AIRBORNE LIDAR FOR 3D MODELING OF URBAN AREAS

- •In case of ALTM-DC data, semi-automatic approach was applied to generate 3D city model (Footprints extracted from Aerial Photographs and height information from LiDAR point cloud).
- Automatic extraction of building footprints and 3D model with high point density airborne LiDAR point cloud in Vaihengen and Toronto.

Better results can be obtained with higher point density preferably 7-8 pts/m² of LiDAR data.

Reconstructed 3D model, Vaihengen, Germany

Step 1: Ground

Step 2: Vegetation

Step 3: Building Classification and Modeling

Accuracy Assessment of LiDAR derived building model

against Photogrammetric methods		
	Vaihengen	Toronto
Average dz (m)	-0.08	-0.11
Minimum dz (m)	-0.77	-1.77
Maximum dz (m)	1.30	1.04
Average magnitude (m)	0.32	0.85
Root mean square (m)	0.48	0.96
Std deviation (m)	0.49	1.02
CRE	0.11%	1%