spatial resolution 30 m No. of columns 3407 
Radiometric resolution 16 Bits VNIR range 0.45-1.35 
Swath 7.2 Km SWIR 1.40-2.48 
IFOV(mrad) 0.043 No. of Bands 224 
 

3.2.1. Level 1R pre-processing 

Due to the large volume of data, numerous spectral bands, and the computational complexities high 
dimensional hyperspectral data processing is a very difficult and challenging task. Preprocessing is 
necessary not only to remove the sensor errors during the acquisition but for the corrections of the 
display, band selection (reducing data dimensionality) and to reduce the computational complexity. 
Hyperion dataset has to be corrected for abnormal pixels, striping and smiling effects prior to the 
atmospheric correction. 
 
Hyperion data is initially processed by the EO-1 product generation system (EPGS) and distributed in 
different processing levels. In this study radiometrically corrected level 1R product of Hyperion has 
been used, and the understanding of the characteristics of the product is important for its 
Preprocessing. Level 1R is the out come of level 0 (raw) products which is subjected to four types of 
corrections, the dark current effect, sensor bias effect and two specific artefacts known to affect the 
(SWIR) region the SWIR smearing which is the leakage of signal from one pixel into the next readout 
pixel in the spectral direction and the SWIR echo, which occurs when the signal from one image 
echoes into another pixel. Radiometric correction applies sensor gain values which based on post-
launch calibration coefficients. The radio metrically corrected image has a scaling factor of 40 and 80 
for the VNIR bands and the SWIR bands respectively. Bad pixels for these data are determined during 
the pre-flight testing and listed to make a bad pixel mask, which is provided in the level 1R header 
files with additional updates for the scene capture day, this can be used to remove an average number 
of bad pixels. Due to the two sets of radiometers used to image the VNIR and SWIR regions a shift is 
there between these bands, so they are realigned to produce a single product. During this realignment 
actual SWIR bands are shifted across track by -1 field-of-view (FOV) in X direction and +1 pixel 
down track in Y direction. The predicted signal to noise (SNR) ratio performance of Hyperion is in 
range of 0-150 [27]. 
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3.2.2. Band selection and identification of bad columns  

Hyperion is a pushbroom type sensor; characteristically these sensors have poorly calibrated detectors. 
These detectors cause high frequency errors in the VNIR or SWIR regions, which can be identified as 
vertical strips in the image bands. In the level 1R products these vertical strips are not corrected. These 
stripping errors can affect the spectral characteristics of the Hyperion bands (also can effect the mean 
and slandered deviation of the data values for particular band), which would not facilitate the 
extraction of the calibration spectra from the data set for the linear unmixing. As an important 
preprocessing step these stripping effects should be balanced with there neighbouring columns. 
 
Out of the calibrated bands of Hyperion (band 8 to band 55, band 56 and band57, band 79 to band 
224), bands in the high water absorption range from 1400nm to 1900nm and bands which deemed to 
have unacceptable noise and streaking were removed from further processing. Hence, 150 bands from 
the 196 unique bands were selected. These selected bands were visually inspected for the bad columns 
to eliminate the stripping errors (see table 3.2). This helped to avoid the enforcing of severe changes in 
the original spectra. 
 
Table 3.2 Location of bad columns in level 1R product for the Dehradun data set  
 

Band Bad Columns 
15 114 
16 114 
55 32,34,37,39 
56 32,33,37,39 
57 33,36,38 
90 90 
94 90,91,92 

190 112 
 
The “Hyperion tool kit” was used to import the L1R product from HDF format to ENVI slandered 
format in ENVI 4.3 (Environment for Visualizing Images, Research System, Inc.). The Flag Mask 
correction option available in the tool kit was used to correct vertical striping, stripping will be 
removed by replacing the bad values with the average of the good values on either side of them [28]. 
The image was then visually checked to identify the left over bad columns. These were corrected by 
replacing there values by the average value from the two adjoining bands using ENVI spatial pixel 
editor 
 
In addition to the vertical stripping an error common to the pushbroom sensors is caused by the low 
frequencies, and it is referred as the “smiling effect”. Smiling is the across track wavelength shift from 
the nominal centre wavelength. This wavelength shift is known to occur due to a change in depression 
angle with field position. The amount of shift is dependent on pixel position in the across track 
direction. The range of shift is reported to vary from 2.6  to 3.5 . The maximum shift is recorded 
at pixel 256 at band 10 in VNIR region. The wave length shift affects the diagnostic absorption 
features in the spectra this influence the process of extraction of calibrated spectra from satellite 
platforms. The effect of ‘smile’ can be seen with Minimum Noise Fraction (MNF) transformation 
results. The first MNF image (see Appendix-A, fig A.2), shows a brightness gradient for the Hyperion 

nm nm

23 



ANALYSIS OF THE EFFECTIVENESS OF SPECTRAL MIXTURE ANALYSIS AND MARKOV RANDOM FIELD BASED SUPER RESOLUTION MAPPING IN 
THE CONTEXT OF URBAN COMPOSITION 

 

data, revealing the significant “smiling” effect in the image.  This wavelength shift in Hyperion dataset 
cannot be ignored and has to be compensated for [29]. In this study specific correction for the 
“smiling” effect was not applied, it is also assumed as the noise in the data and, was accounted with 
the use of MNF transformation, this will be discussed in section 3.3.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           
                       (a)                                              (b)                                         (c)   

N N 
1 Km 1 Km 

N 

1 Km 

 
Fig 3.2 Hyperion scene over Dehradun: (a) false colour composite of Hyperion (b) Striping and 
smiling effect on band 94 of the Hyperion dataset (c) Bad column removed band 94 of Hyperion 
dataset 
 

3.2.3. Atmospheric correction for the Hyperion image 

The reflected solar radiation from earth surface in its way before red by the satellite sensor has to 
traverse through the intermediate atmosphere, and hence contains the information both of earth surface 
as well as that of the atmosphere. In order to only retrieve the surface reflectance and study the surface 
reflectance properties (which is important in the linear unmixing studies), the atmospheric components 
has to be removed. This is referred to as atmospheric correction and was applied to Hyperion data set. 
Atmospheric correction was achieved by using ENVI’s fast line-of-sight atmospheric analysis of 
spectral hyper-cubes (FLAASH) module. FLAASH corrects wavelengths in the visible through near-
infrared and short-wave infrared regions, up to 3 mμ  and it incorporates MODTRAN4 radiation 
transfer code [30]. 
 
Necessary parameters for the FLAASH were determined by the metadata of the image files. Flight 
date and time in GMT was taken from the header file of Hyperion L1 data product. The digital values 
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of the Level 1 products are in 16-bit radiances and stored as a 16-bit signed integer. The SWIR bands 
have a scaling factor of 80 and VNIR bands have a scaling factor of 40 as discussed earlier. The units 
are 2/W m SR mμ [27]. 
 
 VNIR L=Digital Number/40 
 SWIR L=Digital Number/80 
 
An ASCII file was prepared for each band of the selected 150 bands, with a scaling factor of 40 for the 
first 43 bands of VNIR and 80 for the rest SWIR bands and provided as the scale factor file for the 
FLAASH to convert the DN values of the L1 data in to the units of radiance. The “Hyperion tool kit” 
was used to converts the file from ENVI native format, that is to BSQ, BIL or BIP format which are 
the needed formats for FLAASH to run. Parameters used for the atmospheric correction is provided 
below in the table 3.3. 
 
Table 3.3 Parameters used in the FLAASH atmospheric correction 
 
Scene Canter location 30.34020042 N 

78.00659943 E 
Initial Visibility 30 Km 

Sensor Altitude 705Km Spectral Polishing Yes 

Ground elevation 0.6 Km Width (no of bands) 9 

Pixel Size 30m Wavelength Recalibration No 

Flight date 25.12.2006 Aerosol scale height 2.00Km 

Flight time 5h 10m 58 sec Co2 mixing ratio (ppm) 390 ppm 

Atmospheric Model Tropical Use adjacency correction Yes 

Water retrieval Yes Modtran Resolution 15cm-1 

Water absorption feature 1135 nm  Modtran Multiscatter Model Scaled DISORT 

Aerosol model Urban No of Disort streams 8 

Aerosol retrieval None Output reflectance scale factor 10000 

 
 
The results after the FLAASH atmospheric correction on the Hyperion image is shown with there 
respective spectral profiles in the fig 3.3 below. Significant change in the spectra can be seen after the 
atmospheric correction. As in the figure the reflectance spectra over a vegetation cover resembles its 
spectral signature. 
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Fig 3.3 Atmospheric correction results from FLAASH (a) Hyperion false colour composite (FCC) for 
bands 40,30,20 and spectral profile before the application of FLAASH (b) The changes made for the 
image and for the spectral profile after the application of FLAASH 
 

3.2.4. Image co-registration 

As the objective of this study is to analyzing the super resolution mapping technique, the registration 
or co-registration between all the images is very important and critical. Registration should perform in 
a manner where all pixels in each image were supposed to be common to both images on a one-to-one 
basis. Registration is the process of making an image conforms to another image. For the purpose of 
this study, Hyperion data was co-registered to an Advanced Space borne Thermal Emission and 
Reflection radiometer (ASTER) image of the study area. ASTER image which was provided in 
geographic lat/long coordinate system was transformed to UTM with WGS84 north spheroid and 
datum, Zone Number 44 system. The pre-processing of the ASTER data and the purpose of co-
registering Hyperion with it will be discussed in section 3.4.  
 
Hyperion was used as the warp or target image and the ASTER image was taken as the base image. 
For the images to map perfectly the selection of the Ground Control Points (GCPs) should be very 
precise. Road intersections, Bridges and sharp distinct shapes which were dispersed around the image 
were selected carefully as GCPs. A total of 10 GCP points were selected for the co-registration 
process. First order polynomial model was used as the geometric model. The total RMS error was 
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0.078 pixels which is considered to be well enough for the SRM techniques. The pixels in the new 
grid may not be conformed to the pixels of the original grid so the pixels must be resampled. 
Resampling is the process of extrapolating data values for the pixels on the new grid from the values 
of the source pixels .For this study the resampling method used was the bilinear interpolation. Bilinear 
interpolation was selected because of its advantages over the basic nearest neighbour interpolation; it 
produces outputs which are smoother and does not contain the stair-stepped effect. And it is more 
spatially accurate than the nearest neighbour interpolation which is important in SRM studies, but 
some spectral integrity of the data can be lost during the rectification. 
 

3.3. Preparation of Hyperion data for Linear Unmixing 

Image classification is a more objective way of interpreting satellite images. Mixed pixels always 
bring in inaccuracies to the image classification results. Realistically the pixel consists of more than 
one surface feature. There for techniques accounting for the surface heterogeneity during image 
classification is highly important. Spectral unmixing technique is developed to derive fractions of 
spectrally pure materials that contribute to observed spectral reflectance characteristics of a mixed 
pixel using endmember spectra. The steps involved in the linear unmixing for the Hyperion data will 
be discussed in this section. 
 

3.3.1. Band reduction and Endmember selection 

Dimensionality reduction refers to the process by which the main components attributing to the 
spectral variance of the data set are identified and removed reducing the dimensionality of the data. 
This is also referred as the noise removal. The aim is to reduce the spurious information present in 
hyperspectral imagery so that it can be displayed in a minimized form without any changes to the 
original data. MNF transformation was implemented in this study to achieve this task. The MNF 
transformation is a linear transformation related to Principle components (PC) that orders the data 
according to signal-to-noise-ratio(S/N). It includes two principle component transformations in which 
the first transformation based on an estimated noise covariance matrix (correlation between the noise 
and the bands), de-correlating and rescaling the noise in the data; it is also assumed that the smiling 
effect is also accounted during this process. This results in a transformed data set in which the noise 
has a unit variance and no band–to-band correlations. The second step is standard PC transformation 
which creates several new bands containing majority of the information. With these two processes 
inherent dimensionality of the data will be preserved and noise will be segregated. After the 
transformation data space can be divided to two parts. One which is associated with large eigenvalues 
and coherent eigenimages, and a second with near-unity eigenvalues and noise-dominated images (see 
Appendix-A, figure A.2). By using only the portion with eigenvalues greater than one, noise can be 
separated from the data, which improves the spectral processing results [31]. 
 
Once applying the MNF technique on the 150 Hyperion bands we will get 150 new MNF bands. The 
image pixels are represented by eigenvalues, the dimensionality of the data will be determined by 
examining these values. When examining these values it is seen that first eight bands have the highest 
eigenvalues (>1) while the rest remain low values these low values are seen as noise. So the first eight 
bands of the MNF transformation were selected for the further processing. 
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                       (a)                           (b)                                  (c)                                   (d) 
 
Fig 3.4 (a) MNF image for band 2,3,1 in RGB,(b) Scatter plot between MNF band 1 and 2 (c) MNF 
band 1 and band 3 (d) MNF band 1 and 8   
 
The MNF image (fig 3.4(a)) shows the interested land cover features sharply. The scatter-plots of the 
data in different MNF band combinations give an idea of the spectral data distribution. The arms or the 
separate clusters outside of the main data cloud are of special interest. These areas represent unique 
spectra called “end-members”. These endmembers represent unique ground components. With the use 
of the scatterplot it is possible to identify these end members on the image.  
 

Endmember selection 

As stated before supervised selection of the end members has being implemented in this study to 
identify the end members for the V_I_S classes. In hyperspectral analysis purer pixels should be 
separated from the mixed pixels in order to reduce the number of pixels to be analyzed for the 
identification of the most pure pixels or the endmembers. The pixel purity index (PPI) identifies these 
pure pixels. And it can be used to find out the endmembers for each class. The most spectrally pure 
pixels typically corresponds to spectrally unique materials, these are the pixels to be find out as 
endmembers to perform the linear unmixing. The PPI signifies how many times the pixel is recorded 
in the extremes of the scatter plot. The value of a pixel in the PPI image corresponds to the number of 
times it was recorded as extreme pixel during the PPI process. Threshold of the PPI image can 
stipulate the most extreme pixels results in further spatial reduction. In this work the PPI was 
performed using the eight bands of MNF transformation. PPI was processed with 10000 iterations 
which is always better for the imaging of hyperspectral data (see Appendix-A, fig A.1). Threshold 
factor in data units was given as 2.5, which selects the pixels on the end of the projected vector or the 
proximity of each pixel to the convex hull of the data cloud. The threshold should be approximately 
two or three times the noise level of the data [31]. 
 
The “n-Dimensional Visualizer” which is an interactive tool in ENVI software, allowing the user to 
select end members in n-dimensional space was incorporated in this study to select the endmembers. 
This generates a cloud of points related to the pixels in an n-dimensional space defined by the MNF 
components. It gives you the ability to see the spectral data in many dimensions from many angles. 
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From here supervised selection of end members was done. A co-registered high resolution IKONOS 
segmented image was assisted for this supervised selection of endmembers.The preparation of this 
reference image is discussed in section 3.5 and the linear unmixing results of the Hyperion data will be 
discussed in Chapter 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                     (a)                                           (b) 

Vegetation 
profile 
 
Impervious 
profile 
 
Soil profile 

 
Fig 3.5 (a) Endmembers in n-Dimensional space of the MNF bands (b) and there respective spectral 
profiles. 
 

Preprocessing ASTER Data 3.4. 

ASTER is a high efficient optical sensor which covers a wide region from the visible to thermal 
infrared by 14 spectral bands. In this study ASTER is selected as the main input for the MRF based 
SRM technique. The first three bands of the ATSER image in the VNIR region has a spatial resolution 
of 15m and the next six band in the SWIR region has a spatial resolution of 30m. These two regions 
were processed separately for the land cover classification using SRM. The digital values were 
recorded in unsigned 8bit values; the image was acquired on 1st November 2006 covering the 
Dehradun area. The spectral characteristics of the ASTER data are listed in table 3.4. 
 
Table 3.4 Spectral characteristics of the ASTER data [32] 
 

Band Wave length 
( mμ ) 

Spatial Resolution 
(m) 

Radiometric Resolution 

Band1(VIS) 0.52-0.60 15 
Band2(VIS) 0.63-0.69 15 
Band3N(NIR) 0.78-0.86 15 
Band4(SWIR) 1.600-1.700 30 
Band5(SWIR) 2.145-2.185 30 
Band6(SWIR) 2.185-2.225 30 
Band7(SWIR) 2.235-2.285 30 
Band8(SWIR) 2.295-2.365 30 
Band9(SWIR) 2.360-2.430 30 

 
 
 

Unsigned 8 bit 
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3.4.1. Geometric correction and rectification 

ASTER VNIR bands and SWIR bands were processed separately; preprocessing steps were mostly 
common for the both regions. First the processing of VNIR bands will be discussed and it will be 
followed by a discussion of the processing of the SWIR bands. 
 
First the row ASTER data which has been provided in HDF-EOS format was imported to img format 
through ERDAS IMAGINE software before the necessary projection changes. Due to the curvature of 
the earth and type of the sensor used these raw images are subjected to distortions. During the import 
correction parameters have been used to perform a geometric rectification on the data that is to convert 
the data into different units. Write transform to image was used to rectify the data for panoramic 
distortion and calibrate the image by applying a 1st order polynomial transformation to the data. Then 
the rectification process was used to change the image from one grid system to another grid system 
using geometric transformation. The ASTER data was provided in geographic (lat/long) coordinate 
system with map units in degrees and seconds. A first-order polynomial transformation was used to 
transform the image from lat/long projection to UTM with WGS84 North spheroid and datum, Zone 
44. The resampling method used here was bilinear interpolation as discussed earlier for its advantages 
for SRM. All the results and validations were done under this projection for all the images. During the 
projection transformation grid sampling determines the number of equally spaced samples to use (for 
X and Y) to complete the polynomial approximation. The original ASTER image comes with a grid 
sampling rate of 16 by 16 for the VNIR bands. In this study ASTER image has been kept in 16 by 16 
grid sampling rate without changing the grid size. This helps to keep the spectral integrity of the 
original ASTER data intact. ASTER data covers a large area for the purpose of our study an area was 
selected as a subset with a good distribution of the V-I-S classes for the further analysis. 
 
The six bands in the SWIR region were processed in the same manner as discussed above, but the grid 
size of the data was set to 30m in this case. Same area as in ASTER VNIR was taken as a subset for 
the further analysis. The FCC images belong to ASTER VNIR and SWIR regions are shown in fig 3.6. 
 
 
 
 
 
 
 
 
 

 

                      

   (a)                                                                (b) 
N N 
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Fig 3.6 (a) ASTER (FCC) image for the study area in 16m resolution with VNIR spectral bands 3,2,1 
(b) ASTER (FCC) image for the study area in 30m spatial resolution with SWIR bands 4,5,6 in 
combination. 
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3.5. Preprocessing of Landsat data 

Landsat-7 data with ETM+ (Enhance Thematic Mapper) scanner was used in this study as another 
input for the MRF based SRM technique. Bands 1 to 5 and band 7 in visible (VIS) and SWIR regions 
with a spatial resolution of 30m was taken as the input for the study. The digital values of the image 
were recorded in unsigned 8bit values. The image was acquired over Dehradun on 25th November 
2000. The spectral characteristics of the Landsat-7 ETM+ data is shown in table 3.5. 
 
Table 3.5 Spectral characteristics of the Landsat-7 ETM+ data [33] 
 

Band Wave length 
( mμ ) 

Spatial Resolution 
(m) 

Radiometric Resolution 

Band1(VIS) 0.45-0.52 30 
Band2(VIS) 0.52-0.60 30 
Band3N(VIS) 0.63-0.69 30 
Band4(NIR) 0.76-0.90 30 
Band5(SWIR) 1.55-1.75 30 
Band6(TIR) 10.4-12.5 60 
Band7(SWIR) 2.08-2.35 30 

 
 
 

Unsigned 8 bit 
 

 

3.5.1. Geometric correction and rectification 

Row Landsat data provide in GeoTIFF format was imported through ENVI software and layer stacked 
to build the new multiband file. While layer stacking these bands were resampled and reprojected to 
UTM with WGS84 North spheroid and datum, Zone 44, and a pixel size of 30m. The resampling 
method used is the bilinear interpolation. The same subset area as for the previous images was taken 
for the further analysis. Then the Landsat image was compared with the ASTER (SWIR) image for 
evaluating the co-registration between the images using the viewer swipe in ERDAS IMAGINE 
software. As the Landsat image was turn to the same projection system as the ASTER (SWIR) image, 
the co-registration between the images found to be satisfactory. The resulting Landsat image is shown 
below in fig 3.7. A subset of this image corresponding to the previous subsets was taken from this 
image. 

1 Km 
N 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3.7 FCC of Landsat image for the study area in 30m resolution as a combination of bands 4, 3, 2 
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3.6. Preprocessing of IKONOS Multispectral data 

For this study IKONOS data has being used as the reference image. IKONOS data records 4 channels 
of multispectral data at 4m resolution and one panchromatic channel with 1m resolution. Its high 
spatial resolution of 4m is the main factor of considering and processing it as the reference image. It 
has also being used as an input for the SRM to find out the efficiency of the technique. The IKONOS 
image for this study was acquired over Dehradun on 5th January 2005.Table 3.5 demonstrate these 
characteristics. 
 
Table 3.6 Spectral characteristics of IKONOS data [34]  
 

Band Wave length 
( mμ ) 

Spatial Resolution 
(m) 

Radiometric resolution 

Band 1 0.45-0.53(Blue) 4 

Band 2 0.52-0.61(Green) 4 

Band 3 0.64-0.72(Red) 4 
Band 4 0.77-0.88(NIR) 4 

 
Unsigned16 bit 

3.7. Image co-registration 

As described earlier in this study the ASTER image was taken as the base image for the image co-
registration. The row IKONOS multispectral image was in TIFF format for the VNIR bands. The 
digital values of the image were recorded in16 bit signed integer values. The four bands of the 
IKONOS image was layer stacked in ERDAS imaging software and saved in img format. 
 
For the purpose of this study all the images were made to have the same projection that is the UTM 
projection. In the process of co-registration normally the high resolution image is taken as the base 
image. But in this study the main input for the SRM which is the ASTER image is used as the base 
image to avoid it being resampled. The modification of the geometric properties of the image pixels 
should be kept to a minimum, as the resampling can have serious effects on the SRM results. So the 
IKONOS image was treated as the “warp” image and was co-registered to the ASTER image. The 
registration was done for the VNIR band and the SWIR bands separately. In the case of SWIR bands 
the reference image was made to have a ground resolution of 5m, which enable us to have a scale 
factor of 6. There for in this case IKONOS image was degraded to 5m by applying the geometric 
correction on the image with no projection change but changing the out put cell size to 5m. The 
geometric correction was done with polynomial approximation using 1st order bilinear resampling 
method. 
 
GCPs were selected very precisely and were well distributed over the image. A total of 10 GCPs were 
selected from the image. The geometric model was specified to be in first order. The RMS error was 
0.207 and 0.161 pixels for the ASTER VNIR and SWIR bands respectively. Resampling was done 
using bilinear interpolation. In the case of Landsat image, as it was having a good registration with the 
ASTER (SWIR) with the projection change to UTM with WGS84 North spheroid and datum, Zone 44 
projection, the same IKONOS reference image produced for the ASTER (SWIR) image, was used as 
the reference image. 
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For the analysis of the Markov Random Field based SRM technique for its efficiency without the 
introduction of registration errors and the errors due to class definitions as discussed in depth in 
Chapter 4, the IKONOS image was degraded to 16m spatial resolution and taken as an in put for SRM. 
This was done by aggregating four by four pixels of IKONOS image and getting the mean of them to 
represent a pixel in the degraded 16m IKONOS image. This process was performed using R 
programming language and environment for statistical computing, version 2.5.0 (see section 3.9) [35]. 
The IKONOS image subset for the SRM input is shown below in fig 3.7. A good distribution of the V-
I-S classes can be recognized through the visual interpretation of the image. 
 

N

0.5 Km

 
 
 
 
 
 
 
 
 
 
 
 
Fig 3.8 IKONOS (FCC 4,3,2) multispectral image subset of the study area 
 

Preparation of reference images 3.8. 

To analyze the accuracy of the super resolution maps several reference images were prepared using the 
hard maximum likelihood classification (MLC) technique. Considering the co-registration aspects and 
the training set pixels, reference maps for the ASTER (VNIR) image, ASTER (SWIR) image and the 
Landsat image were produced separately. For the SRM technique defining the class covariance and 
mean vectors is an extremely important step. The likelihood energy of the MRF model depends on the 
definition of these statistics, a more descriptive discussion will be done on this matter in Chapter 
4.There for the training set pixels defined on ASTER and Landsat images for the V-I-S classes were 
transferred to the IKONOS image. This is to make the reference image to have same pixels as the 
SRM input image. Then the IKONOS image was classified using maximum likelihood classifier to 
prepare the reference data set. This procedure was followed for both ASTER data sets with different 
spatial resolutions and for the Landsat dataset separately. 
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Fig 3.9 Maximum Likelihood Classification results for the IKONOS image (a) for ASTER (VNIR) (b) 
for ASTER (SWIR) (c) for Landsat images. 
 
The resulting reference maps are shown in fig 3.9. Although the training pixels for the classes were 
selected carefully it should be mentioned that considerable amount of pixels can be misclassified in the 
reference image. The problem mainly lies in the assumption that each pixel contains one pure land 
cover class with homogeneous reflectance across it. With the high spatial resolution (4m) of the 
IKONOS image it can be assumed to overcome this problem, since within a 4mx4m area on the 
ground it is highly possible to have more homogeneous single land cover component even in an urban 
environment. Each reference image was generated from the training samples selected on the respective 
coarse spatial resolution image. The MLC classification considers these training data statistics for each 
class in respective band to be normally distributed, so the training data with bi-or-trimodal histograms 
in a single band is not ideal. The classification accuracies of these reference maps were conducted in 
the ENVI software by generating 100 random points as ground truth on the image. The overall 
accuracy and kappa coefficients in IKONOS reference map for ASTER and Landsat images are shown 
in table 3.7. 
 
Table 3.7 Accuracy statistics for the reference images 
 

 

Reference Image (IKONOS) Overall 
Accuracy% 

Kappa Coefficient 

Reference image for ASTER 
(VNIR) 

90.72 0.845 

Reference image for ASTER 
(SWIR) 

87.46 0.792 

Reference image for Landsat 80.83 0.679 
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These accuracy statistics for each reference image shows satisfactory results with the average kappa 
values and overall accuracy in the range of 0.7 and 80% respectively. These images were transferred 
to R statistical software package as matrices for the further analysis. 
 
According to the work of P.M.Atkinson [22], it has been shown that the hard maximum likelihood 
classification can be used to produce known class fractions as the reference. This has been 
implemented in this study for the preparation of the validation data set. Each of these reference data 
sets (with hard MLC) were turned into images representing fractions of each class, which is further 
discussed in Chapter 5. This conversion was carried out using the R software (see section 3.9). 
 

3.9. The R software 

All the major implementations of the techniques discussed were carried out using the R programming 
language and environment for statistical computing version 2.5.0 software. R is an open-source 
software which can be used for the statistical computing and visualization. It is based on the S 
language developed previously. R is basically a well developed programming language, which 
supports input and outputs of the images as matrices; conditional loops and user define functions. Its 
faceable graphical capabilities support most of the image analysis tasks. In this study, the MRF based 
SRM technique with simulated annealing was implemented using the R programming language. It has 
also been used to generate the fraction maps from the maximum likelihood classification results and 
the SRM results. Finally, all the accuracy assessments and validations were carried out using this 
programming environment. 
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4. MRF-based SRM technique 

 

4.1. Introduction 

4.2. 

MRF have been used by statistical physicists to explain various phenomena occurring among 
neighbouring particles because of their ability to describe local interaction between them. MRF model 
has also been used to explain why intensity values of adjacent pixels of an image are more likely to be 
same than different values. There are large number of problems that can be modelled using the MRF 
models [13]. 
 
In interpretation of a scene, contextual information might be very useful. By considering the pixel in 
context with other measurements more complete information might be derived and the suitable use of 
context allow the elimination of possible ambiguities, the recovery of missing information and 
correction of errors. Context can be defined in three dimensions; the spectral, spatial and temporal 
dimensions [36]. The spectral dimension can be defined as the different bands of the electromagnetic 
spectra. In a pixel labelling problem, spatial context refers to the correlation between the class labels 
of neighbouring pixels.  
 
In statistical image classification the Bayesian theory has a profound influence. And Bayesian 
classification formulae depend on two key elements the prior and conditional probability density 
functions (p.d.f). However the use of context to model these prior (as image pixels are assumed 
conditionally independent in MRF) probability in order to help in the interpretation of remotely sensed 
imagery is considered to be a reasonable procedure [36]. When using the concept of context, pixels are 
not treated in isolation, but are considered to have a relation with their neighbours. Thus the relation 
ship between pixels of interest and its neighbours are treated as being statistically dependent. MRF 
models have a flexible framework for the combination of the contextual information from 
neighbouring pixels and the spectral information from the image data. So it has been used to model the 
images. 
 
In this chapter we describe how MRF theory can be used to model this p.d.f of context dependent 
patterns and the development of the methodology of this study to implement it in real data with certain 
modifications from its previous applications as mentioned in Chapter 2. The effectiveness of this 
method will be analyzed with respect to the linear unmixing technique finally. 
 

The maximum a posterior probability (MAP) 

In statistical or Bayesian rules, the decision making is based on the concept of the maximum a 
posterior (MAP) probability [36,37]. And it has been the most popular choice in MRF vision 
modelling [8]. The Bayes theorem which converts the prior probability to a posterior probability takes 
a form as below. 

 
( ) ( | )

( | , )
( )

p c p y M wp c y M w p y
=                                                                                 (4.1) 

36 



ANALYSIS OF THE EFFECTIVENESS OF SPECTRAL MIXTURE ANALYSIS AND MARKOV RANDOM FIELD BASED SUPER RESOLUTION MAPPING IN 
THE CONTEXT OF URBAN COMPOSITION 

 

 
Where is the prior probability that the given pattern belong to class c ,( )p c 1 2{ , ,........, }Iy y y y=  is a 

set of observations, is the number of observations, I ( | )wp y M  is the conditional probability of the 

observation set  for a given model y wM , is the probability of the observation set ( )p y y and 

( | , )wp c y M is the probability that the pattern belongs to class for the observation set and model. 

This is the posterior probability. Since is not related to any class, we can write the eq (4.1) as 
follows: 

c

( )p y

 

( | , ) ( ) ( | )p c y M p c p y Mw ∝ w

M

                                                        ( 4.2) 

The classification decision can be made by 

 

a rg m a x { ( ) ( | ) }c p c p y wc
′ =                                                                    (4.3) 

Where is the estimated pattern class. If c′ ( )p c is unknown, it is set to constant and the MAP 
estimation becomes a maximum likelihood (ML) estimation. 

Mathematical concepts in MRF based SRM 4.3. 

Let y  be a coarse resolution multispectral remote sensing image containing K spectral bands. The 

pixel locations are denoted as , where ib B∈ B is the set of pixels with size M N× . Spatial 

resolution of the image is denoted with the pixel size R , so that every pixel is assumed to 

correspond with a square area on the ground of size 
ib

2R . The resulting super resolution map is a 
classified map which is denoted by c and defined on a set of pixels A .The area the pixels in A covers 
is as the same as B ,but bears a high spatial resolution which is denoted  by a lower pixel size of . 
The original image with the pixel size of 

r
R will be referred to as coarse resolution image and the super 

resolution map with pixel size will be referred as the fine resolution image. r
 
The scale factor of the super resolution map is denoted as  which is the ratio between the coarse and 
fine resolution pixel sizes and can be denoted as

S
/S R r= . This means each pixel will contain 

fine resolution pixels of 

ib
2S /j ia  or ja . There for the pixel matrix A  will have the dimensions of 

pixels. Thus the number of pixels belonging to ( ) (SM SN× ) A will be times the number of pixels 

in set

2S
B .  

 
Assuming a multispectral image x  having the same spectral bands as as well as the spatial 
resolution of , image 

y
r y can be seen as a degraded version of x . Image y however is measured by 

satellites or other measuring equipment, while image x  is not. Furthermore it is assumed that every 
pixel in image x  can be assigned to a unique class ( )jc a α= , where {1, 2,....., }Lα ∈ . For 
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convenience the class of pixel ja will be referred to as jc . The relation established between images 

and y x can be described by: 

/2

1( ) ( )i j
j

y b x a
S

= ∑ i                                                                                        (4.4) 

For each pixel ja  in A a symmetric neighbourhood ( )j jN N a=  can be defined. Where jN is a set of 

pixels neighbouring pixel ja . In this neighbourhood system a pixel cannot be neighbour to itself and 

the neighbouring relationship is mutual [11]. A set of pixels inside a square window, excluding the 
pixel ja at the centre of the window and with the window size W being the length of one side, defines 

the complete neighbourhood. Here neighbourhoods are defined with there order, and first and second 
order neighbourhood systems are used commonly. As seen in figure 4.1 a window size of W =3 
defines a second order neighbourhood while a window size of W = 5 defines a fifth order 
neighbourhood. Higher order neighbouring systems can be grown in a similar manner. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4.1 Neighbourhoods and the definition of cliques 
 
According to the figure above the first order neighbours for a pixel is denoted 

by which shares the sides with x. And similarly the 
second order neighbours are the four pixels having corner boundaries with the pixel of interest [36]. A 
clique is defined as a subset of this in which all pair of pixels are mutual neighbours. It can be a single 
site, or a pair of neighbouring site, or a triple of neighbouring sites depending on the growth of the 
neighbouring order. The size of the window also determines the amount of cliques which can fit inside 
as neighbourhood. The contextual constraints introduced from the neighbouring pixels will be 
modelled by the means of prior energy. In SRM the neighbourhood order should increase in relation to 
the scale factor ( ). This will include all the sub-pixels present within the coarse pixel in the 

( , )a i j=

( , ) {( 1, ), ( 1, ), ( , 1), ( , 1)}N i j i j i j i j i j= − + − +

S
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neighbourhood system. As a result the Markovian property within the neighbouring sub-pixels will be 
preserved. 
 
In this study the minimum neighbourhood order considered is second order with respect to the scale 
factors used. To implement this growth of the neighbourhood size in relation to the scale factor a 
relationship between  and the window size W has been developed as . Under the given 
window size the number of maximal pixel neighbours  to be considered is also realized by 

. In case for a scale factor of 

S 1W S= −
(Nn)

2(( 2) 1) 1Nn W= × + − 3S =  the number of maximal pixel neighbours 
to be considered is 24, which makes a window size of 5. 
 

4.3.1. Proposed approach for the study 

According to the concepts of MRF discussed in section 4.3 a methodology has been developed and 
executed for the generation of SRM. The approach was first applied to the IKONOS images and the 
efficiency of the process was analyzed (see Chapter5). The proposed approach is mainly consisting of 
two major steps, the initial SRM generation and the optimization of the SRM. And the generation of 
fractions for the final analysis for the comparison with the Hyperion fractions. 
 
 

Remote Sensing images 
(IKONOS, ASTER, Landsat) 

Fraction image generation 
using SVD 

Definition of class statistics 
& scale factor 

Initial SRM generation 

SA or ICM Optimization 
Process 

Optimized SRM 

High resolution 
remote sensing 
data (IKONOS) 

Maximum 
Likelihood 

Classification 

Classified 
reference 

Image 

Accuracy assessment using kappa 
and overall accuracies 
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Optimized SRM 

Linear Unmixing on 
Hyperspectral data 

Reference Image 

Fraction Image generation 

Accuracy assessment using area error proportion, 
correlation coefficient and root mean square error 

Fraction images 
From OSRM 

Fraction Images  
From Reference 

 
 
Fig 4.2 The overall approach for the SRM generation and the validation of the results 
 
Above figure (fig 4.2) delineate the overall methodology adopted for the study. According to this the 
IKONOS, ASTER and Landsat images will be going through the MRF based SRM technique to 
produce super resolution land cover maps and the optimal parameters required for each image will be 
determined according to the accuracy of the STM. These maps will be converted to fraction images 
representing each land cover class to be compared with the linear unmixing fractions of the Hyperion 
image.   

4.3.2. Initial SRM generation 

In the first step the fraction image produced by SVD is the input for the initial SRM generation. Each 
pixel was divided by to get the sub-pixels, and then each pixel was randomly labelled with the 
corresponding classes from the coarse fraction image. The classes were defined by there mean vectors 
and covariance matrices. Prior to that the separability of these classes defined on the course spatial 
resolution image was assessed using the TD and JM. The parameters related to Gibbs potential 
function as discussed in section 4.4 were also estimated. The Gibbs potential function will have low 
values in the case of high spatial resolution images, due to more number of pure pixels leading to 
neighbouring pixels occupying the same class. The number of subpixels allocated to the given class 
for the initial SRM can be expressed as

S

2
bin θ S= × , where biθ is the proportion of a given class in 

pixel of the coarse resolution image. Thus; n number of sub-pixels will be randomly labelled within 

the original pixel 
ib

iy with respect to this class proportions. The mean and covariance matrices were 

defined by carefully selecting pure training pixels for the desired land cover classes from the coarse 
resolution image. And fractions for each land cover class in pixel  is defined by SVD. The output of 

this initial step is an initial SRM with many isolated pixels. This should be optimized considering the 
spatial dependence between the pixels, to get the optimized SRM with more contextually smoothed 
classes.   

ib
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4.3.3. Optimization of the initial SRM 

yield the optimized SRM. The optimization process 

nt and spectral inform

In the second step the initial SRM is optimized to 
is based on the simulated annealing (SA) algorithm, which is described in depth in section 4.4.1. Here 
the simulated annealing algorithm iteratively refines the initial SRM by updating each pixel with the 
new class label to accurately characterize the spatial dependence between the class proportions of the 
neighbouring pixels. Simulated annealing is controlled by the annealing parameters; the initial 
temperature 0T  and the updating schedule updT (see section 4.4.1). These parameters were estimated 

prior to the execution of the algorithm. The prior ( ( ))U c  and likelihood ( ( | ))U c y  energy functions 
were defined to introduce both contextual const hese two energy 
functions were combined to define a global energy (

rai ation. T

globalU ) function. The smoothening parameter 

(λ ) was introduced as a balancing factor between th o constraints. The pixel labelling was 
carried out by minimizing the energy function which was equivalent to maximizing the probability of 
the labelling. Thus a pixel value corresponding to a lower energy value had higher likelihood of being 
generated than the one with a higher energy value. 
 

ese tw

4.4. MRF and Gibbs distribution 

In order ntinue the discussion we had in section 4.3 with the 

ulti spectral image

 to proceed further, we hope to co
theoretical back ground of MRF. 
 

he observed coarse spatial resolution m yT , is represented in vector form as 

( ) R k
jy b ∈ for a pixel jb where R denotes the set of real num ers representing the intensity values 

e number of spectral bands. Let 21{ ,......., }

b

and k for th j j j
s

A a a= represent the set of pixels in the set 

A , that corresponds to the same area as the pixel jb in set B . As a resulting SRM pixel is pure and 

 represent only by one land cover class its valu ( )can e jc a   or jc can only take an integer value that 

corresponds to a particular land cover class ixelat p  ja in the actual scene. Hence 

( ) {1,...... }jc a Lα= = , as shown earlier in section 4.3. A markov random field is a random field 

ing properties with respect to its neighbourhood system: 
 

•

which shows the follow

 Positivity: , this states that the joint probability( ) 0jp c >  ( )jp c of any random field 
ine  

 he label of a pixel, given 

 
• ts 

 

is uniquely determ d by its local conditional probabilities.
 

Homogeneity: This specifies the conditional probability for t•
the label of the neighbourhood pixel, regardless of the relative location of the pixel. 

Markovianity: This shows that labelling of the pixel is only dependent on i
neighbouring pixels. That is, the conditional probability of the value of a pixel given 
pixel values of the entire image excluding the pixel of interest is equal to the 
conditional probability of a value of a pixel given values of its neighbouring pixels. 
This can be expressed in mathematical terms as below. 
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( | ) ( |
jj C j j N )p c c p c c− =                                                                            (4.5) 

 
Where  refers to all the classes except the class at C jc − j , and 

jNc refers to the classes neighbouring 

the class at j . This means the class at j , jc depends on the classes at the sites 

neighbouring j , ( )jN c . In the context of land cover classification this property implies that same land 

cover class is more likely to occur in connected regions than isolated pixels [22]. The MRF model 
characterizes the spatial dependence among neighbouring sites; however a direct implementation of 
(4.5) is not simple because the probabilities can take up any values. As a result we introduce GRF. 
 
When the above properties are satisfied the MRF is equivalent with the Gibbs Random Field (GRF), 
because according to Hammersley-Clifford theorem a GRF exist for every MRF as long as the GRF 
defined in terms of cliques on a neighbourhood system [36]. A MRF is defined in terms of local 
properties, i.e. a label assigned to a pixel is affected only by its neighbours, whereas a GRF describes 
the global properties of an image, which is the label given to a pixel is affected by the labels given to 
all other pixels in the image. 
 
Therefore the posterior probability for each class given the observed image c y can be specified by 
the means of a posterior energy function. 
 

1 ( |( | ) exp( )U c yp c y
Z T

−
=

)
                                                                                     (4.6)   

Where 

( | )exp( )U c yZ
T

−
= ∑                                                                                                (4.7) 

 
Where Z is the normalizing constant and T is a constant termed temperature. Here we can define an 
energy function . From equation (4.6) we can say that maximizing is equivalent to 
minimizing the energy function which can be formulated as: 

( | )U c y ( | )p c y

 

( ) ( )C
c C

U c V c
∈

= ∑                                                                                                           (4.8) 

 
( )CV c , is the Gibbs potential function with respect to cliqueC , of all the available cliques in the 

neighbourhood. In this study we stick to pairwise cliques only, they are the vertical, horizontal, left-
diagonal and right-diagonal pairs. And the single site clique was not considered, because the 
probability of each class was considered to be same and thus set to 0 as in most applications [36]. 
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And the prior probability can be expressed as: 
 

1 (( ) exp U cp c
Z T

⎛ ⎞= −⎜
⎝

)
⎟
⎠                                                                                        (4.9) 

 
 
So with the Gibbs parameters as the prior information and the pairwise clique potential, equation 

(4.8) can also be expressed for prior energy as: 
2V

 

2
,

( ) ( , )
j

j l
j i l N

U c V c c
∈

=∑∑                                                                                              (4.10) 

 
Low values of the Gibbs potential function corresponds to similar values whereas high values 
corresponds to dissimilar values of a clique. Further explained by the model (Bremaud, 1999 and 
Winkler, 1995) [23] given by. 
 

{ , }

;    

( ) ;    

0;

j l j

j l j l

j

if c c and l N

V c if c c and l N

l N

β

β

⎧ ⎫− = ∈
⎪ ⎪

= + ≠ ∈⎨ ⎬
⎪ ⎪∉⎩ ⎭

j                                                     (4.11) 

 
This model justifies the phenomena exists in the class distribution of a SRM, that is the classes 
occupying the neighbouring pixels are likely to be the same. So in the study  to maximize the posterior 
energy function, when a pixel belong to the same class as the class of the pixel in focus  it was given a 
value 0 and 1 otherwise, and they were weighted with respect to the Euclidian distance, this is 
discussed below. 
 
According to the equation (4.6) to allocate pixel ja  to class α ,the posterior probability has to be 

minimized. As described in equation (4.3) a MAP solution can be incorporated for this. 
 

arg max{ ( | )}jc p= c y  

                                                                                 
Using the Bayes rule: 

( | ) ( )( | )
( )

p y c p cP c y
p y

=  

And the likelihood probability, which is the conditional distribution of the observed data given the 
class c assumed as a Gaussian distribution and defined as: 

y
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1( | ) exp( ( | ))
2 | |

p y c U y c
ρ

απ
= −

∑  

Where ρ is the dimensionality of the feature space, for example the number of image bands, α∑ is 

the class-conditional covariance matrix for classα . 
 
The likelihood energy can be defined by using the mean vector αμ  of class α and the covariance 

matrix, by the following equation: 

11 1( | ) ( ( ) ) ( ( ) ) ln det
2

T
i i

i
U c y y b y b

2α α αμ μ−= − − +∑ ∑ α∑                                             (4.12) 

 

Here denotes the transpose of a matrix and T _1
α∑ is the inverse of the covariance matrix. As 

pixels in the SRM correspond to one pixel in the coarse spatial resolution image ( , the p.d.f of 

an observed vector is also assumed normally distributed with mean vector and covariance matrix 

given by, 

2S )y

ib

1

( ( )) ( )
L

i i iy b bα α
α

θ
=

= =∑ ∑ ∑ ∑  

 

1
( ( )) ( )

L

i i iy b bα α
α

μ μ θ
=

= =∑ μ  

Where αθ is the proportion of land cover class α in pixel ( )iy b . And a class can be assigned to a pixel 

when prior  and posterior  probabilities are maximized. This is equivalent to minimizing 
the energy functions: 

( )p c ( | )p c y

 

arg  min{ ( ) ( | )}jc U c U c y= +                                                                                 (4.13) 

 
The likelihood energy in equation (4.12) depends on the Mahalanobis distance of the pixels and the 
prior energy in equation (4.9) depends on the pairwise clique’s . For the pairwise clique potential 

function Kassaye [11] used the following equation: 
2V

 

2 ( , ) ( ) ( , )j l l j lV c c a c cω δ=                                                                                (4.14) 

 
Where ( )laω is the weight function. In this study an extra term is added to normalize the weight 

function, so the prior energy lies between 0 and 1 and it takes the form of: 
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2
1( , ) . ( ) ( , )

( )
j

j l l j l
l N l

V c c a c c
a

ω δ
ω∈

=
∑                                                                (4.15) 

 
Where ( , )j lc cδ takes the value 1 if lc c j≠  and 0 otherwise. The weight function is made to stay 

inversely proportional to the square of the distance ( , )j ld a a between pixel ja  and  and described in 

mathematical form as: 
la

 

2

1( )
. ( , )l

j j l

a
Nn d a a

ω =
                                                                                      (4.16) 

Where jNn is the amount of pixels in the neighbourhood for the pixel j . 

 
Since it is assumed that a pixel at coarse spatial resolution comprises of a number of pure pixels at fine 
spatial resolution and the observation of any distinct pixels at fine spatial resolution are independent, 
statistical mean vector and covariance matrix of observed data at a given pixel at coarse spatial 
resolution are directional sum of mean vectors and covariance matrices of corresponding pixels at fine 
spatial resolution, respectively [24]. Hence, the p.d.f of the observed image can be stated as: 
 

/ 2

1

1
(2 ) | det( )

( | ) ( ( ) | ( ))
1exp ( ( ) ( )) ( ( ) ( ))
2

b

b B b B T
b

p y c p y b b

y b b y a a

ρπ
θ

μ μ
∈ ∈ −

= =
⎡ ⎤− − −⎢ ⎥⎣ ⎦

∑∏ ∏
∑

 

 
                                                                                                                                                    (4.17) 
 
 
 

Where . Maximizing the equation (4.17) directly yields the 

maximum likelihood estimation (MLE) of . However the MLE of  does not utilize the 
connectivity property of the SRM given in equation (4.6) [24]. 

1( ) [ ( ), ........ ( )]T
Lb b bθ θ θ=

a a

 
For the equation (4.13) a special parameterλ , the smoothening parameter has been used. This controls 
the balance between the two energy functions. In previous studies this parameter was only used to 
control the prior energy, which result in optimal λ in between 0 and ∞ .Here we normalize this 
parameter between 0 and 1: 
 

arg  min{ ( ) (1 ) ( | )}jc U c U c yλ λ= + −                                                             (4.18) 
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This equation should be minimized to find the most reasonable class for the pixel ja . For this 

minimization here we use the simulated annealing algorithm which has been proven to perform with 
good results over the other search approach techniques such as Iterated Condition Mode (ICM), 
Maximum a Posterior Margin (MPM). 
 

4.4.1. Simulated Annealing algorithm 

The concept of SA is based on the manner in which liquids freeze or metals recrystalize. The process 
which is initially holding a high temperature and in a disordered stage, is slowly cooled and become 
more ordered as it approaches the frozen state with the cooling proceeds. Once the global energy 
constructed and the smoothness parameters have been determined, as the next step we start the pixel 
labelling. As discussed earlier in section 4.2 we use the MAP estimation for this. To find the MAP 
solution we adopt the SA algorithm in this study.  
 
SA generates a sequence of { using a random number generator where denotes 

the iteration number. The p.d.f of a proposed state 

} 1, 2,3,.......p pc = p

1pc +  depends on the current state , observed data 

set 
pc

y and the temperature parameter. SA algorithm allows the randomness ( ,to decrease in an 
iterative way that the best solution for equation (4.16) can be made. This can be shown in pseudo code 
as follows: 

)T

 

j j

j j

j j

i n i t i a l i z e  T , c ;
r e p e a t
          r e p e a t

¢                    g e n e r a t e  c Î N ;
¢                    δ E = E ( c ) - E ( c ) ;

- δ E                    Q = m i n ( 1 , e x p ) ;
T

¢                   i f   r a n d o m [ 0 , 1 ] < Q  t h e n  c = c ;
                   d e c r e a s e  T ;
          u n t i l  e q u i l i b r i u m ;
u n t i l  T = 0 ;
r e t u r n  c ;

 

 
Here ( )E c  is defined as  
 

( ) ( ) (1 ) ( | )E c U c U c yλ λ= + −                                                                             (4.19) 
 
Within every step a is randomly chosen from the neighbours . The difference of both energies, 

using equation (4.19) is calculated. Variable Q holds the evaluation of the equation 

c′ iN

exp E
T
δ−

 or 1, 

which ever is minimum. If the random value from the uniform distribution in [0, 1] is lower than 

, will receive the value c . That is it generates a new label Q c ′ jc ′ for each pixel jc based on prior and 

conditional energies. The Metropolis algorithm in the most nested repeat block, is tend to converge to 
equilibrium at the current temperature T .When equilibrium is reached ,the temperature T will be 
decreased according to the criterion called cooling schedule. The process is repeated until the system 
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becomes frozen ( , that means pixels stop updating. The outer repeat block is known as 
simulated annealing algorithm. The cooling schedule associated with this study can be expressed as: 

0)

4.5. 

)

T →

 

0( ) u p dT t T T= ×                                                                                (4.20) 

Where is any next temperature value depending on the  iteration.  As explained earlier in 
section 4.3.3 these values are determined first. According to Kassaye [11] results, the value for the 
updating schedule ( ) typically in the range of 0.8 to 0.99. So for this research we have 

incorporated a value of 0.9 for . The initial temperature use to control the randomness of the 

optimization algorithm ( ). A large number of pixels having different values 

indicate a high degree of randomness of the SA algorithm. So a high temperature can increase the 
probability of a pixel being replaced by a new class label though the energy of a new class is higher. 
Due to these reasons and according to previous studies [11,24,38,39,40,41] a value in the range of 2.0 
to 3.0 does suffice the parameter . Here we incorporate 3.0 for the initial temperature. The updating 

process for the new temperature value (equation 4.18) is controlled by two constraints, if the number 
of pixels that have a different value after one updating is less than a predefined value, minimum 
activation threshold (min_acc_thr) or by keeping the counter with in a limit defined by the variable 
called, number of iterations (Niter). The pixel updating was performed by a row wise visiting scheme, 
which determines the order of the pixels in the SRM for the updating. The SRM will gradually change 
reducing the number of isolated pixels. The Gibbs potential function will force the SA algorithm to 
iteratively generate a SRM which is close to the solution of the MAP criterion in equation (4.3), as the 
desired SRM. One of the major drawbacks of this algorithm is the convergence occur when number of 
iterations approaches infinity. The SRM was then turned into contextually refined fraction images, 
with higher classification accuracy than the initial subpixel classification.  

( )T t tht

updT

updT 0T

0 RandomnessT ∝

0T

 

Measures of accuracy 

In order to assess the level of agreement between labels assigned by the classifier and the reference 
data several measures of accuracies have been used in this study. The generated SRM was tested for 
the fitness of use with respect to the reference image with the use of a confusion matrix. The confusion 
matrix compares these two images for a class-by-class agreement. Two measures of accuracy the 
overall accuracy (  and the Kappa coefficient (OA )Κ  derived by the confusion matrix has been used 
for the assessment of the SRM in this study. They are defined as: 
 

1

1 r

i i
i

O A c
N =

= ∑   

Where is the total number of pixels in the image, denotes the number of rows and columns in the 
confusion matrix and  is the number of correctly classified pixels for each class. 

N r

iic
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Where and ic + jc + are the marginal total of row i and j respectively. The  uses the information 

from the whole error matrix, and because of this advantage it has been used with OA   as initial 
accuracy measures for the optimized SRM. 

Κ

 
Three other measures of accuracy the Correlation Coefficient (CC), Root Mean Square Error (RMSE) 
and the Area Error Proportion (AEP), has been incorporated in the study to evaluate the agreement 
between the fraction Images generated from the linear unmixing and SRM technique, with the 
reference fraction image. Let us take a set of known or target proportions as Y and the set of estimated 
proportions as A , let be the total number of pixels. Here Y represents the   values coming from the 
reference image and 

n
A represent the values coming from the images from SRM or the linear 

unmixing. 
 
The CC represents an alternative measure of the amount of association between target and estimated 
proportions. It indicates the strength and direction of a linear relationship between the two variables. 
And can be expressed as: 
 

.C C
.

Yj A j

Yj A j

C
S S

=                  

 
Where is the covariance between Y and .Yj AjC A for class j and and SyjS Aj

A

are the slandered 

deviations of  for class and Y j  represented as: 
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.
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In this study CC provides us the information about the precision of the sub-pixel spatial distribution 
[10,26]. The correlation is defined only if both the standard deviations are finite and both of them are 
nonzero. The CC will be 1 for an increasing linear relation ship and -1 for a decreasing linear relation. 
   
The RMSE describe the accuracy including both random and systematic errors. Here it is used to 
acquire the information about the accuracy of the prediction that is the biasness, and also the precision 
[9,41,44]. And it can be represented as: 
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One of the simplest measures of agreement is the AEP. As it is based solely on the area predictions; it 
represents a measure of the success of the proportion constraint in maintaining the target proportion. 
And AEP can be represented as: 
 

1
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n

i j i j
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j
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−
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These measures play a major role in this study. The analysis of the effectiveness of the SRM and the 
linear unmixing technique is critically explored by this measure. 
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5. Results and discussion 

This chapter presents the experimental results obtained during the process and the analysis of it. 
Section 5.1 discuses the results of linear unmixing on Hyperion data. Section 5.2 shows the 
experimental results on IKONOS data. Section 5.3 and 5.4 presents the experimental results on 
ASTER VNIR and SWIR images respectively. And finally the findings on the Landsat image will be 
discussed on section 5.5. 
 

5.1. Spectral unmixing results for the Hyperion data 

In this section we present the results obtained from the linear unmixing process over the Hyperion 
data. After the pre-processing steps the Region of Interests (ROI) created for the endmembers were 
entered into the unmixing classification function to perform a constrained unmixing. After the 
examination of the abundance images with RMSE value final selection of the fraction images were 
carried out. The resulting images for the V-I-S classes have been shown below. 
 
 
 
 
 
 
 
 
 
 
 
             (a)                                  (b)                                      (c)                              (d) 
 
Fig 5.1 Endmember abundance images from linear unmixing (a) Vegetation (b) Soil (c) Impervious 
(d) Error image showing RMSE  
 
The output of the spectral unmixing includes RMSE and endmember abundance images. The 
endmember abundance images derived from the unmixing analysis should posses a value between 0 
and 1. Sometimes the fraction proportion may have values more than 1 or less than 0 due to several 
reasons- that the pixel is purer than the selected endmember, variability in the selected classes, non-
linearity of mixing etc. Due to the broader class definitions involved in this study, the representative 
endmembers for these classes (V-I-S) may not be the most pure pixels in the image. Highly positive 
and negative values corresponds to the areas having high RMSE values (Figer.5.1 (d)).The error 
images shows the distribution of these errors. Statistics for these unmixing results are shown in the 
table below. 
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Table 5.1 Statistics of fractional abundances and RMSE images obtained through the unmixing 
 

Class Min Mean Max <0% >1% Stdv 
Vegetation 
 
Soil 
 
Impervious 

-0.913 
 

-0.990 
 

-0.524 

0.500 
 

0.176 
 

0.466 

1.362 
 

1.365 
 

2.200 
 

38.190 
 

12.020 
 

13.540 
 

0.305 
 

0.532 
 

3.093 
 

0.283 
 

0.193 
 

0.346 

RMSE 0.000 0.141 1.000 0.0450 0.007 0.071 

 
 
According to these results, the mean abundance of the endmembers derived from the Hyperion data 
shows a positive value. And the low standard deviation shows the acceptable deviation from the mean. 
Next the minimum and maximum abundances for vegetation and soil are more likely to be the same. 
But for vegetation the percentage of pixels having values less than 0 is 38.19%.This is mainly due to 
the different types of vegetation  in the area an the chosen endmembers are not capable of representing 
all this vegetation types. Impervious surface class shows a higher maximum abundance value than the 
other classes. But the percentage of pixels representing this high values is in the range of 3.09%, 
which make the results justifiable for the use. Overall results indicate the validity of the results for the 
further analysis. And for this study these results has been accepted to be good enough. Detailed figures 
and statistical reports of the linear unmixing process for the Hyperion image are given in Appendix-A 
(fig A.1). 
 

5.2. Experimental results for the IKONOS degradation image 

To understand the efficiency of the MRF based SRM technique first it was applied on a degraded 
IKONOS image which holds a spatial resolution of 16m (section 3.5.1). By doing so temporal effects 
and the co-registration errors will be stopped effecting the accuracy assessment. Here the degraded 
IKONOS image pixel is made to have a value, which is the mean of 4x4 pixels in the fine resolution 
image (IKONOS 4m multispectral image). This makes the degraded image high in mixed pixels 
making it one of the best inputs for the MRF based SRM technique. In order to overcome the lengthy 
processing time a subset of the image with 60x60 pixels were chosen for this. Selected subset of the 
IKONOS image with there feature space plots are shown in the figures below. 
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Fig 5.2 Degraded IKONOS multispectral image with feature space plot 
 
The scale factor was set to . This value defines a neighbourhood by a 7x7 square window. 
According to Kassaye [11] for a successful optimization of the SRM the initial temperature ( ) 

should be set to 2 or 3. This finding justified the findings of the earlier studies of Geman and Geman 
[21] and Kasetkasem [23]. Due to this in this study was set to

4S = S
0T

0T 0 3T = . For the updating schedule 

 Kassaye [11] suggested two values 0.8 and 0.9 for a low complex and a highly complex scene 

respectively. As the study deals with a highly complex urban scene we chose the  value 

accordingly for 0.9. 

updT

updT

 
Mean vector and the covariance information for the V-I-S classes were defined by the selected pure 
training pixels representing each of these classes from the original IKONOS image. The classes 
defined were well separated with TD values in the range of 1.9 to 2.0 (see Appendix-A, figA.3 to fig 
A.5 and tableA.1 to table A.3 for details).  Good class separability leads to a higher spectral distance 
between the class means which can make the prior constraint provide more information for the pixels 
to be classified correctly. This may yield the prior constraint getting a very similar weight as for the 
likelihood constraint, which can refine the classification on the basis of contextual information. This 
also provides a prior condition for the testing of the SRM technique.  
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5.2.1. Optimal smoothness parameter estimation 

In this study the use of smoothness parameter has being changed from its previous ones (see eq.4.18). 
Here the smoothness parameter (λ ) controls the balance between the prior and the likelihood energies 
in the global energy (see eq.4.16). The rationale for introducing smoothness assumption is that image 
properties in a neighbourhood shows some coherence and generally do not change abruptly [11]. The 
λ value controls the smoothness and it assures the pixels to be labelled according to the majority of 
the pixels in the neighbourhood. This is an important aspect in a heterogeneous urban scene, where the 
spatial variability increases rapidly. To achieve a successful optimization, by controlling the over 
smoothening and maximizing the spatial correlation between neighbouring subpixel, setting of an 
appropriate smoothening parameter is very important. 
 
The algorithm was executed with different λ values (Λ ), and the Kappa coefficient  and the 
overall accuracy (OA) were tested and the results were summarized in the table 5.2 below. The 
resulting plots are shown in figure 5.3. 

( )Κ

 
Table 5.2 Overall accuracies and the Kappa coefficients for the degraded IKONOS image 
 
 
 
 
 
 
 
 
 
 
 
 

Λ (λ ) OA (%) Initial K Κ  

0.1 70.310 0.2813 0.4610 

0.25 72.828 0.2813 0.5041 

0.3 72.939 0.2813 0.5075 
0.35 73.003 0.2813 0.5114 
0.4 72.008 0.2813 0.5084 

0.45 56.590 0.2813 0.3491 
0.85 14.736 0.2813 0.0002 

 
 
 
 
 
 
 
  
  
 
 
 
Fig 5.3 The effect of smoothness parameter (λ ) by Κ and OA respectively. 
 
The graph shows the effect of ( )λ Λ  on the quality of the SRM. Resulting Κ values increases with 

the increase of the λ values and it reach a unique optimal value of 0.35 where Κ =0.5114. An abrupt 
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drop in the Κ values can be seen for the value of λ  from 0.4 to 0.45. Beyond this the Κ values 
started dropping steadily. This drop shows that at the range starting from 0.45 to 1 for the λ values it 
starts giving lower weight to the likelihood energy than the prior energy. Therefore 0.35 value was 
considered as the optimal smoothening parameter. The resulting optimized super resolution maps are 
shown in figure 5.4. 
 

Vegetation 
 
Impervious 
 
Soil 

N

 
 
 
 
 
 
 
 
 
 
 
           
                    (a)                             (b)                          (c)                              (d) 
 
Fig 5.4 Effect of smoothening parameter on SRM, λ = (a) 0.30, (b) 0.35, (c) 0.40 and (d) Reference 
image 
 
The visual interpretation of figure 5.4 shows that the vegetation and impervious classes are more 
closely classified to the reference image. But the soil class, especially in the upper left corner of the 
image has been misclassified for the vegetation class. This is mainly due to the representation of the 
soil class is a heavy mix of soil and grass in the Dehradun area this is much prominent for the 
‘fragmentized’ grass land areas. Moreover soil class in most of the parts of the image represents a very 
small distribution. As a result it represents a very small number of pixels with respect to the other two 
classes. So the contextual information provided by this class will not be enough to satisfy the 
Markovian property. The confusion matrix shown in table 5.3, gives a better understanding over this 
fact. From the table 5.3, it is evident that the error of commission for the soil and the vegetation 
classes are at higher values with 40% and 46% respectively. These errors are visualized by the poor 
user accuracies for these classes. The confusion between these two classes as seen on the image and 
has been significantly highlighted in the confusion matrix. On the other hand impervious surface 
shows better user accuracy with 88%. 
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Table 5.3 Confusion matrix for the SRM of IKONOS image for an optimal λ  value of 0.85  
 

Class V S I Total Error of 
Commission 

(%) 

User 
Accuracy 

(%) 
9629 3218 5301 18148 46 54 V 
934 1977 424 3335 40 60 S 

1558 2111 25024 28693 12 88 I 
Total 12121 7306 30749 50176   
Error of 
Omission (%) 

20 72 18    

Producer 
Accuracy (%) 

80 28 82    

 
Considerable amount of over smoothening can be seen in figure 5.4(c) with respect to the figure 
5.4(b). The abrupt drop in the Kappa agreement with the reference image shows this over smoothening 
effect. Overall analysis shows us when the spatial variability increases between the neighbouring 
pixels, for an optimal SRM the modified smoothness parameter should be set to a value in the range 
from 0.1 to 0.4. This also justify the condition we enforced in section 5.2, which means that for these 
values of λ and for the predefined class seperabilities, it can be seen the prior constraints providing 
additional information. The optimization process and the class seperabilities are shown in Appendix-A 
(fig A.6). 
 

5.2.2. Experimental results for the comparison of OSRM fractions for the degraded 
IKONOS image with the Hyperion linear unmixing results 

This section presents the results of the comparison of OSRM fractions with the fractions from linear 
unmixing of Hyperion image. As mentioned earlier, three measures of accuracy, the AEP, RMSE and 
the CC have been chosen for that reason. 
 
Here we have turned the OSRM into fractions representing each class. The smooth OSRM suggests 
that they are well described by the contextually smooth MRF model. The fraction images generated 
from these OSRM can hold higher classification accuracies than the initial subpixel classification from 
linear unmixing due to this contextual refinement. To analyze this effectively we have compared the 
fractions coming from OSRM of degraded IKONOS image and linear unmixing fractions of the 
Hyperion image with the fractions of the reference IKONOS image.  
 
Initially the OSRM with 4m spatial resolution has to be turned into fractions of 30m spatial resolution 
to compare with Hyperion fractions of 30m. To do this the OSRM pixels were aggregated to form a 
30m spatial resolution image with pixels representing the fractions for each class. This aggregation 
was possible mainly because the OSRM represent only the pure pixels. By analyzing the two images 
in a pixel by pixel basis, it has been found out that 7x7 pixels of the OSRM corresponds to a 1 pixel of 
the Hyperion image. So to generate the fractions a formula was developed as below: 
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Here ( )f l represents the fraction value for a class in a pixel, and being the total number of 

classes. represents the number of pixels in OSRM in row ( ) and column 

l L
N i ( )j  directions 

corresponding to a single pixel of the Hyperion image. Therefore 49 pixels from OSRM were used to 
generate a class proportion measure in a single 30m pixel. The same procedure was carried out to 
convert the reference image of 4m spatial resolution in to 30m fractions. In order to analyze how the 
initial fractions of SVD contextually get refined during the optimization process, the initial fractions 
were also compared to the reference fractions. To do this the initial fractions for the degraded 
IKONOS image at a spatial resolution of 16m had to be converted to 30m spatial resolution fractions 
first. By care full analysis of pixels it is found out that 4 pixels should be aggregated to convert the 
initial fractions to the desired 30m spatial resolution. The aggregation of these 4 pixels was carried out 
by taking the mean of the respective fractions in each pixel. The results of all these comparisons are 
shown below in the tables. 
 
Table 5.4 Accuracy statistics for IKONOS degraded image by CC, RMSE and AEP (a) between 
fractions of Hyperion linear unmixing & Reference fractions (b) between SVD fractions and the 
reference fractions (c) between OSRM fractions and the reference fractions (d) Between the OSRM 
fractions and Hyperion fractions  
 
 
 
 
 
 
 
 
 
 

Class CC   RMSE AEP 
Vegetation 

(a) (b) 
 
 
 
 
 
 
 
 
 
 
                                    (c)                                                                               (d) 
 

 
Soil 

Impervious 
surface 

0.6432 
 
0.2460 
 
0.7196 

0.2749 
 
0.1870 
 
0.2688 

1.6385 
 

-0.0823 
 

0.2910
 

Total  0.7307 1.8472

Class CC   RMSE AEP 
Vegetation 
 
Soil 
 
Impervious 
surface 

0.3909 
 
0.1308 
 
0.3908 

0.5413 
 
0.6173 
 
0.3853 

-0.6202 
 

-1.4286 
 

-0.0975

Total  1.5439 2.1463

Class CC   RMSE AEP 
Vegetation 
 
Soil 
 
Impervious 
surface 

0.6076 
 
0.2225 
 
0.7351 

0.4004 
 
0.2202 
 
0.2829 

-0.7459 
 

1.9748 
 

-0.1806

Total  0.9035 1.0483

Class CC   RMSE AEP 
Vegetation 

Soil 

Impervious 
surface 

0.8521 
 
0.6846 
 
 
0.9200 

0.2271 
 
0.1692 
 
 
0.1584 

-0.3296 
 

1.7299 
 
 

 0.0579

 

 

Total  0.5547 1.4582
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The results justify the assumptions we made before the experiments (contextual refinement leading to 
higher classification accuracy). The CC and the RMSE in tables 5.4(a) and 5.4(c), respectively shows 
the significant improvement in the classification accuracy with respect to the maximum likelihood 
results. The soil class which initially shows a less correlation with 0.2460 values, has been improved 
up to 0.6846 with the SRM, this is confirmed by the RMSE values improving from 0.1870 to 0.1692. 
The AEP also follows the same trend and overall values for RMSE and AEP shows the improvement 
in the accuracy with the values dropping from 0.7307 to 0.5547 and 1.8472 to 1.4582 respectively. 
This drop in overall RMSE shows the improvement in the prediction (the biasness and variance), 
while the AEP shows the success rate in maintaining the known proportions during prediction [10,26]. 
The comparative results in tables 5.3(b) and (c) shows high accuracy in the prediction and the success 
rate with the significant drop in RMSE and AEP values during the optimization process. And the 
association between the target and the prediction proportions has also been increased with the 
improved correlation coefficients. This justifies the contextual refinement in the fractions during the 
OSRM generation. Initially the fractions generated from Hyperion image shows a better overall RMSE 
and AEP values with 0.7307 and 1.8472 respectively and mean CC in the range of 0.6 with respect to 
the SVD results. This shows the increased classification accuracy that Hyperion is producing than the 
SVD fractions from the IKONOS degraded image. This is obvious due to the higher spectral 
information content hold by the Hyperion image over the degraded IKONOS in defining the 
endmembers for the V-I-S classes. According to the table 5.3(d) results the SRM results shows a 
considerably good association with respect to the Hyperion fractions, with a CC value of 0.7351 for 
the impervious class. But the overall RMSE of 0.9035 suggests some prediction errors in SRM with 
respect to Hyperion fractions. The overall AEP of 1.0483 shows an improved identical area error 
proportions than the other comparisons. The bivariate distribution of the known which is the Hyperion 
fractions and prediction variables or the fraction defined from OSRM, for each class is shown below. 
 
 
 
 
 
 
 
 
 
 
 
                         (a)                                                  (b)                                               (c) 
Fig 5.5 Bivariate distribution of the class proportions between the predicted fractions using MRF 
based SRM on degraded IKONOS image and the known fractions using linear unmixing on Hyperion 
image, with the best fitting line, for the classes (a) vegetation (b) Soil (c) Impervious 
 
According to the plots impervious class shows a high correlation between the predicted and known 
fractions, by best fitted line being close to a one to one relationship(y=x line). The low correlation 
between the two variables for the soil class is significant through the plot (figure.5.5 (b)). For all the 
classes, number of predicted fractions is estimated as 0 or 1. Such situation can be a result of several 
reasons, spectral closeness or overlap between the endmembers due too the spectral similarity for the 
classes in urban landscape, and the aggregation process which has been used to produce the degraded 
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image resulting in pixels representing an average radiance values of sixteen pixels of the original data 
set of IKONOS multispectral image. But the overall results suggest that the OSRM holds increased 
classification accuracies than the linear unmixing results. 
 

5.3. Experimental results for the ASTER (VNIR) image 

In this section MRF based SRM technique is applied to a ASTER image for the bands in the VNIR 
region. This image was processed in way that it prevents original pixels getting resampled. In other 
words the three bands of the ASTER VNIR region were kept to the original grid size of 16m. This 
leaves the pixels getting resample by any interpolation method (see section 3.5.1). Due to this spectral 
integrity of the original data set the resulting SRM results will be free of the effect of resampling. The 
ratio between the pixel resolutions of the ASTER and IKONOS images defines a scale factor of 4. The 
temperature parameters were set to the same values as previous. A subset of 60x60 pixels was chosen 
to match the previous subset area of the IKONOS image. The classes were defined with there mean 
and covariance matrices by carefully selected endmembers for each class from the original 16m 
resolution image. The PPI image was assisted for this selection. These defined classes posses a high 
separability with the TD values ranging from 1.9 to 2.0 (see Appendix-B fig B.1 to B.3 and table B.1 
to B.3). 
 

5.3.1. Optimal smoothness parameter estimation 

Experiments were carried out to find the optimal smoothening parameter which results in the best 
SRM for the ASTER image. Several smoothening parameters were used to fined out the resulting 
SRM accuracy, and the results are summarized in the table 5.5 with the resulting plots in fig 5.6. 
 
Table 5.5 λ values and the resulting OA and Κ values, for the ASTER (VNIR) image 
 
 
 Λ (λ ) OA (%) Initial K Κ  

0.3 65.5871 0.2134 0.3754 

0.4 66.6095 0.2134 0.3962 

0.45 66.6036 0.2134 0.4018 

 
 
 
 
 
 
 

0.5 65.6435 0.2134 0.4016 

0.55 66.0000 0.2134 0.3750 

0.6  48.9756 0.2134 0.2561 

0.9 14.8060 0.2134 0.0003  
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Fig 5.6 Effect of smoothness parameter on the accuracy of SRM, by OA and , for ATSTER (VNIR) 
image 

Κ

 

N 

Vegetation 
 
Impervious 
 
Soil 

The results show that for the optimum results λ can take a value in the range of 0.4 to 0.5.Here the 
highest value of K= 0.4018 is reached for a λ value of 0.45, with a slightly higher accuracy than the 
values of   0.5 and 0.4 respectively. This result justifies and mirrors the conclusions of the previous 
results of IKONOS image. Suggesting that the optimalλ values for a scene with high spatial 
variability lies in the range of 0.3 to 0.5 (see section 5.2.1), which has considered the prior constraints 
equally as well as the likelihood constraints in SRM generation. The resulting super resolution images 
are shown below. The OSRM generation process for λ =0.45 is shown in Appendix-B (fig B.4). 
 
 
 
 
  
 
 
 
 
 
 
   
                 (a)                            (b)                           (c)                              (d) 
 
Fig 5.7 Optimized SRM for the λ values of (a) 0.4,(b) 0.45 and (c) 0.5, (d) Reference image 
 
Visual interpretation of these resulting images shows the smoothening of the image with the growth of 
the λ values. Misclassification of the soil class with the vegetation is significant in the image. But the 
vegetation and the impervious classes have been able to maintain a close agreement with reference 
image. Close interpretation shows that the soil class classifies correctly in an impervious 
neighbourhood. This confusion carried out by the soil class can also be identified with the information 
from the confusion matrix. From the table 5.6 it is evident that the error of commission for the soil 
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class is higher than the other two classes at 61%. This shows the incorrect classification samples 
involved in this class. 
 
Table 5.6  Confusion matrix for the SRM of ASTER (VNIR) image for optimal λ value of 0.45  
 

Class V S I Total Error of 
Commission 

(%) 

User 
Accuracy 

(%) 
7562 2486 5345 15393 50 50 V 
1786 2406 1953 6145 61 49 S 
2773 2414 23451 28638 18 82 I 

12121 7306 30749 50176   Total 

Error of 
Omission (%) 

38 67 23    

62 33 77    Producer 
Accuracy (%) 

 

5.3.2. Experimental results for the comparison of OSRM fractions for the ASTER 
(VNIR) image with the Hyperion linear unmixing results. 

 
The fractions of the OSRM were compared to the Hyperion fractions in order to fined out the 
comparison between the two techniques. As in the previous experiment the OSRM was aggregated to 
show 30m spatial resolution fractions. The initial fractions generated by SVD at a spatial resolution of 
16m were also aggregated to represent 30m fractions as before. The comparative results are shown in 
the below tables. 
 
Table 5.7 Accuracy statistics for the ASTER (VNIR) image by CC, RMSE and AEP (a) between 
fractions of Hyperion linear unmixing & Reference fractions (b) between SVD fractions and the 
reference fractions (c) between OSRM fractions and the reference fractions (d) Between the OSRM 
fractions and Hyperion fractions  
 
 
 
 
 
 
 
 
 
 
 

Class CC   RMSE AEP 
Vegetation 
 
Soil 
 
Impervious 
surface 

0.6432 
 
0.2460 
 
0.7196 

0.2749 
 
0.1870 
 
0.2688 

1.6385 
 

-0.0823 
 

0.2910

Total  0.7307 1.8472

Class CC   RMSE AEP 
Vegetation 
 
Soil 
 
Impervious 
surface 

0.3140 
 
0.0508 
 
0.4158 

0.4382 
 
0.2419 
 
0.3330 

-0.5420 
 

0.3238 
 

0.0051

Total  1.0131 -0.2131

(a) (b) 
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(c) (d) 

Class CC   RMSE AEP 
Vegetation 
 
Soil 
 
Impervious 
surface 

0.6403 
 
0.2000 
 
0.7399 

0.3659 
 
0.2385 
 
0.2730 -0.1837

-0.7299 
 

1.1498 
 

Total  0.8774 0.2362

Class CC   RMSE AEP 
Vegetation 
 
Soil 
 
Impervious 
surface 

0.8208 
 
0.6267 
 
 
0.8453 

0.2199 
 
0.1868 
 
 
0.2024 

-0.2875 
 
 0.9729 
 
 
-0.0539 

Total  0.6091  0.6315 

 
The results illustrated by the tables above follows a similar pattern to the results shown by the 
IKONOS degraded image. As table 5.7(b) suggests the initial agreement of the fractions by SVD is 
poor with respect to the fractions estimated by the reference. With the optimization process these 
results have been improved significantly. This is justified by the results in the table 5.7(c), the 
correlation between the OSRM fractions and the reference fractions have been improved to an average 
in the range of 0.7, which is a good correlation between the known and the prediction. The total 
RMSE shows the biasness in the prediction with a high value of 0.6091 and AEP shows the over 
estimation of the area with a value of 0.6315.This may be explained by the errors inherited from the 
co-registration between the ASTER image and the reference IKONOS image, which leads to certain 
mismatch between the set of pixels considered for these accuracy measures. According to table 5.7(a) 
and (c) it is clear that the MRF base SRM technique displays a good potential for mapping accurate 
land cover class proportions within a pixel, from the remote sensing image than the linear unmixing 
technique. AEP suggests SRM technique shows a tendency for the overestimation of the class 
proportions but the correlation between the prediction and the known proportions have been improved 
significantly to a range between 0.6 to 0.8, the results shown by these tables are elaborated by the plots 
shown in fig 5.8. 
 
 
 
 
 
 
 
 
 
 
                             
                         (a)                                               (b)                                            (c) 
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                         (d)                                                (e)                                               (f) 
 
 
 
 
 
 
 
 
           
                        (g)                                                  (h)                                                  (i) 
 
Fig 5.8 Bivariate distribution of the class proportions for V-I-S classes, with the best fitting 
line,(a),(b),(c),reference fractions compared to linear unmixing from Hyperion image 
,(d),(e),(f)reference fractions compared to OSRM fractions as prediction,(g),(h),(i)Hyperion linear 
unmixing  compared to OSRM fractions 

5.4. Experimental results for the ASTER (SWIR) image 

In this section we describe the application and results of the MRF based SRM technique for the six 
bands of the ASTER SWIR region. This experiment was carried out mainly to find out how the MRF 
based SRM technique handle the different input image characteristics. ASTER (SWIR) image 
represents different spatial and spectral characteristics than the inputs tried previously in this study. It 
has a more course spatial resolution of 30m and a spectral range representing the short wave infrared 
region (see chapter3). To understand the results in comparison to the previous results a subset of the 
same area was selected, due to the difference in spatial resolution (30m) subset represented a 

pixel area. Classes were defined as mentioned earlier with there mean and covariance 
information. These classes show separability with TD values ranging from 1.9 to 2.0. These 
processing steps are shown in Appendix-B (see fig B.5 to B.7 and table B.4 to B.6). 

30 30×

 
For this experiment, certain differences were made in the preparation of the reference data set using 
IKONOS image. This image was resampled to grid size of 5m before applying the MLC classification 
to the image using the classes defined on the ASTER (SWIR) image (see section 3.5.1). This makes a 
scale factor of  to be defined between the two images, making the maximal pixel neighbours of 
120 to be considered (see section 4.3).  

6S =
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5.4.1. Optimal smoothness parameter estimation 

Tests were carried out to find the resulting optimal smoothening parameter ( )λ  for the ASTER 
(SWIR) image. Temperature parameters were defined as before. Conclusions were made using the 
Kappa coefficient and overall accuracy between the resulting optimum SRM and the reference image. 
The overall results are shown in table 5.8 and fig 5.9. 
 
Table 5.8 λ values and the resulting OA and Κ values, for the ASTER (SWIR) image 
 
 

Λ (λ ) OA (%) Initial Κ  Final Κ   
0.1 65.901 

 
 0.2472 0.3417 

0.2 66.543  0.2472 0.3570 
0.25 66.333  0.2472 0.3682 
0.3 56.000 0.2472 0.2882 
0.4 14.179 0.2472 0.0081 

0.45 21.203 0.2472 0.0605 
0.7 13.024 0.2472 0.0000 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Fig 5.9 The effect of smoothening parameter (λ ) by OA andΚ  
 
In contrast to the previous results the optimal λ values shows a different range in achieving the 
optimal results. Looking at the results, the optimal values for λ seems to stay in the range of 0.1 to 
0.3. And the highest accuracy levels with a Κ value of 0.3682 has been achieved for a λ value of 
0.25. One of the reasons for this range may be the spatial resolution of the image, which makes the 
scene contains more homogeneous representation of objects. This means when the pixels are divided 
to sub-pixels the spatial dependency between the sub-pixels will not be increased significantly, still 
leaving the sub-pixels as mixed pixels. When this happened the contextual constraints modelled as 
prior energy cannot bring additional information to correctly label the pixels, claiming a low weight in 
the range of 0.1 to 0.3. On the other hand the labelling depends more on the likelihood constraint or 
spectral information, where the likelihood energy claims a higher weight (1 )λ− . The resulting super 
resolution maps for these range is shown below. 
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Vegetation 
 
Impervious 
 
Soil 

 
 
 
 
 
 
 
 
 
 
 
                 (a)                           (b)                           (c)                               (d) 
 
Fig 5.10 Optimized SRM for the λ values of (a) 0.1, (b) 0.2 and (c) 0.25, (d) Reference  
 
A visual interpretation of the image 5.10(b) at optimal λ value of 0.2 has a close agreement with 
reference image. As in the earlier results soil class has created some confusion with vegetation class, 
but looking at figure 5.10(a) it can be seen that this confusion is less. Reason for this has been 
discussed earlier.  
 
The confusion matrix shown in table 5.9 below gives a better understanding about the low 
classification accuracy for the class soil. The table shows a low user accuracy of 31% for the soil class. 
The misclassification of the soil class into vegetation and impervious is signified with these measures. 
 
Table 5.9 Confusion matrix for the SRM of ASTER (SWIR) image for optimal λ value of 0.25 
 

Class V S I Total Error of 
Commission 

(%) 

User 
Accuracy 

(%) 
4121 994 2768 7883 48 V 52 

S 1560 1292 1354 4206 69 31 
I 2463 1873 15975 20311 21 79 
Total 8144 4159 20097 32400   
Error of 
Omission (%) 

49 69 20    

Producer 
Accuracy (%) 

51 31 80    

 
The results suggest that MRF based SRM technique has been able to handle the low spatial 
dependency between sub pixels in labelling the pixels to each class. The optimization process with the 
error evaluation and energy minimization plots are shown in Appendix-B (fig B.8). 
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5.4.2. Experimental results for the comparison of OSRM fractions for the ASTER 
(SWIR) image with the Hyperion linear unmixing results. 

 
Tests were carried out to find the comparison of the SRM results with the linear unmixing results. 
Initial fractions from SVD and the Fractions generated from the OSRM with the linear unmixing 
results were compared to the fractions generated form the IKONOS reference image, finally the results 
from the OSRM and Hyperion fractions were compared with each other. These results are shown in 
the tables below. 
 
Table 5.10 Accuracy statistics for the ASTER (SWIR) image by CC, RMSE and AEP (a) between 
fractions of Hyperion linear unmixing & Reference fractions (b) between SVD fractions and the 
reference fractions (c) between OSRM fractions and the reference fractions (d) Between the OSRM 
fractions and Hyperion fractions  
 
 
 Class CC   RMSE AEP 

Vegetation 
 
Soil 
 
Impervious 
surface 

0.6419 
 
0.3800 
 
0.6638 

0.2795 
 
0.1746 
 
0.3032 

0.6178 
 

-0.2194 
 

0.2464

Total  0.7573 0.6448

Class CC   RMSE AEP 
Vegetation 
 
Soil 
 
Impervious 
surface 

0.7126 
 
0.5912 
 
0.8237 

0.2499 
 
0.1804 
 
0.1946 

 -0.3334 
 

3.4077 
 

0.0160

Total  0.6249 

 
 
 
 
 
 
 

(a)                                                                                 (b) 

3.0903

Class CC   RMSE AEP 
Vegetation 
 
Soil 
 
Impervious 
surface 

0.7470 
 
0.3195 
 
0.7680 

0.2851 
 
0.2270 
 
0.2803 -0.2592

 
 
 -0.6710 

 
1.0476 

 

Total  0.7924 0.1174 

Class CC   RMSE AEP 
Vegetation 
 
Soil 
 
Impervious 
surface 

0.8109 
 
0.5425 
 
 
0.8127 

0.1949 
 
0.2004 
 
 
0.2133 

-0.1390 
 

0.6791 
 
 

-0.0169
Total  0.6086 0.5232

 
 
 
 
 
 
 

(c) (d) 
 
The results mirror the previous results we achieved during the experiments. According to the table 
5.10(a) Hyperion fractions from linear unmixing shows a marginal association with reference fractions 
from IKONOS image, with the CC being 0.6419 and 0.6638 for the vegetation and impervious classes 
respectively. The poor classification results for the soil class has been repeated again with the CC of 
0.3800. Table 5.10(b) demonstrate the initial results of the SVD fractions, which significantly 
improved with the optimization process. Looking at the results in table 5.10(d) it can be seen that the 
optimized super resolution map shows a good correlation with the results coming from the 
hyperspectral image, this is justified by the overall AEP value of 0.1174. Finally with respect to the 
tables 5.10 (a) and (c) the significant improvements in the classification results can be seen, with the 
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CC improving in to the range of 0.8 for the vegetation and impervious classes and for the soil class the 
correlation value of 0.38 in the Hyperion linear unmixing has been improved to value of 0.5425 in the 
SRM results. These results shown by the CC have been mirrored by the total AEP and RMSE values. 
The biasness in the predictions using SRM technique is less than what it is in the linear unmixing, with 
the total RMSE falling down from 0.7573 to 0.6086 and the total AEP is falling from 0.6448 to 
0.5232. The overall results indicate that higher classification accuracies can be obtained using the 
SRM with respect to the linear unmixing techniques. The bivariate distributions of the class 
proportions leading to these results are shown below. 
 
  
 
 
 
 
 
 
                          (a)                                          (b)                                     (c) 
         
 
 
 
 
 
 
                           (d)                                        (e)                                       (f) 
 
 
 
 
 
 
 
                           (g)                                        (h)                                       (i) 
Fig 5.11 Bivariate distribution of the class proportions for V-I-S classes, with the best fitting 
line,(a),(b),(c), reference fractions compared to linear unmixing from Hyperion image ,(d),(e),(f) 
reference fractions compared to OSRM fractions as prediction,(g),(h),(i) Hyperion linear unmixing  
compared to OSRM fractions 
 

5.5. Experimental results for the Landsat image 

Only the 6 bands in the VNIR range with spatial resolutions of 30m were used for the experiments. 
The preparation of the reference data set for this image was explained in chapter 3. The MRF model 
was used to produce super resolution map of 5m spatial resolution. To define the likelihood energy 
function the classes were defined with there mean and covariance information, and the TD value for 
the separability of these classes were kept in the range from 1.9 to 2.0. A subset of 30x30 pixels 
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representing the same study area as for the previous experiments was selected for better analysis of the 
results. The processing results are shown in detail in Appendix-C (see fig C.1 to C.3 and table c.1 to 
C.3) 
 

5.5.1. Optimal smoothness parameter estimation 

In finding out the optimal smoothening parameter ( )λ  for the SRM, several λ values were tested for 

the highest  and OA agreement between the resulting SRM and the reference map. Results achieved 
during this experiment are shown below in the table and figure below. 

Κ

 
Table 5.11λ values and the resulting OA and initial and finalΚ values, for the Landsat image 
 
 

Λ (λ ) OA (%) Initial Κ  Final  Κ 
 0.1 68.278 0.2459 0.3753 

0.2 69.954 0.2459 0.3985 
0.25 71.333 0.2459 0.4224 
0.3 70.710 0.2459 0.4112 

0.45 54.809 

 
 
 
 

0.2459 0.2226 
0.7 10.222 

 
0.2459 0.0270  

 
 
  
 
 
 
 
 
 
 
 
 
 
 
Fig 5.12 The effect of smoothness parameter (λ ) by OA andΚ  
 
The results follow the results achieved previously for the ASTER (SWIR) image. The optimal λ value 
was determined as 0.25 with highest Κ value of 0.4224 and OA with 71.333%. The optimal range for 
smoothening parameter lies between 0.1 to 0.3. This shows the similar behaviour of the MRF model 
parameters in generation of the SRM for the different image characteristics of the Landsat image and 
the ASTER (SWIR) image. This range of λ values suggests that in the generation of the OSRM it has 
considered the abrupt changes in the neighbourhood inherent to these low spatial resolution (30m) 
images. In other words the low values of λ suggests the pixel labelling consider the majority of 
neighbours in a very minor level. 
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The scale factor of 6 used in this experiment considers 120 pixels of maximal neighbourhood in 
defining the Gibbs potential parameters related to the spatial dependence of class attributes. At a 30m 
spatial resolution of the Landsat image with a neighbourhood size of 120 the validity of the 
assumptions regarding the purity of the pixels leading to spatial dependence tend to break apart. This 
can also leads to low λ values controlling the prior energy as suggested by the results. The resulting 
initial SRM and the optimized SRM with the temperature curves and the energy minimization is 
shown in Appendix-C (fig C.3). Resulting OSRM for the optimum smoothening parameters are shown 
below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 (a)                             (b)                             (c)                               (d) 
 

N

Vegetation 
 
Impervious 
 
Soil 

Fig 5.13 Optimized SRM for the λ values of (a) 0.2, (b) 0.25 and (c) 0.3, (d) Reference  
 
Visual interpretation of these results shows the resemblance of the optimized super resolutions maps to 
the reference image. The OSRM produced with optimum λ value of 0.25 shown in figure 5.13(b) 
shows a high agreement with the reference image than the other two images (5.13 (a) and (b)). 
Vegetation class and the Impervious surface class show a high agreement with the reference image 
than the soil class. The confusion in classifying the soil class has been followed as in previous 
experiments. This is justified by the information in the confusion matrix shown below in the table 
5.12. 
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Table 5.12 Confusion matrix for the SRM of Landsat image for optimal λ value of 0.25 

 
According to table 5.12 the classification accuracy of the soil class is very low 15%.And it also shows 
good user accuracies for the vegetation and impervious classes with 68% and 77% respectively. This 
follows the visual interpretation results over the optimized SRM of Landsat image. 
 
The resulting images shows an significant smoothness for each class, this makes the OSRM more 
visually appealing, but it degrade the quality of the image due to the missing of the details. One reason 
for this is the high scale factor ( 6S )= used, which invariably grow the neighbourhood size. This 
significantly improves the effect of prior energy, with many sub pixel configurations with equivalent 
contextual energy, making the OSRM to become more smoother even with a low smoothening 
parameter value ( )λ . The next reason may be with a higher value of the number of subpixel with in 
the coarse resolution pixel tend to increase, this makes the coarse resolution pixel to be highly mixed. 
Then the process requires appropriate spectral information in the means of class mean and covariance 
to define the likelihood energy as additional information. This is difficult with the less number of pure 
pixels in a 30m spatial resolution Landsat image. When the likelihood energy is controlled by a higher 
smoothening value

S

(1 )λ−  the more homogeneous objects (eg. Vegetation patches) with more number 
of pure pixels tend to be classified properly than the scattered object (eg. soil). With these adjustable 
limitations the achieved results seems to be acceptable for the further analysis. The results of the 
OSRM and the Hyperion linear unmixing were comparatively analysed. These results are shown 
below. 
 
 
 
 
 
 
 
 
 
 
 
 

Class V S I Total Error of 
Commission 

(%) 

User 
Accuracy 

(%) 
6880 402 2938 10220 32 68 V 
597 185 480 1262 85 15 S 

4278 593 16047 20918 23 77 I 
11755 1180 19465 32400   Total 

Error of 
Omission (%) 

41 84 17    

59 16 83   Producer 
Accuracy (%) 
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Table 5.13 Accuracy statistics for the Landsat image by CC, RMSE and AEP (a) between fractions of 
Hyperion linear unmixing & Reference fractions (b) between SVD fractions and the reference 
fractions (c) between OSRM fractions and the reference fractions (d) Between the OSRM fractions 
and Hyperion fractions  
 
 Class CC   RMSE AEP 

Vegetation 
 
Soil 
 
Impervious 
surface 

0.8230 
 
0.5708 
 
0.7682 

0.3247 
 
0.1549 
 
0.2633 

0.7307 
 

-2.6871 
 

0.2222

Total  0.7429 -1.7342

Class CC   RMSE AEP 
Vegetation 
 
Soil 
 
Impervious 
surface 

0.5523 
 
0.4841 
 
0.7292 

0.3007 
 
0.2181 
 
0.2468 

-0.0282 

-1.8034 

-0.0699

 
 
 
 
 
 
 
 
 
                                          (a)                                                                            (b) 

 

 

Total  0.7656 1.9015

Class CC   RMSE AEP 
Vegetation 
 
Soil 
 
Impervious 
surface 

0.7023 
 
0.2689 
 
0.6242 

0.3177 
 
0.1821 
 
0.3570 -0.3001

 
 
 -0.6563 

 
2.0881 

 

Total  0.8568 1.1317

Class CC   RMSE AEP 
Vegetation 
 
Soil 
 
Impervious 
surface 

0.6883 
 
0.3251 
 
0.7290 

0.2882 
 
0.1440 
 
0.2757 

0.2759 
 

-0.1624 
 

-0.1001

Total  0.7079 0.0134

 
 
 
 
 
 
 
 

(c) (d) 
 
According to the results in the table 5.13 (a) and (c) the linear unmixing results have a marginally high 
correlation with respect to the OSRM results with the reference fractions generated from the IKONOS 
MLC classified image. With the overall RMSE dropping slightly from 0.7429 to 0.7079 MRF base 
SRM results shows its advantage in correctly predicting the fractions. And this has been justified by an 
identical AEP measure of 0.0134 for the OSRM results. The results in the table 5.13(d) show the 
measures of accuracies for the OSRM fractions with respect to the Hyperion fractions. For the classes 
of vegetation and impervious surface the correlation between the fractions is good with average CC 
lying around 0.6, and the overall RMSE and the AEP values of 0.8568 and 1.1317 respectively shows 
some prediction errors, due to contribution of the soil class. The overall results suggest that the MRF 
base SRM technique on Landsat image has a marginally higher advantage than the linear unmixing 
technique with the hyper spectral (Hyperion) remote sensing image. The resulting plots shown below 
elaborate these results. 
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                        (a)                                               (b)                                              (c) 
 
 
 
 
 
 
 
 
 
                       (d)                                               (e)                                                 (f) 
 
 
 
 
 
 
 
 
 
                   
                       (g)                                                (h)                                                (i) 
 
Fig 5.14 Bivariate distribution of the class proportions for V-I-S classes, with the best fitting 
line,(a),(b),(c) ),reference fractions compared to linear unmixing from Hyperion image ,(d),(e),(f) 
reference fractions compared to OSRM fractions as prediction,(g),(h),(i)Hyperion linear unmixing  
compared to OSRM fractions 
 

5.6. Summary of observation from the results 

The results obtained on applying the MRF based SRM technique using IKONOS image shows that to 
model the contextual information needed for an accurate land cover classification, the global energy 
needs to be modelled with a higher λ value (smoothness parameter) in the range of 0.3 to 0.5. This 
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smoothness parameter range was justified with the similar results obtained from ASTER (VNIR) 
image. The λ range experienced in case of low resolution satellite images like ASTER (SWIR) and 
Landsat image was different wherein the global energy has a tendency to depend on likelihood energy 
more than the prior energy, claiming the λ values to stay in the range of 0.1 to 0.3 and also the range 
for the optimalλ values getting narrowed down to a lower range. In other words, it is observed that 
the class labelling depends more on the spectral information. This justifies the need of accurate 
estimation of mean and covariance matrices for each class which is fundamental for better results, 
using the low resolution images. The research work carried out using ASTER, Landsat and IKONOS 
(MSS) data suggest that the SRM technique gives higher accuracy than the linear unmixing technique 
using spectrally rich Hyperion data.  
 
The overall results suggests that with different input image characteristics (spectral and spatial 
resolutions), the input parameters should be tuned to obtain optimal results. Moreover, these 
parameters tend to change, depending on the image characteristics, especially the spatial resolution. 
For a high spatial resolution remote sensing images, the optimal smoothness parameter takes a higher 
value giving contextual information more weight than the coarse spatial resolution. Pixels neighbours 
at a higher spatial resolution tend to belong to the same class (at high spatial resolution the pixels are 
more pure). This leads the Gibbs potential function to take low values. As a matter of fact these pixels 
which correspond to low energy state have a high probability in generating a class. This leads to a 
more strong behaviour of the prior energy function in the global energy construction. In other words 
this means that the prior energy brings in the additional information to classify the image pixels 
correctly. Hence this can lead it taking a higher weight (λ ) than in the case of a lower spatial 
resolution image.  
 
The results can also be used to observe the effect of the spectral range of these images for the optimal 
outputs. From all the input images, IKONOS data are quantized to unsigned 16bit values, where 
brightness value range is from 0 to 65535 whereas ASTER and Landsat sensor data are quantized to 
unsigned 8 bit value with brightness values ranging from 0 to 255. These digital numbers have not 
being scaled to 0% to 100% reflectance scale. Hence, in the case of IKONOS image the spectral 
values for the same class are scaled to larger values than in the other images (see Appendix-C, table 
C.4). They provide different inputs for the SRM generation process. The influence of these different 
spectral ranges can also be observed by their effect on the likelihood energy values. Likelihood energy 
depends on the Mahalanobis distance of the pixels (see eq.4.11). According to eq.4.11 the likelihood 
energy is modelled by using the class mean and covariance values for the Mahalanobis distance as the 

first part ( T -1
i α α i α

i

1( (y(b )-μ ) (y(b )-μ ))   
2∑ ∑ and also an additive term (

1 ln det
2 α∑ ) as the 

second. Mahalanobis distance will not be affected by the different radiometric ranges, because all the 
mean and covariance values and the pixel values will be lying in the same scale. But the additive term 
in the equation which determines the log value of the determinant of covariance matrix can change 
with the different radiometric scales. This additive term is a higher value in the case of IKONOS 
image than the other images (see Appendix-C, table C.4), which eventually gives the likelihood 
energy a higher value. Though the likelihood energy poses these variations due to the radiometric 
range of the dataset, result from IKONOS and ASTER (VNIR) images suggest that there is no 
significant difference in treating the likelihood energy for the optimal results. The observation on 
ASTER (SWIR) and Landsat images also justifies the above conclusions. Though these two images 
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belong to different spectral regions (see Appendix-B, table.B.4 and Appendix-C, tableC.1) the optimal 
results have followed similar parameter estimation. Hence, it can be concluded that the spectral range 
of these MSS images may not have an effective influence over the optimal SRM results. 
 
The comparative analysis between the Hyperion linear unmixing results and the MRF based SRM 
results based on RMSE, AEP and correlation coefficient shows that the MRF models produce super 
resolution maps with accurate fractional representation for each class at the subpixel level than the 
linear unmixing results using the hyper spectral images. 
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6. Conclusion and recommendation 

The main objective of this study was to analyze the effectiveness of Markov Random Field based 
super resolution mapping technique in an urban environment defined by V-I-S model (urban 
composition).The widely used linear unmixing technique was integrated to analyze the effectiveness. 
It contained several sub objectives as follows. 
 

• Using the existing Markov Random Field based super resolution mapping method and modify 
it in order to apply on different spatial and spectral resolution images 

 
• To integrate the advantages of hyperspectral images for the study of urban composition 

 
• To study the effect of different input image characteristics on super resolution mapping and 

the determination of model parameters in the context of urban composition study 
 

• Finally to compare the effectiveness of super resolution methods with the standard SMA 
techniques (Linear Unmixing) 

 
In achieving these objectives six research questions was formulated. The study incorporates four 
different real satellite imageries namely IKONOS, ASTER and Landsat for the SRM technique and for 
making an effective analysis Hyperion hyperspectral was used for the linear Unmixing. The results 
obtained from the experiments were discussed in Chapter 5.This chapter dedicates it self to draw a 
conclusion with respect to the research questions. Further more it draws attention to some 
recommendations for the further research. 
 

6.1. Conclusion 

6.1.1. Parameter determination with respect to different real satellite image inputs 

Parameter determination is an important step for optimizing the performance of the super resolution 
mapping. This study applies the MRF based super resolution mapping to a significant number of real 
satellite images with different characteristics for the first time. It revealed the relationship between 
these parameters and the accuracy of the super resolution map. The first research question tries to 
reveal how the class definitions and different MS satellite images reveal the relationship between the 
scale factor and the neighbourhood size. Two scale factors were attempted in this study; those are the 
scale factor of 4 for the ASTER (VNIR) and IKONOS images and scale factor of 6 for the ASTER 
(SWIR) and Landsat images. The training classes were defined with higher number of pixels 
representing each class and with maximum class separability, so that the covariance and mean 
information for each class will not be underdetermined (see appendix-A,B,C). For each of these scale 
factors the neighbourhood size was set to grow with a neighbourhood size defined by 7x7 window for 
the scale factor 4 and 11x11 window for the scale factor 6. Though the neighbourhood size was not set 
to a constant for each of these scale factors, the results suggested that the growth of the neighbourhood 
size with respect to the scale factor works well. This can be seen with the accuracies of the SRM 
generated from the ASTER (SWIR) and Landsat images with 30m spatial resolution being very close 
to the accuracies of the SRM generated from 16m ASTER (VNIR) image. In the case of coarse spatial 
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resolution image (30m), a single pixel is segregated to a large number of sub pixels to generate the 
SRM, when the neighbourhood size grows with respect to the scale factor all of these sub pixels can 
be incorporated for the prior energy generation. 
 
The second research question draws the attention towards the smoothness parameter (λ ), which acts 
as a balancing factor between the prior and likelihood energy functions for the global energy. In this 
study this was taken in the range between 0 and 1. The behaviour of this parameter differs depending 
on the input satellite image characteristic. Experiments suggest that, the optimal λ value has a higher 
sensitivity to the spatial resolution of the image and the scene characteristics of the input image. When 
this parameter was tested for the degraded IKONOS image (with a spatial resolution of 16m) the 
optimal values were achieved in the range of 0.3 to 0.5 and similar results follow for ASTER (VNIR) 
image (16m spatial resolution). But for the ATSER (SWIR) and Landsat images (spatial resolution of 
30m) the optimalλ  value ranged from 0.1 to 0.3. This suggests that for coarser spatial resolution 
images (with a spatial resolution greater than 16m); optimal smoothing parameter should be set to a 
value between 0.1 to 0.3. The higher values of λ  for higher spatial resolution images suggest the 
pureness of the image pixels can lead to more valid contextual information than the low spatial 
resolution images. The MRF based SRM technique favours large and homogeneous objects more than 
the small discrete objects due to the presence of the rich contextual information of the large objects. 
The overall work suggests that though the image is of resolution less than 16m if it covers a 
heterogeneous scene it falls in the category of being a very coarser resolution image, which requires a 
λ value accordingly as suggested above.  
 
The spectral range of the images and its effect on the likelihood energy was discussed in section 5.6. 
The additive term in likelihood energy (see eq.4.11), which depends on the class covariance matrix 
takes into account these differences in the spectral range. This term was studied for each of these 
images to draw a conclusion. As IKONOS image digital values are quantified to a higher radiometric 
range of 16bit, the additive term brought in a higher value for the likelihood energy than the other 
images. Also due to the SWIR spectral range of ASTER image and the VNIR spectral range of 
Landsat image, the log of the determinant of the covariance matrix changes. But the final results 
between the IKONOS degraded image (16m) and the ASTER (VNIR) image (16m) shows that the 
changes in the spectral range has not being effected for the optimal results. The optimal parameters 
followed the same trend for both these images. Furthermore the ASTER (SWIR) and Landsat (VNIR) 
images showed an optimal smoothness value of 0.25 for the highest kappa agreement with the 
reference image. In this respect, it can be seen that the variations in the spectral range of these images 
has not been significantly affecting the optimal smoothness parameter. 
 
As the fourth research question tries to find out the effect of local specifics such as smog and dust for 
the classification results, an attempt was not put to follow this question in the study. One reason for 
this is that most of the images used in the study were acquired in the later months of the year where 
the study area Dehradun experience the winter season. This means that these images are not subjected 
to these local specifics in these times of the year. Dehradun normally has a very good visibility in 
winter season (greater than 25 km). 
 
The fifth research question tries to find out the best possible method to asses the classification 
accuracy. Measures assessing accuracy of land cover classification are important because a good 
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practical classification method should be chosen among several available methods. Nearness between 
an actual classification results and the complete classification should play a major role for the accuracy 
assessment. This question was aggregated in this study mainly due to two reasons - one is to 
accurately analyse the results and the other to address certain discriminations in the past [45] over the 
well known accuracy measures in remote sensing techniques. According to some research conducted 
in the past [45] it has been shown that Kappa statistics for the accuracy has an unfavourable features. 
To identify these effects, this study incorporates five measures of accuracy with their own advantages 
(refer to chapter 4), namely Overall accuracy (OA), Kappa coefficient (K), Root Mean Square Error 
(RMSE), Correlation Coefficient (CC), Area Error Proportion (AEP). By using all these measures we 
assessed our results. The OSRM results were assessed by OA and K, while the linear unmixing results 
and the MRF based SRM results were analysed by RMSE, CC and AEP. Experiments shows that the 
agreement of OSRM with the respect to the reference image shown by K and OA values are justified 
by the results for the fractions between the OSRM and the reference suggested by the RMSE, CC, and 
AEP values (refer Chapter 5). Hence, it is suggested that analysing the results with all these accuracies 
will lead to a good understanding of the classification results and the pattern of error propagation than 
by using one accuracy measure. 
 
The last research question which leads to the main objective of this study examines the most effective 
method in the context of urban composition between the MRF based SRM technique and the linear 
unmixing technique. According to the results obtained from the experiments over the different types of 
input images the MRF based SRM technique shows promising advantages over the linear unmixing 
technique in defining class proportions at the subpixel level. The fraction images generated form the 
OSRM shows higher agreement than the linear unmixing fractions on Hyperion image and with the 
reference fractions from IKONOS. In the case of Landsat image both these techniques compete to 
show more similar classification accuracy with respect to the average CC close to 0.6. Overall results 
suggests that SRM technique has a slight advantage and moreover in all the experiments the 
refinement in the subpixel class fractions due to the contextual information modelled by the prior 
probability can be seen looking at the accuracy measures between the initial SRM and the optimized 
SRM. The results also suggest the advantage of integrating the Hyperion image for the linear 
unmixing with respect to the multispectral images is signified by the accuracy statistics showing better 
results for the Hyperion fractions than the initial multispectral image fraction, and the improvement of 
the multispectral fractions with optimization process. 
 

6.2. Recommendation 

This research addresses most of the limitations in MRF base SRM technique in the application of the 
real satellite images. The technique was tested in a heterogeneous urban environment for its 
superiority. Future researches should be directed to address some of the existing limitations and also 
for further applications. The following are some of the recommendations for the further research. 
 

• The application of the MRF based SRM technique on Hyperspectral remote sensing 
images to aggregate the advantages of its high spectral dimensionality. 

 
• Assessment of the errors introduced to the model due to resampling of the image 
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Appendix A 

Hyperion linear unmixing & OSRM generation for the IKONOS degraded image. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig A. 1 PPI image and the corresponding PPI plot for the Hyperion image 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig A. 2”Smilling” effect inherent to Hyperion data recognized by the 1 MNF image, and the 
respective MNF plot 
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Fig A. 3 Degraded IKONOS VNIR bands with 16m spatial resolution and the fraction images 
generated from SVD 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig A. 4 Class separability for the Degraded IKONOS image 
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Table A. 1 Class mean values for the IKONOS image 
 
Class Band1 Band2 Band3 
Vegetation 351.827893 363.871414 548.546983 
Soil 396.513051 451.156607 625.654160 
Impervious Surface 479.440329 553.683128 512.518519 
 
Table A. 2 Standard deviations for the class samples in IKONOS image 
 
Class Band1 Band2 Band3 
Vegetation 14.887102 27.390814 95.120427 
Soil 61.992404 77.054330 129.454111 
Impervious Surface 59.724986 91.990536 92.585557 
 
 
Table A. 3 Class covariance information for the IKONOS image 
 
Vegetation Band1 Band2 Band3 
Band1 221.625795    358.486759    317.059579 
Band2 358.486759 750.256717 1147.502087 
Band3 317.059579 1147.502087 9047.895563 
Soil 
Band1 3843.058197 4691.271424 3862.055946 
Band2 4691.271424 5937.369740 4461.107266 
Band3 3862.055946 4461.107266 16758.366828 
Impervious Surface 
Band1 3567.073904 5407.557460 3807.183961 
Bnad2 5407.557460 8462.258681 6399.569942 
Bnad3 3807.183961 6399.569942 8572.085399 
 
 
 
 
 
 
  
 
 
 
 
Fig A. 5 Training samples on IKONOS image and the respective number of training pixels per each 
class 
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Fig A. 6 Initial SRM and optimized SRM for the IKONOS degraded image for an optimal 
smoothening value of 0.35 
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Appendix B 

OSRM generation for the ASTER (VNIR) Image   

6.2.1.   

 
 
 
 
 
 
 
 
 
 
Fig B. 1 Class separability for the ASTER 16m image 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig B. 2 Class definition on ASTER image, corresponding PPI image with PPI plot & number of 
training pixels per each class 
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Table B. 1 Class mean values for the ASTER (VNIR) image 
 
Class Band1 Band2 Band3 
Vegetation 20.091988 13.814045 45.396637 
Soil 25.044861 20.464927 54.473083 
Impervious Surface 30.205761 27.049383 40.061728 
 
Table B. 2 Slandered deviations for the class samples in ASTER (VNIR) image 
 
Class Band1 Band2 Band3 
Vegetation 1.204137 1.190324 3.611855 
Soil 2.231231 3.465397 6.213061 
Impervious Surface  30.205761 27.049383 40.061728 
 
 
Table B. 3 Class covariance information for the ASTER (VNIR) image 
 
Vegetation Band1 Band2 Band3 
Band1 1.449946 1.176528 1.387240 
Band2 1.176528 1.416872 1.378780 
Band3 1.387240 1.378780 13.045494 
Soil 
Band1 4.978394 7.153820 -5.955118 
Band2 7.153820 12.008973 -12.780129 
Band3 -5.955118 -12.780129 38.602132 
Impervious Surface 
Band1 6.428562 6.576574 4.764106 
Bnad2 6.576574    7.857055 5.612642 
Bnad3 4.764106 5.612642 10.363942 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

85 



ANALYSIS OF THE EFFECTIVENESS OF SPECTRAL MIXTURE ANALYSIS AND MARKOV RANDOM FIELD BASED SUPER RESOLUTION MAPPING IN 
THE CONTEXT OF URBAN COMPOSITION 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig B. 3 Fraction images and the initial SRM for the ASTER (VNIR) image 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig B. 4  optimization process for 0.45λ = in the ASTER (VNIR) image 
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OSRM generation for ASTER (SWIR) image  

 
 

6.2.2.   

 
 
 
 
 
 
 
 
 
Fig B. 5 Class separability for the ASTER 30m image 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig B. 6 Class definition on ASTER (SWIR) image, corresponding PPI image with PPI plot & number 
of training pixels per each class. 
 
Table B. 4 Class mean values for the ASTER (SWIR) image 
 
Class Band1 Band2 Band3 Bnad4 Band5 Band6 
Vegetation 58.511375 43.348170 41.506429 37.083086 32.054402 33.912957 
Soil 106.316476 73.104405 79.681077 69.680261 63.058728 51.718597 
Impervious Surface 86.205761 77.855967 83.164609 75.547325 72.864198 60.539095 
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Table B. 5 Standard deviations for the class samples in ASTER (SWIR) image 
 
Class Band1 Band2 Band3 Bnad4 Bnad5 Band6 
Vegetation 7.036723 5.311620 5.798490 5.665338 4.901001 2.896625 
Soil 14.386025 9.381033 12.391185 10.562647 11.340870 7.856879 
Impervious Surface 6.012285 4.969310 6.559775 6.135591 6.732958 4.779596 
 
 
Table B. 6 Class covariance information for the ASTER (SWIR) image 
 

Band1 Band2 Band3 Band4 Band5 Band6 Vegetation 
Band1 49.515465 33.721778 38.158590 36.631727 15.232982 16.645546 
Band2 33.721778 28.213311 29.657165 29.196786 25.031535 13.984791 
Band3 38.158590 29.657165 33.622483 32.127188 27.694204 15.530263 
Band4 36.631727 29.196786 32.127188 32.096060 27.046961 15.232982 
Band5 30.771163 25.031535 27.694204 27.046961 24.019810 13.403750 
Band6 16.645546 13.984791 15.530263 15.232982 13.403750 8.390436 
Soil 
Band1 206.957720 97.287748 141.668361 111.751068 105.747930 62.261375 
Band2 97.287748 88.003785 113.760671 98.086471 104.486925 70.509404 
Band3 141.668361 113.760671 153.541470 128.928149 136.015480 90.702834 
Band4 111.751068 98.086471 128.928149 111.569520 117.741242 79.439747 
Band5 105.747930 104.486925 136.015480 117.741242 128.615324 87.401846 
Band6 62.261375 70.509404 90.702834 79.439747 87.401846 61.730544 
Impervious Surface 
Band1 36.147570 26.414056 35.077560 31.878652 32.689215 20.301840 
Bnad2 26.414056 24.694045 31.656038 29.698993 32.348128 21.656481 
Bnad3 35.077560 31.656038 43.030643 39.211186 42.617488 28.605108 
Band4 31.878652 29.698993 39.211186 37.645478 40.062239 27.187192 
Band5 32.689215 32.348128 42.617488 40.062239 45.332721 30.809050 
Band6 20.301840 21.656481 28.605108 27.187192 30.809050 22.844540 
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Fig B. 7 Fraction images and the initial SRM for the ASTER (SWIR) image 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig B. 8 Optimization process for 0.25λ = in the ASTER (SWIR) image 
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Appendix C 

OSRM generation for the Landsat image 

 

 
 
Fig C. 1 Class separability for the Landsat image 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig C. 2 Class definition on Landsat image, corresponding PPI image with PPI plot & the number of 
training pixels per each class 
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Table C. 1 Class mean values for the Landsat image 
 
Class Band1 Band2 Band3 Bnad4 Band5 Band6 
Vegetation 75.784387 62.148699 68.750929 60.234201 71.996283 62.401487 
Soil 62.787234 50.971631 50.496454 90.070922 93.014184 56.950355 
Impervious Surface 75.784387 62.148699 68.750929 60.234201 71.996283 62.401487 
 
Table C. 2 Standard deviations for the class samples in Landsat image 
 
Class Band1 Band2 Band3 Bnad4 Bnad5 Band6 
Vegetation 5.287797 8.187188 13.313991 13.252182 19.654573 17.463463 
Soil 4.196612 5.424736 9.378261 8.630217 15.875401 13.204613 
Impervious Surface 5.287797 8.187188 13.313991 13.252182 19.654573 17.463463 
 
Table C. 3 Class covariance information for the Landsat image 
 

Band1 Band2 Band3 Band4 Band5 Band6 Vegetation 
Band1 11.145635 11.309358 14.358587 4.528251 17.264125 15.638216 
Band2 11.309358 16.409414 17.912265 21.845907 31.251765 22.847492 
Band3 14.358587 17.912265 24.664396 10.012087 31.904300 27.429806 
Band4 4.528251 21.845907 10.012087 203.235322 108.700671 37.721157 
Band5 17.264125 31.251765 31.904300 108.700671 115.254082 61.924532 
Band6 15.638216 22.847492 27.429806 37.721157 61.924532 43.903434 
Soil 
Band1 17.611550 20.365350 35.849240 8.800912 41.417325 45.167933 
Band2 20.365350 29.427761 48.449899 17.823455 65.064691 64.805724 
Band3 35.849240 48.449899 87.951773 24.157396 114.400051 114.674823 
Band4 8.800912 17.823455 24.157396 74.480648 86.598987 49.060689 
Band5 41.417325 65.064691 114.400051 86.598987 252.028369 194.529281 
Band6 45.167933 64.805724 114.674823 49.060689 194.529281 174.361803 
Impervious Surface 
Band1 27.960800 36.621733 54.449828 39.580536 61.868598 60.571964 
Bnad2 36.621733 67.030045 105.339414 92.547134 142.377421 129.843062 
Bnad3 54.449828 105.339414 177.262359 153.502580 239.525190 218.245894 
Band4 39.580536 92.547134 153.502580 175.620318 243.612814 202.066068 
Band5 61.868598 142.377421 239.525190 243.612814 386.302225 333.385826 
Band6 60.571964 129.843062 218.245894 202.066068 333.385826 304.972535 
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Fig C. 3 Fraction images and the initial SRM for the Landsat image and the Optimization process for 

0.25λ =  
 
 
 
Table C. 4 Log value of the determinant of the class covariance matrices for the input images 
 
 

Input image Radiometric resolution 1 ln det
2 α∑  

IKONOS 
Multispectral  

Unsigned 16bit 10.646 

ASTER (VNIR)  Unsigned 8bit 1.374 
ASTER (SWIR) Unsigned 8bit 4.833 
Landsat Unsigned 8bit 8.426 
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