FLOOD MODELING USING HYDROLOGICAL TOOLS

Objectives

- To prepare spatial database as related to flood risk analysis
- To carry out flood risk modeling using HEC-GeoRAS spatial tool along with ArcGIS and HEC-RAS GIS and modeling tools.

Data: Cartosat-1 stereo-pairs, Resourcesat-1 LISS-IV XS

1.
$$Q = (1.486/n) * A * R^{2/3} * S^{1/2}$$

Where,

O - Discharge

A - Area of cross-section

R - Radius

S - Energy slope

n - Manning's roughness coefficient

2.
$$t_c = 0.01947 * L^{0.77} / S^{0.385}$$

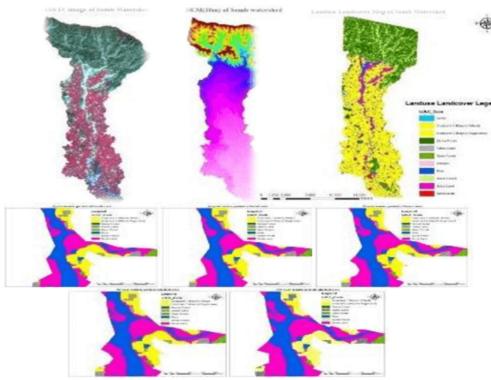
Where,

 $t_a = time of concentration (minutes)$

L = Maximum length of travel of water (m)

S = Slope of catchment

3.
$$i_{tc+p} = (K T^x) / (t_c+a)^n$$


Zone	K	Χ	Α	n
Northern zone	6.00	0.22	0.5	0.8

Estimated values for peak discharge for 5, 10, 25, 50 and 100 years profile are When, Area of catchment = 273.46 km^2 and C = 0.4721

Peak	5 years	10 years	25 years	50 years	100 years
Discharge (m/s ³)	123.3147	143.6288	175.7067	204.6515	238.3645

Tributary of Yamuna river.

- 30° 30' N,70° 30' E.
- Approximately 832 sq.km

Conclusions

Large areas falling close to the Somb River flood-plain are under severe threat to floods for **Estimated Flood affected areas for different return periods** various return periods (i.e. 5 year, 10 year, 25 year, 50 year and 100 year flood)